
R E S E A R CH AR T I C L E

Estimating the reference interval from a fixed effects
meta-analysis

Wenhao Cao1 | Lianne Siegel | Jincheng Zhou2 | Motao Zhu3 |

Tiejun Tong4 | Yong Chen5 | Haitao Chu1

1Division of Biostatistics, University of
Minnesota, Minneapolis, Minnesota, USA
2Center for Design & Analysis, Amgen
Inc., Thousand Oaks, California, USA
3The Center for Injury Research and
Policy, Abigail Wexner Research Institute
at Nationwide Children's Hospital,
Columbus, Ohio, USA
4Department of Mathematics, Hong Kong
Baptist University, Kowloon Tong,
Hong Kong
5Department of Biostatistics,
Epidemiology and Informatics, The
Perelman School of Medicine, University
of Pennsylvania, Philadelphia,
Pennsylvania, USA

Correspondence
Wenhao Cao and Haitao Chu, Division of
Biostatistics, University of Minnesota,
Minneapolis, MN, USA.
Email: cao00094@umn.edu; chux0051@
umn.edu

Funding information
National Heart, Lung, and Blood Institute,
Grant/Award Number: T32HL129956; U.
S. National Library of Medicine, Grant/
Award Number: R01LM012982; U.S.
National Institutes of Health's National
Center for Advancing Translational
Sciences, Grant/Award Number:
UL1TR002494

Abstract

A reference interval provides a basis for physicians to determine whether a

measurement is typical of a healthy individual. It can be interpreted as a pre-

diction interval for a new individual from the overall population. However, a

reference interval based on a single study may not be representative of the

broader population. Meta-analysis can provide a general reference interval

based on the overall population by combining results from multiple studies.

Methods for estimating the reference interval from a random effects meta-

analysis have been recently proposed to incorporate the within and between-

study variation, but a random effects model may give imprecise estimates of

the between-study variation with only few studies. In addition, the normal dis-

tribution of underlying study-specific means, and equal within-study variance

assumption in these methods may be inappropriate in some settings. In this

article, we aim to estimate the reference interval based on the fixed effects

model assuming study effects are unrelated, which is useful for a meta-analysis

with only a few studies (e.g., ≤5). We propose a mixture distribution method

only assuming parametric distributions (e.g., normal) for individuals within

each study and integrating them to form the overall population distribution.

This method is compared to an empirical method only assuming a parametric

overall population distribution. Simulation studies have shown that both

methods can estimate a reference interval with coverage close to the targeted

value (i.e., 95%). Meta-analyses of women daytime urination frequency and

frontal subjective postural vertical measurements are reanalyzed to demon-

strate the application of our methods.

KEYWORD S

fixed effects model, meta-analysis, reference interval, very few studies

1 | INTRODUCTION

In medical sciences, a reference interval is the range of
values that is considered normal for a continuous mea-
surement in healthy individuals (for example, the range
of blood pressure, or the range of hemoglobin level). We

generally expect the measurements of a specified propor-
tion (typically 95%) of a healthy population to fall within
this interval. This can also be interpreted as a prediction
interval for a measurement from a new healthy individ-
ual from the population. Reference intervals are provided
for many laboratory measurements and widely used to
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decide whether an individual is healthy or not. There are
two limitations when scientists use the reference interval
estimated from a single (particularly small) study for the
general population. First, the samples from a single study
may not be representative. Second, the reference interval
estimated by a small sample size will likely have high
uncertainty.1 In some cases, only 20 to 40 individuals in a
particular group are available in a study to estimate the
reference range, potentially leading to large variations in
the resulting upper or lower limits.2 Meta-analysis offers
a competitive solution by using samples from multiple
studies to establish a reference interval.3-13 The reference
interval estimated from a meta-analysis should account
for both the within and between-study variation to reflect
the distribution of the general population.

