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ABSTRACT
Causal mediation analysis is a popular approach for investigating whether the effect of an exposure on
an outcome is through a mediator to better understand the underlying causal mechanism. In recent lit-
erature, mediation analysis with multiple mediators has been proposed for continuous and dichotomous
outcomes. In contrast, methods for mediation analysis for an ordinal outcome are still underdeveloped.
In this paper, we first review mediation analysis methods with a continuous mediator for an ordinal out-
come and then develop mediation analysis with a binary mediator for an ordinal outcome. We further
consider multiple mediators for an ordinal outcome in the counterfactual framework and provide identi-
fication assumptions for identifying the mediation effects. Under the identification assumptions, we pro-
pose a regression-based method to estimate the mediation effects through multiple mediators while
allowing the presence of exposure-mediator interactions. The closed-form expressions of mediation
effects are also obtained for three scenarios: multiple continuous mediators, multiple binary mediators,
and multiple mixed mediators. We conduct simulation studies to assess the finite sample performance
of our new methods and present the biases, standard errors, and confidence intervals to demonstrate
that our proposed estimators perform well in a wide range of practical settings. Finally, we apply our
proposed methods to assess the mediation effects of candidate DNA methylation CpG sites in the
causal pathway from socioeconomic index to body mass index.
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1. Introduction

Causal mediation analysis is a popular approach that enables
researchers to understand the causal mechanism of an
observed exposure-outcome association in a scientific study.
It has widespread applications in many disciplines including
psychology, epidemiology, behavioral science, economics,
and neuroscience. The aim of mediation analysis is to deter-
mine whether the effect of an exposure on an outcome is
wholly or in part due to a mediator, so that it can reveal the
underlying causal mechanism and provide a way of per-
forming intervention on the mediator (Baron & Kenny,
1986; Preacher & Hayes, 2008; VanderWeele, 2015).

In mediation analysis, the effect of the exposure on the out-
come not through the mediator is referred to as the direct effect,
and the effect of the exposure on the outcome through the
mediator is referred to as the indirect effect. In the counterfactual
framework, Robins and Greenland (1992) and Pearl (2001) pro-
vided the model-free definitions of the direct and indirect effects.
Following their framework, there is a rich body of evaluating the
direct and indirect effects for both continuous and binary out-
comes. For further developments, one may refer to, for example,
Rubin (2004), Imai et al. (2010), VanderWeele (2010), Albert
and Nelson (2011), Vansteelandt and VanderWeele (2012),
Tchetgen and Shpitser (2014), and the references therein.

In real situations, the exposure’s effects on the outcome can
also be transmitted through multiple mediators. A major

challenge of mediation analysis with multiple mediators is the
structural dependence among the multiple mediators, including
the multiple causally ordered mediators, the multiple inter-
dependent mediators and the multiple parallel mediators. There
is a growing body of literature on mediation analysis with mul-
tiple mediators. The multiple causally ordered mediator models
in the counterfactual framework have been studied by Daniel
et al. (2015), Huang and Yang (2017), and Steen et al. (2017).
For a continuous or binary outcome, the regression-based
approaches to estimate the multiple interdependent mediation
effects have been studied by VanderWeele and Vansteelandt
(2014) and Saunders and Blume (2018). In addition, analytical
approaches to express the total effect in the multiple parallel
mediator models have also been provided by Bellavia and
Valeri (2018) and Taguri et al. (2018). For multiple mediation
analysis with a survival outcome, Yu et al. (2018) and Yu et al.
(2019) considered multiple correlated mediators to propose the
nonparametric or semiparametric methods to estimate the
mediation effects.

Note that most existing methods for mediation analysis with
multiple mediators are developed for continuous or binary out-
comes. In practice, however, an ordinal outcome can also arise
in medical research and other disciplines. In obesity studies,
study subjects can be categorized into several groups: healthy
weight, overweight, obese, and severely obese, based on their
body mass index (BMI), for example, see Devick et al. (2022).
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To our knowledge, there exists little literature on the research
of mediation analysis for an ordinal outcome. In recent years,
Liu et al. (2013) proposed an appropriate procedure for categor-
ical data in mediation models when the outcome variable is
ordinal. VanderWeele et al. (2016) studied the mediation effects
for an ordinal outcome with a single mediator. In this paper,
we focus on mediation analysis for an ordinal outcome with
multiple mediators in the counterfactual framework. Specifically,
we propose a regression-based method to estimate the natural
direct and indirect effects with multiple mediators. The key
advantages of our approach are that the estimated natural direct
and indirect effects have closed-form expressions, and the flex-
ible regression models are allowed to be specified for both con-
tinuous and discrete multiple mediators.

The remainder of this paper is organized as follows. In
Section 2, we provide the definitions of the direct and indirect
effects for an ordinal outcome with multiple mediators and spe-
cify their identification assumptions. In Section 3, we review the
existing methods for identifying and estimating the direct and
indirect effects for an ordinal outcome with a single continuous
mediator, and then develop new methods for mediation analysis
for an ordinal outcome with a binary mediator. In Section 4, we
propose a regression-based method to express the mediation
effects with multiple mediators for three different scenarios: mul-
tiple continuous mediators, multiple binary mediators and mul-
tiple mixed mediators. We then conduct simulation studies to
assess the finite sample performance of our proposed methods
in Section 5 and demonstrate the usefulness of our proposed
methods through the socioeconomic index (SI)-body mass index
(BMI) data in Section 6. Finally, we conclude the paper with dis-
cussions in Section 7 and provide the detailed derivations in
the Appendices.

2. Definition and Identification Assumptions

Consider a causal mediation model that includes an exposure
X, an ordinal outcome Y with ordered categories 1, 2, :::, J, and
a total of K mediators M ¼ ðMð1Þ , :::,MðKÞÞT , where T repre-
sents the transpose of a vector. The exposure X may affect the
outcome Y directly, or it may affect some of the mediators M,
which in turn affects the outcome Y. Let C be a p-dimensional
vector of all relevant confounding variables. Then, the relation-
ship among the exposure, mediators, outcome and confounders
can be represented by a causal diagram in Figure 1.

In the counterfactual framework, let Yx and Mx denote
the values of the outcome and mediators, that would have
been observed if the exposure X was set to level x. Let Yx,m

denote the value of the outcome that would have been
observed if the exposure X was set to level x and the media-
tors M were set to m ¼ ðmð1Þ ,mð2Þ , :::,mðKÞÞT : Let Yx,Mx�
denote the value of the outcome that would have been
observed if the exposure X was set to level x and the media-
tors M were set to Mx� that it would have taken at some
reference exposure level x�: We also need two technical
assumptions referred to as the consistency and composition
assumptions. The consistency assumption states that the
counterfactual outcome Yx and the mediators Mx are equal
to Y and M when X¼ x, respectively. Furthermore, when

X¼ x and M ¼ m, the counterfactual outcome Yx,m is equal
to Y. The composition assumption is Yx ¼ Yx,Mx , that the
outcome associated to the exposure X¼ x is equal to the
outcome associated to setting X to x and the mediators to
Mx, which is the value it would have naturally attained
under X¼ x (VanderWeele & Vansteelandt, 2009).

Here, we adopt the odds ratio scale to define the direct
and indirect effects for the multiple mediator setting. The
total effect (TE) conditional on C ¼ c is defined by

TEOR ¼ PðYx,Mx > jjcÞ=PðYx,Mx � jjcÞ
PðYx� ,Mx� > jjcÞ=PðYx� ,Mx� � jjcÞ , (1)

which measures the effect of the exposure X on the outcome
Y when the exposure level set to x� versus the exposure level
set to x, where 1 � j � J � 1:

The controlled direct effect (CDE) conditional on C ¼ c

is defined by

CDEOR ¼ PðYx,m > jjcÞ=PðYx,m � jjcÞ
PðYx� ,m > jjcÞ=PðYx� ,m � jjcÞ , (2)

which measures the effect of the exposure X on the outcome
Y unmediated through the mediators M while fixing the medi-
ators at m. Alternatively, the natural effect sets the mediators
at their natural levels that would be observed. Then, the nat-
ural direct effect (NDE) conditional on C ¼ c is defined by

NDEOR ¼ PðYx,Mx� > jjcÞ=PðYx,Mx� � jjcÞ
PðYx� ,Mx� > jjcÞ=PðYx� ,Mx� � jjcÞ , (3)

which measures the effect on the outcome changing the
exposure X from level x� to level x, but blocking any effect
on the mediators.

