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The common-effect model and the random-effects model
are the two most popular models for meta-analysis in the
literature. To choose a proper model between them, the Q
statistic and the I2 statistic are commonly used as the cri-
teria. Recently, it is recognized that the fixed-effects model
is also essential for meta-analysis, especially when the num-
ber of studies is small. With this new model, the existing
methods are no longer sufficient for model selection in meta-
analysis. In view of the demand, we propose a novel method
for model selection between the fixed-effects model and the
random-effects model. Specifically, we apply the Akaike in-
formation criterion (AIC) to both models and then select the
model with a smaller AIC value. A real data example is also
presented to illustrate how the new method can be applied.
We further propose the generalized AIC (GAIC) to reduce
the large variation in the AIC value, and demonstrate its
superiority through real data analysis and simulation stud-
ies. To the best of our knowledge, this is the first work in
meta-analysis for model selection between the fixed-effects
model and the random-effects model, and we expect that
our new criterion has the potential to be widely applied in
meta-analysis and evidence-based medicine.

Keywords and phrases: Akaike information criterion
(AIC), Common-effect model, Fixed-effects model, Meta-
analysis, Model selection, Random-effects model.

1. INTRODUCTION

The concept of evidence-based approach was first intro-
duced by [11], which aimed to improve the decision-making
process based on the scientific evidence. Evidence-based
practice has now spread to many different areas including,
for example, medicine ([18, 33]), nursing ([13, 30]), education
([9, 35]), and public policy ([34, 31]). It is also well known
that the main statistical tool for evidence-based practice is
meta-analysis, which was first coined by [16] with the pur-
pose of synthesizing multiple individual studies and produc-
ing a summary conclusion for the whole body of research
([12]). For more details of meta-analysis, one may refer to
the classic textbooks in the literature, e.g., [4] and [20], and
the references therein.

∗Corresponding author.

One main benefit of meta-analysis is that the precision
of the pooled estimate can be improved and that the re-
sults can be generalized to a larger population. In the lit-
erature, the most commonly used models for meta-analysis
include the common-effect model (CEM, also known as the
fixed-effect model) and the random-effects model (REM).
For CEM, the effect sizes of different studies are assumed to
be the same, whereas the differences between the observed
effects are all subject to sampling errors. In the situations
when a common effect does not hold, it is believed that the
heterogeneity exists among the studies. To account for the
heterogeneity in meta-analysis, one often assumes that the
study-specific effect sizes are random variables from an un-
derlying distribution, e.g., a normal distribution, and the
resulting model is then REM. For more details, one may re-
fer to [5] regarding, for example, the key assumptions and
the estimation procedures of the two models.

When conducting a meta-analysis, it is often too re-
strictive to assume that the study-specific effects are all
the same so that CEM may yield misleading results. On
the other side, if a meta-analysis includes only few stud-
ies, the between-study variance cannot be accurately esti-
mated so that the results from REM will also be unreli-
able. To improve the moment estimate in [10], a working
group of the Cochrane Collaboration recommended to use
the Knapp-Hartung method proposed by [19] and [27]. The
Knapp-Hartung method considered the uncertainty of the
estimation of the heterogeneity with few studies, but un-
fortunately the wide confidence interval remains to be un-
solved. [17] investigated the impact of few studies for the
existing methods including the DerSimonian-Laird method
and the Knapp-Hartung method. [15] further investigated
several meta-analyses with only two studies. They recom-
mended to use a Bayesian approach with a reasonable prior
due to the limitations of the currently available frequentist
methods.

To conclude, when a meta-analysis includes few studies,
neither CEM nor REM may provide accurate meta-analytic
results. In view of their limitations, researchers including
[32] and [2] have recently revisited the fixed-effects model
(FEM) for meta-analysis. FEM was first introduced in the
1990s by [29] and [22]; yet for certain reasons, the model was
often overlooked in the previous literature. Unlike CEM,
the study-specific effect sizes are not required to be equal
in FEM, which makes the meta-analysis more meaningful
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Figure 1. Model selection between the common-effect model
(CEM), the fixed-effects model (FEM) and the

random-effects model (REM).

when the heterogeneity exists among the studies. On the
other side, since the study-specific effect sizes in FEM are
assumed to be fixed but not random, we are not obligated to
have an estimate of the between-study variance as in REM
which can often be unreliable due to few studies. In other
words, FEM can be the most appropriate model for meta-
analysis with few studies.