The pooled mean has been reported by some meta-
analysis studies as a “reference value,” which can only
provide information on whether an individual might be
above or below the average.10,11 Although many meta-
analysis studies reported the 95% confidence interval
(CI) of the pooled mean as the reference interval,4-6,9 this
interval only explains the uncertainty of the pooled
mean, not the predicted range for a new individual.
Another interval called the “prediction interval” is also
commonly reported in some meta-analyses, but it is for
predicting the mean of a new study, and does not capture
the appropriate range for a new individual.14,15 This arti-
cle aims to estimate the reference interval for the overall
population to predict the range of measurement of a new
individual by synthesizing evidence from multiple
studies. We are not interested in predicting the mean
of a new study, nor the confidence interval of the
pooled mean.

Siegel et al.16 recently proposed a frequentist and a
Bayesian method, and an empirical approach for estimat-
ing the reference interval from a meta-analysis. However,
the frequentist and Bayesian methods, which are based
on the random effects model, may lead to inaccurate
inference when the number of studies is small (≤5).17,18

Three assumptions are required in the frequentist and
Bayesian methods: (1) the normal distribution for indi-
viduals within each study, (2) the normality assumption
of the underlying study-specific means, and (3) the equal
within-study variance across studies. Those assumptions
can also be violated. Following the independent parame-
ters assumption in the fixed effects model,19 we propose a
mixture distribution method to estimate the reference
interval, which may be more suitable when the number
studies is small and/or when some assumptions required
by the random effects model in Siegel et al.16 are not
valid.

In Section 2, we first review the fixed effects meta-
analysis. Then, we review the empirical method proposed

by Siegel et al.16 which only makes a normal assumption
(or more generally a two-parameter exponential family
distribution) for the pooled population of all studies. We
further extend the fixed effects meta-analysis and propose
the mixture distribution method. The mixture distribu-
tion method only makes a distribution assumption for
individuals within each study. The simulation in Section 3
shows the performance of the two methods under

What is already known?

• A reference interval based on one study can
help scientists determine whether the measure-
ment of an individual is normal. This range
may not be generalizable to the overall popula-
tion due to a small sample size.

• A 95% confidence interval for the pooled mean
should not be reported as a reference interval
as it does not incorporate both the between-
and within- study variations.

• Previous literature gives guidance on how to
estimate reference intervals from a random
effects meta-analysis, which may not work well
for a meta-analysis when only a few studies are
available.

What is new?

• We present a mixture distribution method on
the fixed effects model assumption to estimate
the reference interval for an individual, espe-
cially when the number of studies is small. The
fixed effects model does not assume equal
within-study variances.

• The mixture distribution method assumes
parametric distributions for individuals within
each study, while the empirical method
assumes a parametric distribution for the over-
all population.

• Simulation results indicate that the two
methods perform similarly. They both tend to
underestimate the width of the reference inter-
val when the between-study heterogeneity is
large, particularly when the number of studies
is small.

• When the number of studies is relatively large,
the real data example showed that the two
methods provide similar results to the random
effects models.
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different data generation processes. We used two real
data examples to demonstrate the application of the two
methods in Section 4, and a discussion follows in
Section 5.

2 | METHODS

Suppose only the sample size, mean, and standard devia-
tion are available for each study. There are three meta-
analysis models that can be used, which differ by their
between-study heterogeneity assumptions: the common
effect model, the fixed effects model, and the random
effects model.19 The common effect model, also called
the fixed effect model, assumes no between-study hetero-
geneity, and that all studies have the same underlying
effect. This model has been criticized for attributing the
between-study differences only to the sampling variabil-
ity.20 The fixed effects model of Laird and Mosteller,20

which is sometimes confused with the common effect
model, assumes that the means were separate and fixed
with different within-study variances. This model con-
siders the between-study heterogeneity but asserts that
the study effects are unrelated. The random effects model
assumes the underlying effects in different studies are
independent and identically drawn from a single distribu-
tion.21 This implies that the study effects are somewhat
similar and the similarity is governed by the single distri-
bution.19 The random effects model is frequently chosen
if between-study heterogeneity is expected to be present
and there is a sufficient number of studies (larger than 5).
However, when there are very few studies, the estimate
of between-study variance in a random effects model can
be highly variable.18 As a typical approach to the random
effects model uses the estimated between-study variance
to calculate the inverse variance weights to estimate the
pooled mean,22 this imprecision may lead to a less desir-
able estimate of the pooled mean and its confidence
interval (CI).23,24 The imprecise estimate of between-
study variance can also lead to inaccurate assessment of
the degree of heterogeneity or the degree of similarity
across studies. When between-study heterogeneity is
expected and only few studies are available, it may be
preferable to consider the study-specific effects unrelated
and use the fixed effects model. The independent param-
eters assumption of the fixed effects model implies that
the effects of different studies are unrelated, and that they
are not random samples from one common distribution
like the random effects model.19 Thus, the fixed effects
model cannot directly estimate the overall population dis-
tribution and make predictions for a new individual from
the study-level summary statistics without making some
additional assumptions. To address this limitation, we