In contract to NDE, the joint natural indirect effect (NIE)
through the mediators M conditional on C ¼ c is defined by

NIEOR ¼ PðYx,Mx > jjcÞ=PðYx,Mx � jjcÞ
PðYx,Mx� > jjcÞ=PðYx,Mx� � jjcÞ , (4)

which measures the effect on the outcome when the media-
tors are changed by the exposure X from level x� to level x
and the exposure is fixed at level x at the same time. Note
that the total effect decomposes into the product of natural
direct and indirect effects, namely, TEOR ¼ NDEOR � NIEOR:

In the multiple mediator models, we further consider the
mediation effects through an individual mediator. From

Figure 1. A causal diagram with the exposure X, the mediators ðMð1Þ , :::,MðKÞÞ,
the outcome Y and the confounding variable C. The directions of arrows indi-
cate the causal pathways.
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Figure 1, the joint natural indirect effect can be decomposed
into K mediation effects within the K-mediator model under
the assumption of no interaction among the mediators. We
now define the natural indirect effect through a single medi-
ator. The natural indirect effect through the mediator MðiÞ

alone is defined by

which measures the indirect effect of the exposure X on the
outcome Y only through the ith mediator with i from 1 to
K. Note that under the independent assumption of media-
tors, it provides a proper decomposition of a joint natural
indirect effect among individual mediators as follows:

NIEOR ¼
YK
i¼1

NIEðiÞ
OR:

In some studies, the natural effects are probably preferred
since we may not be able to set the mediator at a specific
level. Thus, stronger assumptions are needed to identify the
natural effects. Let A

‘
BjC denote that A is independent of

B conditional on C. To identify the total effect, it is gener-
ally assumed that, conditional on the covariates C, the effect
of exposure X on outcome Y is unconfounded. In the coun-
terfactual notation, this is denoted as Yx

‘
XjC ¼ c for all c.

In addition, in order to identify the CDE, NDE and NIE,
we need the following assumptions.

(A1) No unmeasured exposure-outcome confounding:

Yx,m
‘

XjC ¼ c for all x, m and c.

(A2) No unmeasured mediator-outcome confounding:

Yx,m
‘

MxjfX ¼ x,C ¼ cg for all x, m and c.

(A3) No unmeasured exposure-mediator confounding:

MðiÞ
x
‘

XjC ¼ c for all x, i and c.

(A4) The cross-world independence assumption:

(A4.1) Yx,m
‘

Mx� jC ¼ c for all x, x�, m and c,

(A4.2) MðiÞ
x
‘

MðjÞ
x� jC ¼ c for all c, x, x� and i≠j:

Note that the CDE can be identified under assumptions
(A1) and (A2), and the identification of NDE and NIE
requires assumptions (A3) and (A4). With all the four assump-
tions, the CDE, NDE and NIE can be estimated by fitting the
regression models for the outcome and multiple mediators.

3. Mediation Analysis for an Ordinal Outcome with
a Single Mediator

For an ordinal outcome, we first review mediation analysis
with a continuous mediator proposed by VanderWeele
et al. (2016). We then develop mediation analysis with
a binary mediator for an ordinal outcome and obtain
closed-form expressions for the mediation effects. For

a single mediator M proposed by VanderWeele et al.

(2016), the NIE, NDE and CDE are defined as NIEOR ¼
PðYx,Mx>jjcÞ=PðYx,Mx�jjcÞ
PðYx,Mx� >jjcÞ=PðYx,Mx� �jjcÞ , NDEOR ¼ PðYx,Mx� >jjcÞ=PðYx,Mx� �jjcÞ

PðYx� ,Mx� >jjcÞ=PðYx� ,Mx� �jjcÞ ,

and CDEOR ¼ PðYx,m>jjcÞ=PðYx,m�jjcÞ
PðYx� ,m>jjcÞ=PðYx�,m�jjcÞ , respectively.

For a single mediator, we need the following identification
assumptions (B): Yx,m

‘
XjC ¼ c, Yx,m

‘
MxjfX ¼ x,C ¼

cg, Mx
‘

XjC ¼ c and Yx,m
‘

Mx� jC ¼ c: For mediation
analysis for an ordinal outcome with a binary mediator, we
propose a logistic regression model for the mediator and a
logistic proportional odds model for the outcome, respect-
ively. Under these identification assumptions, the closed-form
expressions for NIE, NDE and CDE are derived.

3.1. A Review of the Mediation Analysis with a
Continuous Mediator

In this section, we briefly review mediation analysis for an
ordinal outcome with a continuous mediator. VanderWeele
et al. (2016) investigated the mediation effects for an ordinal
outcome with a continuous mediator. To obtain the closed-
form expressions for the mediation effects, it is needed to
make a rare outcome assumption: the reference category
J¼ 1 is sufficiently common, e.g. PðY ¼ 1jx,m, cÞ > 0:9:

The natural direct and indirect effects can be parameterized
by the so-called mediation and outcome models as follows:

MjX¼x,C¼c ¼ a0 þ a1xþ aT2 cþ e, (6)

logitðPðY > jjx,m, cÞÞ ¼ �bj0 þ b1xþ b2mþ b3xmþ bT4 c,

(7)

where e is normally distributed with zero mean and variance
r2 and 1 � j � J � 1: Under models (6) and (7), the NIE,
NDE and CDE are given by

NIEOR � exp fða1b2 þ a1b3xÞðx� x�Þg,
NDEOR � exp f b1 þ b3ða0 þ a1x� þ aT2 cþ b2r

2Þ� �ðx� x�Þ
þ0:5b3r

2ðx2 � x�2Þg,
CDEOR ¼ exp fðb1 þ b3mÞðx� x�Þg:
Note that the CDE and NDE are approximately equal if

there is no interaction between the exposure and the mediator.

3.2. Mediation Analysis for an Ordinal Outcome with a
Binary Mediator

In this section, we develop theory and methods for medi-
ation analysis for an ordinal outcome with a binary medi-
ator. To evaluate the mediation effects by a binary mediator,
we fit a logistic regression as follows:

NIEðiÞ
OR ¼

PðY
x,Mð1Þ

x , :::,Mði�1Þ
x ,MðiÞ

x , :::,MðKÞ
x

> jjcÞ=PðY
x,Mð1Þ

x , :::,Mði�1Þ
x ,MðiÞ

x , :::,MðKÞ
x

� jjcÞ
PðY

x,Mð1Þ
x , :::,Mði�1Þ

x ,MðiÞ
x� , :::,M

ðKÞ
x

> jjcÞ=PðY
x,Mð1Þ

x , :::,Mði�1Þ
x ,MðiÞ

x� , :::,M
ðKÞ
x

� jjcÞ , (5)
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logitðPðM ¼ 1jx, cÞÞ ¼ a0 þ a1xþ aT2 c: (8)

If a rare outcome assumption holds, then model (7) can
be approximately represented as

log ðPðY > jjx,m, cÞÞ � logitðPðY > jjx,m, cÞÞ
¼ �bj0 þ b1xþ b2mþ b3xmþ bT4 c:

Under the identification assumptions (B), the NIE, NDE
and CDE can be derived as

NIEOR � 1þ exp ða0 þ a1x� þ aT2 cÞ
1þ exp ða0 þ a1xþ aT2 cÞ

� 1þ exp ðb2 þ b3xþ a0 þ a1xþ aT2 cÞ
1þ exp ðb2 þ b3xþ a0 þ a1x� þ aT2 cÞ

,

NDEOR � exp ðb1ðx� x�ÞÞ

� 1þ exp ðb2 þ b3xþ a0 þ a1x� þ aT2 cÞ
1þ exp ðb2 þ b3x� þ a0 þ a1x� þ aT2 cÞ

,

CDEOR ¼ exp fðb1 þ b3mÞðx� x�Þg:
The detailed derivation is given in Appendix A. If there

is no exposure-mediator interaction in the outcome regres-
sion model (7), we have

NIEOR � 1þ exp ða0 þ a1x� þ aT2 cÞ
1þ exp ða0 þ a1xþ aT2 cÞ

� 1þ exp ðb2 þ a0 þ a1xþ aT2 cÞ
1þ exp ðb2 þ a0 þ a1x� þ aT2 cÞ

,

NDEOR � exp ðb1ðx� x�ÞÞ,
CDEOR ¼ exp fb1ðx� x�Þg:
Note that the CDE and NDE are approximately equal

when there is no exposure-mediator interaction.