In meta-analysis, a model selection is often needed that
selects a suitable model between CEM and REM. The dis-
tinction between these two models is mainly on whether
there exists some heterogeneity among the studies. For this
purpose, [10] proposed the Q statistic to test for the exis-
tence of heterogeneity among the studies, and [24] proposed
the I2 statistic to measure the degree of the heterogeneity.
The Q statistic and the I2 statistic are nowadays routinely
applied in meta-analysis for model selection between CEM
and REM. Now with FEM also a candidate model, it is
evident that the existing methods for model selection will
no longer be sufficient, and so it calls for new methods for
model selection.

To further clarify, we summarize the existing methods
for model selection between the three models in Figure 1,
in which there are 3 different lines for model selection. For
model selection between CEM and REM, the Q statistic and
the I2 statistic are commonly used as the criteria (10, 24).
For model selection between CEM and FEM, the Q statistic
can also be applied as a criterion (21). To the best of our
knowledge, however, there is no existing method for model
selection between FEM and REM. In order to fill the gap,
we propose to apply the Akaike information criterion (AIC)
for model selection between FEM and REM. To reduce the
large variation in the AIC value, we further propose the
generalized AIC (GAIC) and demonstrate the superiority
of GAIC through numerical studies and real data analysis.

The remainder of the paper is organized as follows. In
Section 2, we review the three models for meta-analysis, in-
troduce their underlying model assumptions, and interpret
the meanings of the model parameters. A review of meth-
ods is given in Section 3 for model selection between CEM
and REM, and in Section 4 for model selection between

CEM and FEM. In Section 5, we propose our new method
based on AIC for model selection between FEM and REM,
followed by a real data analysis that gives a step-by-step in-
struction. In Section 6, we further propose a model selection
criterion based on a generalized AIC (GAIC) and apply it to
the same real data example. In Section 7, we conduct simu-
lation studies to compare the performance of AIC and GAIC
and suggest the better one for practical use. The paper is
concluded in Section 8.

2. STATISTICAL MODELS FOR
META-ANALYSIS

Assume that a meta-analysis includes a total of k indi-
vidual studies. For the ith study, let θi be the effect size and
yi be the observed value of θi, where i = 1, . . . , k. In this
section, we provide a brief review on the three statistical
models for meta-analysis.

2.1 Common-effect model

The common-effect model (CEM) is the simplest model
for meta-analysis, in which the study-specific effect sizes are
assumed to be all the same. In other words, we assume that
there is no heterogeneity in the effect sizes among the stud-
ies. Let θCEM be the common effect. Then under the nor-
mality assumption for the observed effects, CEM can be
formulated as

yi = θCEM + εi, εi
ind∼ N(0, σ2

i ),(1)

where εi are independent normal errors with zero mean and
variance σ2

i > 0.

Note that the within-study variances, σ2
i , can often be es-

timated with high precision, in particular when the sample
sizes are large for each study. For this reason, it is a com-
mon practice that the within-study variances are regarded
as known for meta-analysis. Under the above assumptions,
we can apply the maximum likelihood estimator (MLE) to
estimate the common effect and it yields that (22)

θ̂CEM =

∑k
i=1 wiyi∑k
i=1 wi

,(2)

where wi = 1/σ2
i are the inverse-variance weights assigned

to each individual study. Moreover, by the normality as-
sumption on the random errors, θ̂CEM follows a normal dis-
tribution with mean θCEM and variance 1/

∑k
i=1 wi.

2.2 Random-effects model

In practice, the effect sizes for different studies can differ
and that results in the statistical heterogeneity, or referred
to as heterogeneity in short. When the heterogeneity exists,
one often assumes that the study-specific effect sizes follow
a certain distribution, e.g., a normal distribution. It then
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yields a random-effects model (REM) that can be formu-
lated as

yi = θREM + δi + εi, δi
i.i.d.∼ N(0, τ2), εi

ind∼ N(0, σ2
i ),(3)

where δi are independent and identically distributed (i.i.d.)
deviations of the study-specific effect sizes from the mean
effect θREM, τ

2 ≥ 0 is the between-study variance, and εi
and σ2

i are defined the same as in model (1). The effect size
of the ith study is θi = θREM + δi, where i = 1, . . . , k.