assume the pooled population of the included studies is
representative of the overall population. With this
assumption, one can estimate the reference range for a
new individual from the overall population.

We focus on two methods to combine the results from
multiple studies and estimate the pooled population dis-
tribution, without making the normality assumption of
study-specific underlying means and the equal within-
study variance assumption. First, we review and extend
the empirical method proposed by Siegel et al.16 which
only requires an distributional assumption for an individ-
ual in the overall population. We also propose a second
method which treats the overall population distribution
as a mixture of study-specific distributions, which we call
the mixture distribution method. The main difference
between the two methods is whether we make a distribu-
tional assumption—which can be any distribution
completely decided by the mean and variance—for each
study or for the overall population. After estimating the
overall population distribution, one can use the estimated
quantiles to establish the reference intervals. All analyses
were performed using R version 4.0.3 (R Core Team), and
the R code for real data analysis is provided in the Sup-
plementary Materials.

2.1 | The fixed effects model

Let yij denote the jth observation, θi be the underlying
true mean, and σ2i be the variance for study i = 1, …, k.
Typically to estimate a reference range, a parametric
(e.g., normal) distribution is assumed within each study.
Suppose �yi is the observed mean, ni is the sample size for
study i, and εi is a random variable describing the sam-
pling error of study i. The fixed effects model is given by

�yi ¼ θiþ εi,Var �yið Þ¼ σ2i
ni
, ð1Þ

where σ2i can be different across studies and the indepen-
dent parameter assumption is that θi are unrelated. Let
μFE be the pooled mean of the overall population in the
fixed effects model, and μFE is traditionally estimated as a
weighted average of study-specific means:

μ̂FE ¼
Xk
i¼1

wi�yiPk
j¼1wj

,Var μ̂FEð Þ¼
Xk
i¼1

w2
i σ

2
i

ni
Pk

j¼1wj

� �2 , ð2Þ

where σ2i can be estimated by the sample variance σ̂2i .
The two most commonly used weights are the inverse
variance weights wi ¼ ni

σ̂2i
proposed by Hedges and Vevea25

and the study sample size weights wi = ni proposed by
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Hunter and Schmidt.26 Marin et al.27 found that the sam-
ple size weighted average was a practically unbiased esti-
mator while the inverse variance weighted estimated was
slightly biased but had the lowest mean squared error.
The pooled mean μ̂FE and variance Var μ̂FEð Þ can be used
to construct the confidence interval for the pooled mean,
but it cannot be used to construct the reference interval
predicting the range of the measurement for a new indi-
vidual from the overall population. We considered the
following two methods to estimate the reference interval
in a fixed effects meta-analysis.

2.2 | The empirical method

The empirical method proposed by Siegel et al.16 does not
require that the studies have related means or equal within-
study variances and therefore can also be used in a fixed
effects meta-analysis. This method does not specify the dis-
tribution of yij within each study. However, it assumes that
the overall population follows a normal distribution, or
more generally any distribution completely determined by
its mean and variance. The overall mean across all study
populations can be estimated by the average of the study
means weighted by their study sample sizes:

μ̂emp ¼
Pk

i¼1ni�yiPk
i¼1ni

: ð3Þ

This μ̂emp is equivalent to the μ̂FE since they use the same
weights. Then the marginal variance across studies can
be estimated using the conditional variance formula Var
(y) = E[Var(yij| S = i)]+Var[E(yij| S = i)]:

σ̂2emp ¼
Pk

i¼1 ni�1ð Þσ̂2iPk
i¼1 ni�1ð Þ þ

Pk
i¼1 ni�1ð Þ �yi� μ̂emp

� �2

Pk
i¼1 ni�1ð Þ , ð4Þ

where the weights ni� 1 give an unbiased estimate of the
variance.16 The limits of the α-level reference interval are
then given by the 100� α/2 and 100� (1� α/2) percen-
tiles of a N μ̂emp, σ̂

2
emp

� �
distribution: μ̂emp� z1�α=2σ̂emp ,

where z1� α/2 is the standard normal critical value for the
chosen significance level α.