4. Mediation Analysis for an Ordinal Outcome with
Multiple Mediators

In many applications, we make attempts to separate the effect
of an exposure on an outcome into its effects through a number
of different pathways. Thus, exploring the relative strength of
different pathways from an exposure to an outcome is an inter-
esting topic in recent years. In this section, we mainly consider
the mediation effects for an ordinal outcome with multiple
mediators in three scenarios: multiple continuous mediators,
multiple binary mediators and multiple mixed mediators.

4.1. Mediation Analysis with Multiple
Continuous Mediators

For mediation analysis with multiple mediators, the question
that arises is the complex structure among multiple mediators.
For the setting of binary exposure, Nguyen et al. (2016) and
Taguri et al. (2018) studied the mediation effects for multiple
mediators with independent structure. Wang et al. (2013) and
Daniel et al. (2015) considered the mediation effects for mul-
tiple mediators with dependent structure. We first consider the

mediation effects when all mediators are continuous variables
and explore the effect of an exposure on an ordinal outcome
through all mediators. We can fit a linear regression for every
mediator MðiÞ and a logistic regression for the outcome Y, and
allow for the exposure-mediator interaction. For every medi-
ator MðiÞ, the regression model can be written as

MðiÞjX¼x,C¼c ¼ a0i þ a1ixþ aT2icþ ei, i ¼ 1, :::,K, (9)

where the error ei follows a normal distribution with zero
mean and variance r2i : Then in matrix notation, the whole
model can be represented as

MjX¼x,C¼c ¼ a0 þ a1xþ Kcþ e, (10)

where a0 ¼ ða01, :::, a0KÞT is a vector of intercepts, a1 ¼
ða11, :::, a1KÞT represents the effects of the exposure, K ¼
ða21, :::, a2KÞT represents the regression coefficients of the
confounders, and the error vector e ¼ ðe1, :::, eKÞT follows a
multivariate normal distribution with zero mean vector and
covariance matrix R, where the diagonal elements of R are
r21, :::, r

2
K , and the off-diagonal elements of R may be non-

zero. That is, in the continuous mediator setting, the media-
tors are allowed to be correlated with dependent structure.

For the ordinal outcome Y, the proportional odds logistic
model can be written as

logitðPðY > jjx,m, cÞÞ ¼ �bj0 þ b1xþ bT2mþ bT3 xmþ bT4 c,

(11)

where bj0 is the intercept, b1 represents the effect of the
exposure on the outcome, b2 ¼ ðb21, :::, b2KÞT represents the
effects of the mediators on the outcome, b3 ¼ ðb31, :::, b3KÞT
represents the interaction effects of the exposure-mediator
terms on the outcome, and b4 ¼ ðb41, :::, b4pÞT represents the
regression coefficients of the confounders. Here, we consider
the interaction between the exposure and the mediators.

Suppose that assumptions (A1)–(A3) and (A4.1) and a rare
outcome assumption hold and the models are correctly speci-
fied, it can be shown that the NIE, NDE and CDE are given by

NIEOR � exp fðb2 þ b3xÞTa1ðx � x�Þg,
NDEOR � exp fðb1 þ bT3 l

� þ bT2Rb3 þ
1
2
bT3Rb3ðxþ x�ÞÞðx � x�Þg,

CDEOR ¼ exp fðb1 þ bT3mÞðx� x�Þg,

where l� ¼ a0 þ a1x� þ Kc: The expressions of mediation
effects are more complicated as it involves the correlation
among multiple mediators. The detailed derivation is given
in Appendix B.

In particular, when all mediators are independent of each
other, that is, assumption (A4.2) holds, the covariance
matrix is a diagonal matrix with R ¼ diagðr21, :::,r2KÞ: Thus,
the corresponding NIE and NDE can be rewritten as

NIEOR � exp
nXK

i¼1

a1iðb2i þ b3ixÞðx� x�Þg,

NDEOR � exp
n
ðb1 þ

XK
i¼1

b3iðl�i þ b2ir
2
i þ

1
2
b3ir

2
i ðxþ x�ÞÞÞðx� x�Þ

o
:

This result is an extension of mediation analysis for an
ordinal outcome with a single continuous mediator. If we
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take b2 ¼ ð1, 0, :::, 0ÞT and b3 ¼ ð1, 0, :::, 0ÞT , this result
reduces to the setting for a single mediator as proposed in
VanderWeele et al. (2016). In the absence of the interaction
between the exposure and mediators, the NIE, NDE and
CDE can be written as

NIEOR � exp fbT2 a1ðx� x�Þg,
NDEOR � exp fb1ðx� x�Þg,
CDEOR ¼ exp fb1ðx� x�Þg:

In what follows, we consider the natural indirect effect
through each mediator MðiÞ and explore the effect of the
exposure on the ordinal outcome through a mediator.
Provided that the models are correctly specified and under
the independence assumption among multiple mediators, we
can derive its natural indirect effects as

NIEðiÞ
OR � exp fa1iðb2i þ b3ixÞðx� x�Þg, i ¼ 1, :::,K:

Note that the joint natural indirect effect through all
mediators can be decomposed into the product of the nat-
ural indirect effect through each mediator under the inde-
pendence assumption among multiple mediators, that

is, NIEOR ¼ QK
i¼1 NIE

ðiÞ
OR:

4.2. Mediation Analysis with Multiple Binary Mediators

In this section, we consider the mediation effects when all
mediators are binary variables. Hence, for every mediator
MðiÞ, we can fit the following logistic regression:

logitðPðMðiÞ ¼ 1jx, cÞÞ ¼ c0i þ c1ixþ cT2ic, i ¼ 1, :::,K,

(12)

where c0i is an intercept, c1i represents the effect of the
exposure on the mediator MðiÞ, and c2i represents the regres-
sion coefficients of the confounders. The logistic regression
model for the outcome Y is kept the same as Equation (11).

For the case of binary mediators, it is still required to
assume a rare outcome. Under this assumption, the logistic
regression model is replaced by a log-linear model for the
ordinal outcome. If assumptions (A1)-(A4) hold, we can
derive the NIE, NDE and CDE as follows:

The detailed derivation is given in Appendix C.
In the absence of exposure-mediator interaction, we can

eliminate the bT3 xm term from model (11) and obtain the
mediation effects as

NIEOR �

Yk
i¼1

f1þ exp ðb2i þ c0i þ c1ixþ cT2icÞgf1þ exp ðc0i þ c1ixþ cT2icÞg�1

Yk
i¼1

f1þ exp ðb2i þ c0i þ c1ix
� þ cT2icÞgf1þ exp ðc0i þ c1ix

� þ cT2icÞg�1

NDEOR � exp fb1ðx� x�Þg,
CDEOR ¼ exp fb1ðx� x�Þg:

In this setting, the NDE and CDE are approximately
equal to each other.