By model (3), we have E(yi) = θREM and var(yi) = σ2
i +τ2

for any i = 1, . . . , k. In the special case when τ2 = 0, REM
will reduce to CEM. With the above notations, the MLE of
θREM can be represented as

θ̂REM =

∑k
i=1 w

∗
i yi∑k

i=1 w
∗
i

,(4)

where w∗
i = 1/(σ2

i + τ2) with i = 1, . . . , k are the study-
specific weights. And by the fact that yi are normally dis-
tributed, θ̂REM also follows a normal distribution with mean
θREM and variance 1/

∑k
i=1 w

∗
i . Finally, noting that the

between-study variance may not be known in practice, we
need an estimate of τ2 from the observed data to compute
θ̂REM and also its confidence interval.

2.3 Fixed-effects model

When the number of studies k is small, it is known that
τ2 cannot be accurately estimated so that the meta-analytic
results from REM may not be reliable. On the other side,
CEM may yield misleading results when the heterogeneity
exists. By contrast, the fixed-effects model (FEM) is a model
that fills the gap between CEM and REM (2, 32), in which
the effect sizes of the individual studies are assumed to be
fixed but unequal. The statistical model for FEM is as fol-
lows:

yi = θi + εi, εi
ind∼ N(0, σ2

i ),(5)

where θi are the fixed effect sizes, and εi are independent
normal errors with zero mean and variance σ2

i > 0.
By model (5), we have E(yi) = θi and var(yi) = σ2

i for
any i = 1, . . . , k. In the special case when θi are all equal,
FEM will reduce to CEM so that the parameter of interest is
the common effect. For the general setting with unequal θi,
a parameter of interest for FEM is, however, not intuitively
known. In [29] and [2], the authors proposed the average

effect, θFEM = k−1
∑k

i=1 θi, as the parameter of interest.
They further provided an unbiased estimator of θFEM as

θ̂FEM =
1

k

k∑
i=1

yi,(6)

which is normally distributed with mean θFEM and variance
k−2

∑k
i=1 σ

2
i . Finally, we note that the main purpose of FEM

is to study the statistical inference on the effect sizes of the
specific k studies that are given in the meta-analysis, but
not on the whole population of the effect sizes.

3. MODEL SELECTION BETWEEN CEM
AND REM

Needless to say, most existing methods developed in the
literature are for model selection between CEM and REM.
In this section, we provide a brief review on the two most
widely used methods for this model selection, including the
Q statistic and the I2 statistic.

3.1 The Q statistic

Recall that REM will reduce to CEM when τ2 = 0, i.e.,
when there is no heterogeneity among the studies. Hence
for model selection between REM and CEM, it can be for-
mulated as a statistical testing problem. Specifically, to test
whether there exists the heterogeneity among the studies,
we consider the following hypotheses:

H0 : τ2 = 0 versus H1 : τ2 > 0.(7)

For the testing problem (7), [10] proposed the Q statistic as

Q =

k∑
i=1

wi(yi − θ̂CEM)
2,(8)

where wi = 1/σ2
i are the optimal weights for CEM as in

Section 2.1. It is also worth noting that the origin of the
Q statistic can be dated back to [3], [26] and [36], or the
well-known Cochran’s Q statistic (7).

If the result of the Q test is significant, there is a strong
evidence for the presence of the heterogeneity so that we
should apply REM for meta-analysis; otherwise, we adopt
CEM as the default model. Under the null hypothesis, the Q
statistic is often approximated by a chi-square distribution
with k−1 degrees of freedom. Nevertheless, such an approx-
imation for the null distribution of Q can be less accurate
in many practical situations, especially when the number
of studies is small and/or the effect sizes are not normally
distributed. In view of these limitations, researchers have
also considered other approximate null distributions for the
Q statistic in the literature; see, for example, the rescaled
F -distribution in [36], and the gamma distribution in [28].