2.3 | The mixture distribution method

The mixture distribution method estimates the reference
interval by integrating the distribution function con-
structed by each study mean and variance. The study-
specific distribution Fi(y) need to be specified

parametrically but there is no need to assume the same
parametric distribution for each study, for example, a nor-
mal distribution for all studies. The observations in study i
can be assumed to follow any continuous distribution
completely determined by the mean θi and variance σ2i ,
such as those from the two parameter-exponential family.
The variances σ2i can differ across studies. In the fixed
effects model, the population mean μFE is estimated by
the weighted average of the study-specific means. Simi-
larly, we assume the overall population has a mixture dis-
tribution of individual study populations with weight wi:

F yð Þ¼
Xk

i¼1

wiFi yð ÞPk
j¼1wj

ð5Þ

where F(�) is the cumulative distribution function. For
each study, the distribution Fi(y) can be determined
approximately by the observed sample mean �yi and sam-
ple variance σ̂2i . Then, a 100� (1� α)% reference interval,
[L, U], based on the pooled population can be estimated
by solving the following equations:

Pk
i¼1

wiF̂i Lð ÞPk
j¼1wj

¼ α=2

Pk
i¼1

wiF̂i Uð ÞPk
j¼1wj

¼ 1�α=2,

8>>>><
>>>>:

ð6Þ

where F̂i �ð Þ is the estimate of the cumulative distribution
function of Fi(y).

When yij can be assumed to be approximately nor-
mally distributed, the study-specific cumulative distribu-
tion function can be approximately by F̂i ¼ϕ �yi, σ̂

2
i

� �
.

When the normality assumption of yij does not hold,
another parametric distribution should be used. For
example, if the observed measurements have a skewed
distribution or when the values cannot be negative,
assuming a log-normal distribution where ln yij

� �
�

N θi,δ2i
� �

may be more appropriate. In this case, one will
need to estimate the mean θi and variance δ2i in the log
scale from the observed sample mean �yi and sample vari-
ance σ̂2i in the original scale as θ̂i ¼ ln �yiffiffiffiffiffiffiffiffiffiffiffiffi

1þσ̂2i =�y
2
i

p
� �

and
δ̂
2
i ¼ ln 1þ σ̂2i =�y

2
i

� �
.28

This mixture distribution method does not require
assuming a normal distribution for the overall population
but does require a distributional assumption for each
study. Moreover, the parametric distributions within
each study can be different; we merely use the same dis-
tribution in this article for convenience. We choose the
sample sizes as the weights in the mixture distribution
method, though other weights such the inverse variance
weights can also be used.
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3 | SIMULATION

To assess the performance of the mixture distribution
method and compare it with the empirical method, we

generated the measurements within each study from a
normal, a log-normal or a gamma distribution. Following
the simulation conducted by Siegel et al.,16 the true over-
all mean μFE was set to be 8 and the total variance was

FIGURE 1 Simulation results: The median (line), 2.5%, and 97.5% (shaded area) of the proportion of the true population distribution

captured by the estimated 95% reference interval, for different numbers N of studies. The horizontal axis, proportion of between-study

variance to the total variance, represents the degree of heterogeneity across studies. Three distributions are assumed: (A) normal

distribution; (B) log-normal distribution; (C) gamma distribution [Colour figure can be viewed at wileyonlinelibrary.com]
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1.25 for all three distributions. A between-study vari-
ance, τ2 ¼ 1:25�E σ2i