In what follows, we consider the effect of the exposure
on the ordinal outcome through a binary mediator. We use
the logistics regression to fit the outcome model and the
mediator model. Under the independence assumption
among multiple mediators, we can derive the natural indir-
ect effect through the mediator MðiÞ for i ¼ 1, :::,K as

NIEðiÞOR � f1þ exp ðb2i þ b3ixþ ci0 þ ci1xþ c0i2cÞgf1þ exp ðci0 þ ci1xþ cTi2cÞg�1

f1þ exp ðb2i þ b3ix þ ci0 þ ci1x� þ c0i2cÞgf1þ exp ðci0 þ ci1x� þ cTi2cÞg�1 :

We also note that it holds NIEOR ¼ QK
i¼1 NIE

ðiÞ
OR under the

independence assumption among multiple binary mediators.

4.3. Mediation Analysis with Multiple Mixed Mediators

In practical applications, the mediators may be partially bin-
ary or partially continuous. We first consider the mediation
effects for the simple case with one binary mediator and
other continuous mediators. For the simple case, suppose
that MðlÞ is a binary mediator and other mediators are con-
tinuous. Then, we can fit a logistic regression model for the
binary mediator MðlÞ as follows:

logitðPðMðlÞ ¼ 1jx,mÞÞ ¼ a0l þ a1lxþ aT2lc: (13)

For other continuous mediators, we still fit a linear
regression model as

MðiÞjX¼x,C¼c ¼ a0i þ a1ixþ aT2icþ ei, i

¼ 1, :::,K and i ≠ l,

NIEOR �

YK
i¼1

f1þ exp ðb2i þ b3ixþ c0i þ c1ixþ cT2icÞgf1þ exp ðc0i þ c1ixþ cT2icÞg�1

YK
i¼1

f1þ exp ðb2i þ b3ixþ c0i þ c1ix
� þ cT2icÞgf1þ exp ðc0i þ c1ix

� þ cT2icÞg�1

,

NDEOR � exp fb1ðx� x�Þg

YK
i¼1

f1þ exp ðb2i þ b3ixþ c0i þ c1ix
� þ cT2icÞg

YK
i¼1

f1þ exp ðb2i þ b3ix
� þ c0i þ c1ix

� þ cT2icÞg
,

CDEOR ¼ exp fðb1 þ bT3mÞðx� x�Þg:
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where the error ei is normally distributed with zero mean
and variance r2i : The logistic regression model for the out-
come Y is still represented by Equation (11).

Provided that the models are correctly specified, and
assumptions (A1)–(A5) and a rare outcome assumption are
satisfied, then the expression for the controlled direct effect
remains the same as those in Section 4.1, and the NIE and
NDE can be written as

NIEOR �
YK

i¼1, i≠l
exp fa1iðb2i þ b3ixÞðx� x�Þg

� 1þ exp ðb2l þ b3lxþ a0l þ a1lxþ aT2lcÞ
1þ exp ðb2l þ b3lxþ a0l þ a1lx� þ aT2lcÞ

� 1þ exp ða0l þ a1lx� þ aT2lcÞ
1þ exp ða0l þ a1lxþ aT2lcÞ

,

NDEOR � exp fb1ðx� x�Þg
YK

i¼1, i≠l

exp fb3iðl�i þ b2ir
2
i þ

1
2
b3ir

2
i ðxþ x�ÞÞðx� x�Þg

� 1þ exp ðb2l þ b3lxþ a0l þ a1lx� þ aT2lcÞ
1þ exp ðb2l þ b3lx� þ a0l þ a1lx� þ aT2lcÞ

:

The detailed derivation is given in Appendix D.
Similarly, the expressions of NIE and NDE can be extended
to the case with several binary mediators and other continu-
ous mediators.

5. Simulation Studies

In this section, we conduct simulation studies to assess the
finite sample performance of the proposed methods for
mediation analysis for an ordinal outcome. To investigate
the performance, we consider the two-mediator models with
three different combinations of mediator types, including (i)
mediation model with two continuous mediators, (ii) medi-
ation model with two binary mediators, and (iii) mediation
model with one continuous mediator and one binary medi-
ator. For each two-mediator model, we investigate the bias,
standard error (SE) and confidence interval (CI) of the
mediation effects, where the SEs and CIs are estimated using
the bootstrap method. And for each scenario, the order of
the ordinal outcome is set as J¼ 3.

5.1. Mediation Model with Two Continuous Mediators

In this section, we consider two continuous mediators. We
first generate data for the two continuous mediators Mð1Þ

and Mð2Þ from the models

Mð1ÞjX¼x,C¼c ¼ a01 þ a11xþ a21cþ e1,
Mð2ÞjX¼x,C¼c ¼ a02 þ a12xþ a22cþ e2:

We then generate the outcome Y from a Bernoulli distri-
bution with the success probability given by the following
logistic regression model,

logitðPðY > jjx,m, cÞÞ ¼ �bj0 þ b1xþ b21m
ð1Þ þ b22m

ð2Þ

þ b3xm
ð1Þ þ b4c,

where a1 ¼ ða01, a11, a21ÞT ¼ ð0, � 0:6, 0:2ÞT , a2 ¼ ða02, a12,
a22ÞT ¼ ð�0:2, 0:5, 0:4ÞT , b0 ¼ ðb10,b20,b30ÞT ¼ ð�0:5, 0:4, 0:7ÞT ,
b1¼0:4,b2 ¼ ðb21,b22ÞT ¼ ð�0:4, 0:6ÞT , b3 ¼ 0, and b4 ¼ 0:3:

Assume that the exposure X is simulated from a normal
distribution Nð0, 0:52Þ: The confounding variable C is gener-
ated from the normal distribution Nð0:2X, 0:52Þ, representing
a confounder correlated with the exposure X. In addition, the
random errors e1 and e2 are both independently generated
from the normal distribution Nð0, 0:752Þ: With the above set-
tings, the mediators Mð1Þ, Mð2Þ and the outcome Y are then
generated from the above models. We consider three different
sample sizes: n¼ 100, 200 and 500, corresponding to small,
moderate and large samples, respectively.

The estimates of NIE and NDE are obtained using our
proposed method described in Section 4.1. Their estimated
values are then averaged across 500 simulations for each set-
ting. In addition, their biases are reported to assess the per-
formance of our proposed estimates. The SEs and the 95%
CIs for both NIE and NDE are estimated using the bootstrap
methods with 200 bootstrap samples. The estimated SEs are
based on the standard deviations of bootstrap samples and the
estimated 95% CIs are based on the percentile bootstrap CIs.

The simulation results are reported in Table 1. Compared
with the true and estimated values for each mediation effect, we
observe that the estimated values are very close to the true ones,
particularly for the large sample sizes. In addition, we also see
that for fixed sample sizes, the biases for the indirect effect esti-
mators tend to be smaller than the direct effect estimators. We
note that the SEs of the mediation effects are relatively small for
each setting, it further validates that our proposed methods per-
form well. For the CI estimates of NIE and NDE, we observe
that the CIs are more accurate with larger sample sizes.