3.2 The I2 statistic

One major criticism on the Q statistic is that it heavily
depends on the number of studies, and so may not serve well
for model selection between CEM and REM. To be more
specific, when the number of studies is sufficiently large, the
Q statistic is able to detect any arbitrarily small hetero-
geneity among the studies. Such a small heterogeneity with
statistical significance, however, may not be clinically im-
portant. In other words, the statistical significance is not
identical to the clinical significance.
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To overcome the problem, [24] assumed that σ2
i = σ2 for

all i = 1, . . . , k, and then applied the function

f(θREM, τ
2, σ2, k) =

τ2

τ2 + σ2

to quantify the extent of the heterogeneity. Noting that f(·)
is scale invariant and not affected by the number of stud-
ies, it provides an alternative yet better approach for model
selection between CEM and REM.

When σ2
i are all equal, it can be shown that {E(Q)−(k−

1)}/E(Q) = f(θREM, τ
2, σ2, k). This suggests that {Q− (k−

1)}/Q can be applied to estimate the unknown quantity of
f(θREM, τ

2, σ2, k). To avoid negative values of Q − (k − 1),
[25] further suggested to estimate the heterogeneity by

I2 = max{0, Q− (k − 1)

Q
}.(9)

Noting that {Q− (k − 1)}/Q does not explicitly involve σ2

in its calculation, this method can also be generalized to
estimate the heterogeneity for studies with different within-
study variances. To conclude, I2 is not a test statistic but
a measure of the degree of the heterogeneity, and it has
nowadays been widely applied in meta-analysis for model
selection between CEM and REM.

4. MODEL SELECTION BETWEEN CEM
AND FEM

With the new recognition of the fixed-effects model
(FEM) for meta-analysis with few studies, there is also a de-
mand for developing new model selection methods between
FEM and the existing two models including CEM and REM.

In this section, we review the existing method for model
selection between CEM and FEM. To start with, we note
in Section 3 that the Q statistic was originally proposed for
model selection between CEM and REM. In an interesting
work by [21], the authors pointed out that the Q statistic
can also be applied for model selection between CEM and
FEM. Specifically, they formulated the new model selection
as the following statistical testing problem:

H0 : θ1 = · · · = θk(10)

versus H1 : θi �= θj for some i �= j.

Note that the null hypothesis in (10) is identical to the null
hypothesis in (7), in which they both imply that the study-
specific effect sizes are all the same. On the other side, when
θi are not all equal (no matter whether fixed or random),
they will tend to yield a larger Q value than purely gener-
ated by random errors. Hence for the testing problem (10),
the Q statistic in (8) can still be applied; and consequently,
we select FEM for meta-analysis if the null hypothesis is
rejected, and otherwise adopt CEM as the default model.

4.1 Power functions

Even though the same null hypothesis and the same test
statistic are applied, the alternative hypotheses in (7) and
(10) are completely different, and accordingly, they also have
different alternative distributions and different power func-
tions.

For the testing problem (7), the statistical power is de-
fined as the probability of detecting the model as REM when
the heterogeneity exists. Under the significance level α and
the assumption that the within-study variances are all equal
to σ2, [21] derived the power function of the Q statistic
as

β1 = 1− χ2
k−1(cα · σ2

τ2 + σ2
),(11)

where cα is the 100(1 − α) percentile of the chi-square
distribution with k−1 degrees of freedom, and χ2

df (c) is the
cumulative distribution function of the chi-square random
variable with df degrees of freedom.

For the testing problem (10), the statistical power is de-
fined as the probability of detecting the model as FEM
when the heterogeneity exists. To compute the power, we
let λ =

∑k
i=1 wi(θi − θ̄)2, where θ̄ =

∑k
i=1 wiθi/

∑k
i=1 wi is

the weighted average of the true effect sizes. Then under the
significance level α, [21] also derived that the power func-
tion of the Q statistic for testing CEM versus FEM is given
by

β2 = 1− χ2
k−1(cα;λ),(12)

where χ2
df (c;λ) is the cumulative distribution function of

the noncentral chi-square random variable with df degrees
of freedom and noncentrality parameter λ.

4.2 Power comparison

Since the testing problems (7) and (10) can both be used
to test whether or not the heterogeneity exists among the
studies, we are keen to know which test is more powerful
for meta-analysis. For this, we conduct a numerical study
to compare the two power functions in (11) and (12) for
further insights about the Q statistic.