� �
, was introduced to generate dif-

ferent study-specific means. The true within-study
standard deviations were generated from a doubly-
truncated normal distribution ϕ(μ = X, σ2 = 1, a = X,
b = X+ 1), with both the left truncation point and mean
equal to X and the right truncation point equal to X+ 1,
for X ranging from 0 to 0.64, with increments of 0.02. For
each X, we estimated E σ2i

� �
by simulating from the

doubly-truncated normal distribution. We then set τ2 to
be equal to 1:25�E σ2i

� �
to keep the total variance con-

stant across conditions. Each individual measurement
(yij) was simulated from the following full conditional
distributions:

θi j μFE,τ2 �Fi μFE,τ
2

� �
,τ2 ¼ 1:25�E σ2i

� �
;

yij j θi,σ2i �Fi θi,σ2i
� �

,
ð7Þ

where the two parameters in Fi(�) were the means and
variances for the normal, log-normal and gamma dis-
tributions we assumed. The total number of studies
was set to be 2, 5, 10, or 20, with 2 and 5 representing
cases with few studies. Each study contained 50 partici-
pants. We conducted 1000 simulations for each
configuration.

Under each scenario, we calculated the fraction of
the true population distribution captured by each of
the two reference interval methods, which we call the
“coverage.” The ratio of between-study variance (τ2) to
the total variance (τ2þE σ2i

� �
) and the number of studies

k included in the meta-analysis influenced the median
coverage and the variation (Figure 1). For normally dis-
tributed data in Figure 1(A), both the mixture distribu-
tion and empirical methods generally had coverages near
95% when the between-study variance was small. The
median coverage decreased as the between-study vari-
ance increased as a fraction of the total variance; this
decrease was most pronounced when k was very small
(k = 2). The extreme heterogeneity would be a problem
for the case with very few studies. Compared with the
empirical method, the median coverage of the mixture
distribution method decreased slightly more quickly with
the between-study heterogeneity. The variation in cover-
age increased as the between study heterogeneity τ2

increased and decreased as k increased, while the mixture
distribution method had a larger variation than the
empirical method. The results for the log-normal distri-
bution are shown in Figure 1(B) with very similar pattern
to the normal distribution. Figure 1(C) showed that two
methods provided almost the same results under a
gamma distribution assumption.

4 | TWO CASE STUDIES

4.1 | A meta-analysis of urination
frequency during day time

Accurate reference intervals for measurements of bladder
function (storage, emptying, and bioregulatory) are useful
to promote bladder health. They can be used to identify
lower urinary tract symptoms and determine whether
further evaluation and treatments are needed. Wyman
et al.7 conducted a meta-analysis with 24 studies to estab-
lish normative reference values for bladder function
parameters of noninvasive tests in women, including uri-
nation frequencies, voided and postvoid residual vol-
umes, and uroflowmetry parameters.

Here, we only focused on the daytime urination fre-
quency data which was available in five studies to dem-
onstrate our methods with few studies. The high degree
of observed heterogeneity across studies, the large I2

value (0.859), and the small number of studies suggest
that a fixed effects model is more appropriate than a ran-
dom effects model. We used the log-normal assumption
since the urination frequency data could not be negative
and the distribution is skewed. Figure 2 used the urina-
tion frequency data to illustrate the mixture distribution
method. We first estimated the densities for five studies
and weighted them by their sample sizes (the blue dashed
curves). Then, the 95% reference interval was obtained by
letting α = 0.05, which is the region of x-axis between
two vertical dashed lines. The solid black curve is the
density of the pooled population. Figure 3(A) shows
the means (95% CI) and the prediction interval for a new
individual for each study, the 95% CI of the overall mean
estimated by the fixed effects model, and the reference
intervals based on the methods introduced in Section 2.
The overall 95% CI based on the pooled mean gave the
narrowest interval ([6.50,6.76]), which represents only
the precision in the point estimate. The reference inter-
vals for the empirical method ([3.56,11.32]) and mixture
distribution method ([3.53,11.31]) were much wider and
overlapped with all studies' 95% prediction interval.
Wyman et al.7 used the same mixture distribution
method and reported a 90% reference interval [4, 10] for
the day time urination frequency, and our mixture distri-
bution method had the same result after changing the
quantiles to 90%. We also considered a gamma distribu-
tion for the measurement in Figure 3(B) to see the perfor-
mance of our methods under different distribution
assumption. The reference intervals for the empirical
method ([3.31,11.09]) and mixture distribution method
([3.29,11.09]) were shifted to the left by 0.2 compared
with the results under log-normal assumption. We
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FIGURE 2 An illustration of the 95% reference interval estimated by the mixture distribution method: The blue dashed curves are the