5.2. Mediation Model with Two Binary Mediators

In this section, the binary mediator simulation proceeds
similarly. The exposure X and the confounder variable C are
once again simulated from Nð0, 0:52Þ and Nð0:2X, 0:52Þ,
Table 1. Estimations of joint natural indirect effect (NIE), natural indirect
effect through mediator Mð1Þ (NIE1), natural indirect effect through mediator
Mð2Þ (NIE2), and natural direct effect (NDE) with two continuous mediators
Mð1Þ and Mð2Þ:

n True Estimate Bias SE 95% CI

100 1.434 1.498 0.064 0.364 (0.841, 2.192)
NIE 200 1.438 1.451 0.013 0.204 (1.167, 1.948)

500 1.437 1.443 0.006 0.112 (1.067, 1.497)
100 1.174 1.198 0.024 0.125 (0.897, 1.382)

NIE1 200 1.175 1.179 0.004 0.111 (1.012, 1.438)
500 1.174 1.177 0.003 0.046 (1.004, 1.183)
100 1.222 1.249 0.027 0.274 (0.826, 1.852)

NIE2 200 1.223 1.231 0.005 0.113 (1.070, 1.503)
500 1.223 1.226 0.003 0.085 (1.010, 1.340)
100 1.306 1.376 0.070 0.584 (0.736, 2.908)

NDE 200 1.308 1.365 0.068 0.236 (1.188, 2.092)
500 1.308 1.331 0.023 0.188 (1.028, 1.748)

Note: The SEs and the 95% CIs of the mediation effects are estimated using
the bootstrap methods with 200 bootstrap samples.
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respectively. For the two binary mediators Mð1Þ and Mð2Þ,
the data are generated from the following logistic models as

logitðPðMð1Þ ¼ 1jx, cÞÞ ¼ a01 þ a11xþ a21c,
logitðPðMð2Þ ¼ 1jx, cÞÞ ¼ a02 þ a12xþ a22c:

Each mediator MðiÞ for i¼ 1, 2 receives a mediator prob-
ability, pai ðx, cÞ ¼ PðMðiÞ ¼ 1jx, cÞ ¼ exp ða0i þ a1ixþ a2icÞ=
ð1þ exp ða0i þ a1ixþ a2icÞÞ, with which we generate the
mediator value from Bernoulliðpai ðx, cÞÞ: The outcome vari-
able is generated from the model

logitðPðY > jjx,m, cÞÞ ¼ �bj0 þ b1xþ b21m
ð1Þ þ b22m

ð2Þ

þ b3xm
ð1Þ þ b4c:

Note that the parametric settings of the models are kept
the same as those in Section 5.1.

The effect estimates are averaged across 1,000 simulations
for each setting. The estimators of NIE and NDE are obtained
using our proposed method described in Section 4.2. The SEs
and the 95% CIs for both NIE and NDE are estimated using
the bootstrap methods with 200 bootstrap samples. The simu-
lation results are reported in Table 2 for every estimated effect,
from which we can draw the following conclusions. As the
sample size increases, the absolute biases and SEs of both NIE
and NDE become smaller and the CIs become more accurate.
Furthermore, for fixed sample sizes, the SEs of NIE remain
relatively smaller than those of NDE for most settings.

5.3. Mediation Model with One Continuous Mediator
and One Binary Mediator

In this section, we focus on simulation studies for the medi-
ation model with one continuous mediator and one binary
mediator. We generate data from the linear model for the
continuous mediator Mð1Þ and from the logistic model for
the binary Mð2Þ as follows:

Mð1ÞjX¼x,C¼c ¼ a01 þ a11xþ a21cþ e1,
logitðPðMð2Þ ¼ 1jx, cÞÞ ¼ a02 þ a12xþ a22c,

where the error e1 is normally distributed with zero mean
and variance 0:52: Note that the mediator Mð2Þ receives a
mediator probability, paðx, cÞ ¼ PðMð2Þ ¼ 1jx, cÞ ¼ exp ða02

þa12xþ a22cÞ=ð1þ exp ða02 þ a12xþ a22cÞÞ, with which we
generate the mediator Mð2Þ from Bernoulliðpaðx, cÞÞ: The
outcome variable is generated from the logistic model

logitðPðY > jjx,m, cÞÞ ¼ �bj0 þ b1xþ b21m
ð1Þ þ b22m

ð2Þ

þ b3xm
ð1Þ þ b4c:

All other settings are kept the same as those in Section 5.1.
We repeat the simulation 1,000 times for each setting and

report the simulation results in Table 3. Note that the estimated
SEs and CIs are obtained using the bootstrap method with 200
bootstrap samples. From the results, we see that the biases are
relatively small. We also note that, as the sample size increases,
the SEs tend to become smaller and the 95% CIs tend to become
more accurate. Overall, our proposed method performs well for
the case with one continuous mediator and one binary mediator.

6. Real Data Analysis

In this section, we apply our proposed methods to a real data
set to estimate the mediation effects of socioeconomic index (SI)
on body mass index (BMI) that might be mediated by DNA
methylation CpG sites on chromosome 17, where SI is quanti-
fied by a scalar index ranging from 0 to 100 and BMI is a reli-
able indicator of body fatness for most people. The data set
contains the methylation values from the whole blood for 74
samples on the human chromosome 17 (Loucks et al., 2016).
The methylation values were preprocessed and normalized using
the R package methylumi (Davis et al., 2015). For illustrating our
proposed methods, we choose five continuous mediators from
DNA methylation CpG sites: cg05156120, cg05157340,
cg05157970, cg05158219 and cg05158913, and categorize BMI
into an ordinal outcome: healthy weight, overweight, obese, and
severely obese, corresponding to the ordinal values 1 for 18:5 <
BMI � 25, 2 for 25 < BMI � 30, 3 for 30 < BMI � 40, and
4 for BMI > 40, respectively. By computing the correlation coef-
ficients for five mediators, this shows that there are no correla-
tions between them. Therefore, they can be regarded as the
independence of each other and there are no interaction among
them. In addition, the value 1 takes up a large enough propor-
tion in the real data, with a proportion of nearly 50%. Thus, it
approximatively satisfies the assumption of a rare outcome.

Table 2. Estimations of joint natural indirect effect (NIE), natural indirect
effect through mediator Mð1Þ (NIE1), natural indirect effect through mediator
Mð2Þ (NIE2), and natural direct effect (NDE) with two binary mediators Mð1Þ
and Mð2Þ:

n True Estimate Bias SE 95% CI

100 1.434 1.648 0.214 1.201 (0.645, 4.065)
NIE 200 1.436 1.501 0.065 0.347 (0.876, 2.178)

500 1.438 1.448 0.010 0.157 (1.023, 1.624)
100 1.174 1.249 0.075 0.409 (0.716, 2.140)

NIE1 200 1.174 1.194 0.020 0.167 (0.868, 1.508)
500 1.175 1.179 0.004 0.083 (0.961, 1.284)
100 1.221 1.312 0.091 0.780 (0.693, 2.952)

NIE2 200 1.222 1.256 0.034 0.237 (0.886, 1.777)
500 1.223 1.227 0.004 0.107 (0.995, 1.404)
100 1.306 1.408 0.102 0.518 (0.804, 2.754)

NDE 200 1.307 1.349 0.042 0.291 (0.930, 2.042)
500 1.308 1.317 0.009 0.166 (1.046, 1.683)

Note: The SEs and the 95% CIs of the mediation effects are estimated using
the bootstrap methods with 200 bootstrap samples.

Table 3. Estimations of joint natural indirect effect (NIE), natural indirect
effect through mediator Mð1Þ (NIE1), natural indirect effect through mediator
Mð2Þ (NIE2), and natural direct effect (NDE) with one continuous mediator Mð1Þ
and one binary mediator Mð2Þ:

n True Estimate Bias SE 95% CI

100 1.434 1.571 0.137 1.530 (0.722, 3.843)
NIE 200 1.435 1.490 0.055 0.298 (0.908, 2.021)

500 1.437 1.445 0.008 0.141 (1.041, 1.582)
100 1.173 1.186 0.013 0.158 (0.864, 1.476)

NIE1 200 1.174 1.188 0.014 0.096 (0.932, 1.303)
500 1.175 1.179 0.004 0.056 (0.985, 1.202)
100 1.221 1.318 0.097 1.623 (0.684, 3.548)

NIE2 200 1.222 1.254 0.032 0.255 (0.866, 1.819)
500 1.223 1.225 0.002 0.116 (0.989, 1.434)
100 1.306 1.407 0.101 0.583 (0.766, 2.925)

NDE 200 1.307 1.337 0.030 0.316 (0.891, 2.103)
500 1.308 1.325 0.017 0.181 (1.031, 1.728)