estimated densities for five studies weighted by the sample sizes, and the solid black curve represents the pooled population distribution

density. The 95% reference interval is the region of x-axis between two vertical lines, and the sum of area under each blue curve outside the

vertical line on each side is equal to 0.025 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 A meta-analysis of daytime frequency: Mean (95% CI) and 95% prediction interval for a new individual for each study;

Overall is the 95% CI for pooled mean estimated by the fixed effects model; 95% reference ranges are estimated from the mixture distribution

and the empirical methods under: (A) the log-normal distribution; (B) the gamma distribution [Colour figure can be viewed at

wileyonlinelibrary.com]
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provided the 95% prediction intervals for a new individ-
ual of each study, which is the estimated reference inter-
val if only a single study was available. The prediction

intervals for a new observation of each study showed
obvious differences representing variation in the study
populations. This suggests that a reference interval

FIGURE 4 A meta-analysis of sagittal plane SPV: Mean (95% CI) and 95% prediction interval for a new individual for each study;

overall is the 95% CI for pooled mean estimated by the fixed effects model; 95% reference ranges are estimated from the mixture distribution

and the empirical methods under the normal distribution [Colour figure can be viewed at wileyonlinelibrary.com]
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calculated from a meta-analysis of these studies is more
generalizable to the overall population.

4.2 | A meta-analysis of human postural
vertical

The second case study is a meta-analysis of human sub-
jective postural vertical (SPV) measurements,12 which
reflect an individual's ability to perceive whether they are
vertical or not. Maintaining vertical posture is an impor-
tant ability when engaging in daily activities.29 Vertical
perception is also associated with postural control and
functionality and can be altered in stroke patients.30 To
measure the SPV, the participants usually sit on a tilting
chair with their eyes closed, and verbally instruct an
examiner to set the chair to their perceived upright body
orientation.

We used the data for frontal SPV from 15 studies that
measured the deviation (in degree) of the specified posi-
tion from true verticality in the frontal planes. This case
study was used to demonstrate the application of our
methods when the number of studies is relatively large.
The meta-analysis included 15 studies measuring frontal
SPV and the heterogeneity I2 is 0.909. Conceiç~ao et al.12

used the empirical method to estimate the pooled mean
and standard deviation, then estimated the normal refer-
ence interval as μ̂�2σ̂ ([�2.87, 3.31]). Siegel et al.16 pro-
posed the frequentist method and Bayesian method, and
estimated the reference intervals as [�2.92, 3.15]
and [�3.07, 3.20], respectively. We analyzed the data
using the fixed effects model to estimate the pooled
mean. As we expected, the 95% CI for the pooled mean
was narrow ([�0.04, 0.27]) and did not reflect the varia-
tion between individuals. The reference interval calcu-
lated using the empirical method was [�2.89, 3.13], the
same as Siegel et al.16 result. Conceiç~ao et al.'s12 interval
was slightly wider since they used 2 times standard devia-
tion instead of 1.96 and weighted by n when estimating
the overall variance.12 The mixture distribution method
gave a relatively narrower interval [�2.97, 3.10], which
was still very close to results of Conceiç~ao et al.12 and
Siegel et al.16 Figure 4 shows that the reference intervals
estimated using the mixture distribution and empirical
methods overlapped with all individual studies' 95% CIs
for the mean, while the 95% CI for the pooled mean only
included 4 study means and do not account for the varia-
tion. The 95% prediction intervals for a new observation
of each study demonstrated a high degree of heterogene-
ity across studies like the first example. These results
reflect how our methods incorporate the full variation in
the overall population into the estimated reference
intervals.

5 | DISCUSSION

Meta-analysis is a useful method for synthesizing the
results of multiple independent studies to address a par-
ticular question. In this article, we described two
methods based on the fixed effects assumption to esti-
mate the normal reference intervals for an individual.
One method was a mixture distribution method assum-
ing the overall population distribution is a mixture of
individual study distribution. The other method was an
empirical method assuming a normal distribution of the
overall population.16 The simulation results showed that
when using the fixed effects model with a very small
number of studies (2 or 5), both methods performed well
if the between-study variation was relatively small. How-
ever, it is important to consider whether separate results
from individual studies would be more informative than
a meta-analysis with few studies.18 We recommend
choosing the meta-analysis when (1) establishing the ref-
erence interval based on the pooled population is neces-
sary, and (2) the estimated between-study variation is no
more than 30% � 50% of the total estimated variation. It
may be preferable to calculate separate reference inter-
vals for each study population rather than using a meta-
analysis when the number of studies is very small and
the heterogeneity between studies is extremely large. The
example of frontal SPV demonstrated that the two
methods can give very similar reference intervals as the
random effects model, when the number of studies is rel-
atively large. It is difficult to predict the study-level mean
of a new study or the range of a new individual in a fixed
effects model, since the included study effects are
assumed unrelated and there is no distribution assump-
tion for the underlying study means. Thus, if the random
effects assumption that the underlying study-specific
means are from the same distribution is valid, and the
number of studies is large, then the between-study vari-
ance can be precisely estimated. In this case, the random
effects model may be preferred to draw inferences
about a hypothetical future study and/or individual not
included in the meta-analysis.

The within-study normality assumption in meta-
analysis “might not always be appropriate,” especially for
small sample size studies or skewed data.17,31 Log or
other transformation can be used for skewed data. If the
underlying distribution of the data is not normal and
the transformation to a normal population is impossible,
the mixture distribution method is still feasible as long as
a parametric distribution for each study can be assumed.
The empirical method does not make any within-study
normality assumption but assumes the overall population
follows a known distribution belongs to the two-
parameter exponential family. Based on the information
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obtained from included studies, the choice of the two
methods depends on which assumption is more appropri-
ate. In addition to the flexible assumption for the distri-
bution, both methods do not require equal within-study
variances.

This article focuses on the situation that only the
study level data is available, making it impossible to
avoid making an assumption for within-study distribu-
tions or the overall distribution. If the individual patient
data (IPD) are available, other methods for estimating
the reference intervals for a single study could likely be
extended to the meta-analysis setting. For example, non-
parametric methods could be used without making
assumptions about the specific form of the underlying
distribution of the data within each study.2

Finally, it is important to determine whether the stud-
ies included in a meta-analysis have reported measure-
ments from the target population whose reference range
is being sought. One suggestion is evaluating the inclu-
sion and exclusion criteria of the meta-analysis based on
the population of interest. For example, 16 studies were
excluded in Conceiç~ao et al.12 because their SPV protocol
was not in seated position or used control groups with
non-healthy participants. Furthermore, considering dif-
ferent instruments can be used to get measurements, the
reference interval for measurements obtained by one
instrument might not be applicable for measurements
from other instruments.

Although in this article we assume that each study
reports the sample size, mean and standard deviation
(SD) of the outcome, some articles report the sample
median, the minimum and maximum values, and/or the
first and third quartiles, especially when the data are
skewed. Multiple methods have been proposed to esti-
mate the sample mean and SD by using those summary
statistics.32-35 With the estimated sample mean and SD,
those studies can be included in the meta-analysis. Fur-
thermore, for studies reported those summary statistics
in addition to the mean and SD, the quantile-matching
estimation (QME) may be used to better estimate the
parameters of the within-study distribution.36,37 While
the methods presented in this article only use aggre-
gated study-level data, future studies may consider esti-
mating the reference interval by combing studies with
individual participant data and studies with aggregated
study-level data. Future work could also investigate the
effect of subject characteristics, such as age, on the nor-
mal reference range by incorporating covariates in the
meta-regression model. In addition, it may also be fruit-
ful to investigate the impact of small study effects, publi-
cation and other biases on the estimation of reference
range.38-40
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