Note: The SEs and the 95% CIs of the mediation effects are estimated using
the bootstrap methods with 200 bootstrap samples.
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For mediation analysis, we take SI as the exposure X, the five
continuous DNA methylation as the mediators M, and the
ordinal BMI as the outcome Y. In addition, sex, age, race and cig-
arette smoking are included as the confounding variables C. We
propose the following mediator and outcome models, respectively,

EðMjX,CÞ ¼ a0 þ a1X þ KC,
logitðPðY > jÞjX,M,CÞ ¼ �bj0 þ b1X þ bT2M þ bT3C,

where a0 ¼ ða01, a02, a03, a04, a05ÞT , a1 ¼ ða11, a12, a13, a14,
a15ÞT , K ¼ ðK1,K2,K3,K4,K5ÞT with Ki ¼ ðKi1,Ki2,Ki3,Ki4ÞT
for i from 1 to 5, bj0 and b1 are two constants, b2 ¼
ðb21, b22, b23, b24,b25ÞT , and b3 ¼ ðb31, b32, b33, b34ÞT :

The NIE and NDE are estimated using our proposed
method in Section 4.1, and the SEs and the 95% CIs for
both NIE and NDE are estimated using the bootstrap
method with 200 bootstrap samples. To estimate the NDE
and NIE, we consider the exposure changed from x� ¼
x0:25 ¼ 21:25, set at the corresponding 25th percentile, to
x ¼ x0:75 ¼ 56:75, set at its 75th percentile. We calculate the
mediation effects for the exposure SI changing from x� to x.
Table 4 summarizes the TE, NDE, NIE and NIE through
every mediator for a change in exposure from x� to x.

Comparing the NIE with the corresponding NDE from
Table 4, we see that the point estimates for the NIE are larger
than the point estimate for the NDE, whether for the joint
indirect effect or for the indirect effect through every mediator.
In addition, the confidence intervals for the NIE tend to be nar-
rower than the NDE confidence intervals and their confidence
intervals don’t contain zero. Therefore, it indicates that the
mediation effects of socioeconomic index on body mass index
through five chosen mediators distinctly exist. That is, socioeco-
nomic index affects body mass index mediated by the five DNA
methylation CpG sites. This helps us understand the causal
mechanism between socioeconomic index and body mass index.

7. Discussion

In this paper, we have proposed new methods for assessing the
mediation effects of an exposure on an ordinal outcome through
multiple mediators allowing the presence of the exposure-medi-
ator interactions. In the counterfactual framework, we first defined
the total effect, natural direct effect and natural indirect effect on
the odds ratio scale for the ordinal outcome with multiple

mediators. To estimate the mediation effects, we have proposed a
regression-based approach, where the outcome model is fitted by
the proportional odds logistic regression and the mediator models
are fitted by the linear regression for the continuous mediator or
by the logistic regression for the binary mediator. Under the rare
outcome assumptions, we have obtained the closed-form expres-
sions of the mediation effects for three scenarios: multiple con-
tinuous mediators, multiple binary mediators, and multiple mixed
mediators. Simulation studies have also shown that our proposed
methods perform well in all three scenarios.

Our proposed methods have several advantages. The pro-
posed mediation framework provides an opportunity for ana-
lyzing the effect of the mediators on an ordinal outcome.
Our proposed methods provide closed-form expressions of
mediation effects and an additional insight for multiple medi-
ators on the mediation mechanism for an ordinal outcome.
Consequently, this may help to make a decision for a better
intervention when an effect on an outcome is mediated by
multiple intermediate variables. Mediation analysis also pro-
vides a way for analyzing the data under a hypothesized path-
way structure. Obviously, our proposed methods can be
widely applied to the ordinal data analysis to assess mediation
effects, which allow for the distributions of the mediators to
be flexible for both continuous and binary mediators.

One limitation of our methods is that it is needed to assume
a rare outcome. Certainly, we can relax this assumption and fol-
low the approach on a binary outcome proposed by Gaynor
et al. (2019), while allowing for multiple mediators and proceed-
ing without making a rare assumption on an ordinal outcome.
This extension will be considered in future research. In addition,
our methods are specified as parametric models and thus
required a correct model specification. An advantage of paramet-
ric models is that the estimation is efficient when all the models
are correctly specified (Tchetgen & Shpitser, 2012). However, as
pointed out by Robins and Wasserman (1997), the parametric
models can often be mis-specified and the resulting estimators
for the mediation effects are hence biased. For this reason, semi-
parametric estimation methods have also been proposed for a
continuous or binary outcome with a single mediator. For more
details, one may refer to, for example, VanderWeele (2009),
Tchetgen and Shpitser (2012), Vansteelandt et al. (2012), Yu
et al. (2014), Yu et al. (2018), Yu et al. (2019) and Yu and Li
(2022). Further research is needed for mediation analysis to
apply the semiparametric estimation methods for the setting of
an ordinal outcome with multiple mediators.
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Table 4. The estimated mediation effects in the SI-BMI data.

Estimate SE 95% CI

NIE 0.4903 0.1859 (0.1625, 0.8823)
NIE1 0.8767 0.1641 (0.5736, 1.1937)
NIE2 0.9985 0.0771 (0.8513, 1.1824)
NIE3 0.5697 0.1727 (0.1781, 0.8586)
NIE4 0.9805 0.1495 (0.7659, 1.3844)
NIE5 1.0025 0.1010 (0.8177, 1.2848)
NDE 0.3501 0.3406 (0.0495, 1.0557)
CDE 0.3501 0.3406 (0.0495, 1.0557)
TE 0.1717 0.1299 (0.0325, 0.5055)

Notes: All effects are estimated for a change of exposure SI from its 25th percentile
x� ¼ 21:25 to its 75th percentile x¼ 56.75. The SEs and 95% CIs are estimated
using the bootstrap method with 200 bootstrap samples. NIE is denoted as the
joint natural indirect effect through five mediators: cg05156120, cg05157340,
cg05157970, cg05158219, and cg05158913, and NIE1, NIE2, NIE3, NIE4, and NIE5
are denoted as the natural indirect effects through each mediator, respectively.
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Appendix A: Mediation Analysis for an Ordinal
Outcome with a Binary Mediator

In this section, we consider mediation analysis for an ordinal outcome
with a binary mediator. Under a rare outcome assumption, we have

log fPðY > jjx,m, cÞ
PðY � jjx,m, cÞg � log ðPðY > jjx,m, cÞÞ

� �bj0 þ b1xþ b2mþ b3xmþ bT4 c:

Then, we have

PðY > jjx,m, cÞ � exp ð�bj0 þ b1xþ b2mþ b3xmþ bT4 cÞ:
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In addition, we also know that

log fPðYx,Mx > jjcÞ
PðYx,Mx � jjcÞg

� log ðPðYx,Mx > jjcÞÞ
¼ log fÐ PðYx,m > jjMx ¼ m, cÞPðMx ¼ mjcÞdmg
¼ log fÐ PðY > jjx,m, cÞPðM ¼ mjx, cÞdmg
� log fÐ exp ð�bj0 þ b1xþ b2mþ b3xmþ bT4 cÞPðM ¼ mjx, cÞdmg
¼ log f exp ð�bj0 þ b1xþ bT4 cÞ

Ð
exp ðb2mþ b3xmÞPðM ¼ mjx, cÞdmg

¼ log f exp ð�bj0 þ b1xþ bT4 cÞEf exp ððb2 þ b3xÞMÞjx, cgg:

In what follows, we calculate Ef exp ððb2 þ b3xÞMÞjx, cg: For a bin-
ary M, we have

Ef exp ððb2 þ b3xÞMÞjx, cg ¼ exp ðb2 þ b3xÞPðM ¼ 1jx, cÞ þ PðM ¼ 0jx, cÞ:

By PðM¼ 1jx, cÞ ¼ exp ða0þa1xþaT2 cÞ=f1þ exp ða0 þ a1xþ aT2 cÞg,
then we have

Ef exp ððb2 þ b3xÞMÞjx, cg

¼ exp ðb2 þ b3xÞ
exp ða0 þ a1xþ aT2 cÞ

1þ exp ða0 þ a1xþ aT2 cÞ
þ 1
1þ exp ða0 þ a1xþ aT2 cÞ

¼ 1þ exp ðb2 þ b3xþ a0 þ a1xþ aT2 cÞ
1þ exp ða0 þ a1xþ aT2 cÞ

:

Therefore, we obtain

PðYx,Mx > jjcÞ
PðYx,Mx � jjcÞ � exp ð�bj0 þ b1x

þ bT4 cÞ
1þ exp ðb2 þ b3xþ a0 þ a1xþ aT2 cÞ

1þ exp ða0 þ a1xþ aT2 cÞ
:

Similarly, we can get

PðYx,Mx� > jjcÞ
PðYx,Mx� � jjcÞ � exp ð�bj0 þ b1x

þ bT4 cÞ
1þ exp ðb2 þ b3xþ a0 þ a1x� þ aT2 cÞ

1þ exp ða0 þ a1x� þ aT2 cÞ
:

By the definition of NIE, we get the NIE for a binary mediator as
follows:

NIEOR � 1þ exp ðb2 þ b3xþ a0 þ a1xþ aT2 cÞ
1þ exp ða0 þ a1xþ aT2 cÞ

=
1þ exp ðb2 þ b3xþ a0 þ a1x� þ aT2 cÞ

1þ exp ða0 þ a1x� þ aT2 cÞ
:

In addition, we can derive that

PðYx� ,Mx� > jjcÞ
PðYx� ,Mx� � jjcÞ � exp ð�bj0 þ b1x

�

þ bT4 cÞ
1þ exp ðb2 þ b3x

� þ a0 þ a1x� þ aT2 cÞ
1þ exp ða0 þ a1x� þ aT2 cÞ

:

This leads to

NDEOR � exp ðb1ðx� x�ÞÞ 1þ exp ðb2 þ b3xþ a0 þ a1x� þ aT2 cÞ
1þ exp ðb2 þ b3x� þ a0 þ a1x� þ aT2 cÞ

:

In what follows, we further obtain the CDE for the fixing mediator.
Specifically, the CDE can be derived as

CDEOR ¼ PðYx,m > jjcÞ=PðYx,m � jjcÞ
PðYx� ,m > jjcÞ=PðYx� ,m � jjcÞ

¼ PðY > jjx,m, cÞ=PðY � jjx,m, cÞ
PðY > jjx�,m, cÞ=PðY � jjx�,m, cÞ

¼ exp fðb1 þ b3mÞðx� x�Þg:

Appendix B: Mediation Analysis with Multiple
Continuous Mediators

If a rare outcome assumption holds, then it is easy to derive that

log fPðY > jjx,m, cÞ
PðY � jjx,m, cÞg � log ðPðY > jjx,m, cÞÞ

� �bj0 þ b1xþ bT2mþ bT3 xmþ bT4 c,

where m ¼ ðmð1Þ , :::,mðkÞÞT : Or equivalently, we have

PðY > jjx,m, cÞ � exp f�bj0 þ b1xþ bT2mþ bT3 xmþ bT4 cg:
If assumptions (A1)-(A4) hold, then we have

log fPðYx,Mx > jjcÞ
PðYx,Mx � jjcÞg � log ðPðYx,Mx > jjcÞÞ

¼ log fÐ PðYxm > jjMx ¼ m, cÞPðMx ¼ mjcÞdmg
¼ log fÐ PðY > jjx,m, cÞPðM ¼ mjx, cÞdmg
� log fÐ exp ð�bj0 þ b1xþ bT2mþ bT3 xmþ bT4 cÞPðM ¼ mjx, cÞdmg
¼ log f exp ð�bj0 þ b1xþ bT4 cÞ

Ð
exp ðbT2mþ bT3 xmÞPðM ¼ mjx, cÞdmg

¼ log f exp ð�bj0 þ b1xþ bT4 cÞEf exp ððb2 þ b3xÞTMÞjx, cg:
Note that M follows a multivariate normal distribution with mean

vector l ¼ a0 þ a1xþ Kc and covariance matrix R. Therefore, we have

Ef exp ððb2 þ b3xÞTMÞjx, cg

¼ A
Ð
exp fðb2 þ b3xÞTmg exp f� 1

2
ðm� lÞTR�1ðm� lÞgdm

¼ A
Ð
exp f� 1

2
mTR�1m� 2ðlþ Rðb2 þ b3xÞÞTR�1mþ lTR�1l
h i

gdm

¼ A
Ð
exp f� 1

2
m� ðlþ Rðb2 þ b3xÞÞ½ �TR�1 m� ðlþ Rðb2 þ b3xÞÞ½ �

þ 1
2
ðlþ Rðb2 þ b3xÞÞTR�1ðlþ Rðb2 þ b3xÞÞ �

1
2
lTR�1lgdm

¼ exp fðb2 þ b3xÞTlþ 1
2
ðb2 þ b3xÞTRðb2 þ b3xÞg,

where A ¼ fð2pÞK=2jRj�1=2g�1: Then, we obtain that

PðYx,Mx > jjcÞ
PðYx,Mx � jjcÞ � exp f�bj0 þ b1xþ bT4 cþ ðb2 þ b3xÞTl

þ 1
2
ðb2 þ b3xÞTRðb2 þ b3xÞg:

Similarly, we have

PðYx,Mx� > jjcÞ
PðYx,Mx� � jjcÞ � exp f�bj0 þ b1xþ bT4 cþ ðb2 þ b3xÞTl�

þ 1
2
ðb2 þ b3xÞTRðb2 þ b3xÞg,

and

PðYx� ,Mx� > jjcÞ
PðYx� ,Mx� � jjcÞ � exp f�bj0 þ b1x

� þ bT4 cþ ðb2 þ b3x
�ÞTl�

þ 1
2
ðb2 þ b3x

�ÞTRðb2 þ b3x
�Þg,

where l� ¼ a0 þ a1x� þ Kc:
Therefore, we can get

NIEOR � exp fðb2 þ b3xÞTa1ðx� x�Þg,

NDEOR � exp fðb1 þ bT3l
� þ bT2Rb3 þ

1
2
bT3Rb3ðxþ x�ÞÞðx� x�Þg:
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Finally, we obtain the CDE as

CDEOR ¼ PðYx,m > jjcÞ=PðYx,m � jjcÞ
PðYx� ,m > jjcÞ=PðYx� ,m � jjcÞ

¼ PðY > jjx,m, cÞ=PðY � jjx,m, cÞ
PðY > jjx�,m, cÞ=PðY � jjx�,m, cÞ

¼ exp fðb1 þ bT3mÞðx� x�Þg:
Now we consider the NIE through the mediator Mð1Þ only. By the

definition of NIE through Mð1Þ and noting that ðMð1Þ, :::,MðKÞÞ are
independent of each other, we can readily derive that

log
nPðY

x,Mð1Þ
x� ,M

ð2Þ
x , :::,MðKÞ

x
> jjcÞ

PðY
x,Mð1Þ

x� ,M
ð2Þ
x , :::,MðKÞ

x
� jjcÞ

o
� log fPðY

x,Mð1Þ
x� ,M

ð2Þ
x , :::,MðKÞ

x
> jjcÞg

¼ log f exp ð�bj0 þ b1xþ bT4 cÞEf exp ððb21 þ b31xÞMð1ÞÞjx�, cg

�
YK
i¼2

Ef exp ððb2i þ b3ixÞMðiÞÞjx, cgg:

Therefore, we get

NIEð1Þ
OR ¼

PðY
x,Mð1Þ

x ,Mð2Þ
x , :::,MðKÞ

x
> jjcÞ=PðY

x,Mð1Þ
x ,Mð2Þ

x , :::,MðKÞ
x

� jjcÞ
PðY

x,Mð1Þ
x� ,M

ð2Þ
x , :::,MðKÞ

x
> jjcÞ=PðY

x,Mð1Þ
x� ,M

ð2Þ
x , :::,MðKÞ

x
� jjcÞ

� Ef exp ððb21 þ b31xÞMð1ÞÞjx, cg
Ef exp ððb21 þ b31xÞMð1ÞÞjx � , cg

¼ exp fa11ðb21 þ b31xÞðx� x�Þg:
Similarly, we obtain the NIE through the mediator MðiÞ represented

as

NIEðiÞ
OR � exp fa1iðb2i þ b3ixÞðx� x�Þg, i ¼ 2, :::,K:

Appendix C: Mediation Analysis with Multiple
Binary Mediators

Under a rare outcome assumption, it is similar to obtain

PðY > jjx,m, cÞ � exp f�bj0 þ b1xþ bT2mþ bT3 xmþ bT4 cg:
In addition, under assumptions (A1)-(A4), we can derive the same

conclusions as those in Web Appendix B,

log fPðYx,Mx > jjcÞ
PðYx,Mx � jjcÞg � log f exp ð�bj0 þ b1x

þ bT4 cÞEf exp ððb2 þ b3xÞTMÞjx, cgg:
Under the independent assumption of mediator, we have

Ef exp ððb2 þ b3xÞTMÞjx, cg ¼ Ef exp ð
XK
i¼1

ðb2i þ b3ixÞMðiÞÞjx, cg

¼
YK
i¼1

Ef exp ððb2i þ b3ixÞMðiÞÞjx, cg:

Further, we calculate that

Ef exp ððb2i þ b3ixÞMðiÞÞjx, cg ¼ exp ðb2i þ b3ixÞPðMðiÞ ¼ 1jx, cÞ
þ PðMðiÞ

¼ 0jx, cÞ:
From the logistic regression model (12) in the main text, we know

that

PðMðiÞ ¼ 1jx, cÞ ¼ exp ðci0 þ ci1xþ cTi2cÞ
1þ exp ðci0 þ ci1xþ cTi2cÞ

,PðMðiÞ ¼ 0jx, cÞ

¼ 1
1þ exp ðci0 þ ci1xþ cTi2cÞ

:

Therefore, we have

Ef exp ððb2 þ b3xÞTMÞjx, cg ¼
YK
i¼1

1þ exp ðb2i þ b3ixþ ci0 þ ci1xþ cTi2cÞ
1þ exp ðci0 þ ci1xþ cTi2cÞ

:

Then, we can get

PðYx,Mx > jjcÞ
PðYx,Mx � jjcÞ � exp ð�bj0 þ b1x

þ bT4 cÞ
YK
i¼1

1þ exp ðb2i þ b3ixþ ci0 þ ci1xþ cTi2cÞ
1þ exp ðci0 þ ci1xþ cTi2cÞ

:

It is similar to obtain that

PðYx,Mx� > jjcÞ
PðYx,Mx� � jjcÞ � exp ð�bj0 þ b1x

þ bT4 cÞ
YK
i¼1

1þ exp ðb2i þ b3ixþ ci0 þ ci1x
� þ cTi2cÞ

1þ exp ðci0 þ ci1x� þ cTi2cÞ
,

and

PðYx� ,Mx� > jjcÞ
PðYx� ,Mx� � jjcÞ � exp ð�bj0 þ b1x

�

þ bT4 cÞ
YK
i¼1

1þ exp ðb2i þ b3ix
� þ ci0 þ ci1x

� þ cTi2cÞ
1þ exp ðci0 þ ci1x� þ cTi2cÞ

:

Hence, the NIE, NDE and CDE are derived as

NIEOR �

YK
i¼1

f1þ exp ðb2i þ b3ixþ ci0 þ ci1xþ cTi2cÞgf1þ exp ðci0 þ ci1xþ cTi2cÞg�1

YK
i¼1

f1þ exp ðb2i þ b3ixþ ci0 þ ci1x
� þ cTi2cÞgf1þ exp ðci0 þ ci1x

� þ cTi2cÞg�1

NDEOR � exp fb1ðx� x�Þg

YK
i¼1

f1þ exp ðb2i þ b3ixþ ci0 þ ci1x
� þ cTi2cÞg

YK
i¼1

f1þ exp ðb2i þ b3ix
� þ ci0 þ ci1x

� þ cTi2cÞg
,

CDEOR ¼ exp fðb1 þ bT3mÞðx� x�Þg:

From the above derivation, it is easy to obtain the NIE through
MðiÞ as

NIEðiÞ
OR � f1þ exp ðb2i þ b3ixþ ci0 þ ci1xþ cTi2cÞgf1þ exp ðci0 þ ci1xþ cTi2cÞg�1

f1þ exp ðb2i þ b3ixþ ci0 þ ci1x� þ cTi2cÞgf1þ exp ðci0 þ ci1x� þ cTi2cÞg�1

Appendix D: Mediation Analysis with Multiple
Mixed Mediators

Noting that Mð1Þ, :::,MðKÞ are independent of each other, we have

Eð exp ðbT2 þ bT3 xÞMjx, cÞ ¼ Ef exp ð
XK
i¼1

ðb2i þ b3ixÞMðiÞÞjx, cg

¼
YK
i¼1

Ef exp ððb2i þ b3ixÞMðiÞÞjx, cg:

When MðiÞ is continuous (i≠ l), we can get

Ef exp ððb2i þ b3ixÞMðiÞÞjx, cg

¼ 1ffiffiffiffiffi
2p

p
r

ð
exp fðb2i þ b3ixÞmg exp f�ðm� liÞ2=ð2r2i Þgdm

¼ exp fðb2i þ b3ixÞli þ
r2i
2
ðb2i þ b3ixÞ2g,

where li ¼ ai0 þ ai1xþ aTi2c: When MðlÞ is binary, we have
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Ef exp ðb2l þ b3lxÞMðlÞÞjx, cg ¼ exp ðb2l þ b3lxÞPðMðlÞ ¼ 1jx, cÞ
þ PðMðlÞ ¼ 0jx, cÞ

¼ exp ðb2l þ b3lxÞ
exp ða0l þ a1lxþ aT2lcÞ

1þ exp ða0l þ a1lxþ aT2lcÞ

þ 1
1þ exp ða0l þ a1lxþ aT2lcÞ

¼ 1þ exp fb2l þ b3lxþ a0l þ a1lxþ aT2lcg
1þ exp ða0l þ a1lxþ aT2lcÞ

:

Therefore, we obtain

PðYx,Mx > jjcÞ
PðYx,Mx � jjcÞ � exp

n
� bj0 þ b1xþ bT4 cþ

XK
i≠l

ðb2i þ b3ixÞli

þ 1
2

XK
i≠l

r2i ðb2i þ b3ixÞ2
o

� 1þ exp fb2l þ b3lxþ a0l þ a1lxþ aT2lcg
1þ exp ða0l þ a1lxþ aT2lcÞ

:

Similarly, we have

PðYx,Mx� > jjcÞ
PðYx,Mx� � jjcÞ � exp

n
� bj0 þ b1xþ bT4 cþ

XK
i≠l

ðb2i þ b3ixÞl�i

þ 1
2

XK
i≠l

r2i ðb2i þ b3ixÞ2
o

� 1þ exp fb2l þ b3lxþ a0l þ a1lx� þ aT2lcg
1þ exp ða0l þ a1lx� þ aT2lcÞ

,

and

PðYx� ,Mx� > jjcÞ
PðYx� ,Mx� � jjcÞ � exp

n
� bj0 þ b1x

� þ bT4 cþ
XK
i≠l

ðb2i þ b3ix
�Þl�i

þ 1
2

XK
i≠l

r2i ðb2i þ b3ix
�Þ2

o

� 1þ exp fb2l þ b3lx
� þ a0l þ a1lx� þ aT2lcg

1þ exp ða0l þ a1lx� þ aT2lcÞ
,

where l�i ¼ ai0 þ ai1x� þ aTi2c: This yields the NIE, NDE and CDE as
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