To make the two tests comparable, we follow the assump-
tion in deriving the power function for the testing problem
(7) that the within-study variances are all equal. For sim-
plicity and without loss of generality, we let σ2

i = 1 for all
i = 1, . . . , k for both of the tests. We also let τ2 = 0.5 and
5, and set the significance level α up to 0.1. Then with the
above settings, we compute the power function of the Q
statistic for testing CEM versus REM using formula (11),
and plot them in Figure 2 and Figure 3 by the red lines with
triangles for k = 2, 3, 5 and 10, respectively. While for the
power function associated with the testing problem (10), we
first generate θi from N(0, 0.5) and N(0, 5) for τ2 = 0.5 and
5 respectively so as to maintain the same variability for the
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Figure 2. Power comparison between the two testing
problems with τ2 = 0.5. The red lines with triangles represent
the power functions of the Q statistic for the testing problem
(7), and the green lines represent the power functions of the

Q statistic for the testing problem (10).

between-study variances for both tests, and we then treat
them as the fixed quantities so that formula (12) can be
applied to compute the power function. Noting also that θi
are generated with randomness, we repeat the simulation
for 10 times and plot their respective power function also in
Figure 2 and Figure 3 by the green lines.

From the power curves simulated in Figure 2 and Fig-
ure 3, we note that the power functions of the two tests will
increase when the number of studies becomes larger, in par-
ticular when the between-study variance is also large. Note
also that, for a fair comparison between the power func-
tions, the study-specific effect sizes θi are generated both
from N(0, τ2) for FEM and REM. Specifically for FEM, the
variation among the generated θi can be different in each
realization, sometimes large and sometimes small, and that
explains why it yields different power functions; while for
REM, no matter what the true heterogeneity is, one applies
τ2 to compute the power functions so that it only yields
an average power function. In other words, applying the Q
statistic to test CEM versus FEM can result in a more accu-
rate power function for a specific meta-analysis. In addition,
we note that the between-study variance τ2 is unknown and
needs to be estimated when computing the power function,
which can be another problem for applying the Q statistic
to test CEM versus REM in meta-analysis with few stud-
ies.

Figure 3. Power comparison between the two testing
problems with τ2 = 5. The red lines with triangles represent
the power functions of the Q statistic for the testing problem
(7), and the green lines represent the power functions of the

Q statistic for the testing problem (10).

5. MODEL SELECTION BETWEEN FEM
AND REM

As mentioned earlier, the assumption of a common effect
may not be realistic in many studies. On the other side, a
meta-analysis with random effects will also not be reliable
when the number of studies is small. Recently, [32] and [2]
revisited FEM and demonstrated that it can be a good al-
ternative for modeling meta-analysis with few studies. How-
ever, as shown in Figure 1, there is no existing method in
the literature for model selection between FEM and REM.
Note that FEM and REM are both applicable when the het-
erogeneity exists among the studies. It is thus different from
the classical model selection problem in which we have the
truth that one model is correct and the other is not. But
instead, our aim is to find the better model between FEM
and REM so that, for the given summary data, the meta-
analytical results will be more meaningful to synthesize the
multiple studies for medical decision making.

5.1 A new method for model selection

We propose to apply the Akaike information criterion
(AIC) for model selection between FEM and REM. Note
that AIC has been widely used for model selection since
it was introduced in the 1970s. Unlike statistical hypoth-
esis testing, which is valid only for nested models, AIC
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has no such restrictions (6). The main idea of AIC for
model selection is to maximize the expected log-likelihood
function which can be expressed as EX,θ̂(ln f(X|θ̂)) =

Eθ̂(
∫
f(x|θ) ln f(x|θ̂)dx), where X is a random variable with

the probability density function f(x|θ), and θ̂ is the MLE
of θ and is independent of X. Further to compute the ex-
pected log-likelihood function, [1] defined the AIC value of

the model as AIC = 2d−2
∑k

i=1 ln f(xi|θ̂), where x1, . . . , xk

are the sample values of the random variable X, and d
is the number of independent parameters. The AIC value
can be easily computed since it does not involve unknown
parameters. And under regularity conditions, it was shown
that −AIC/(2k) provides an accurate approximation for the
unknown quantity of the expected log-likelihood function
EX,θ̂(ln f(X|θ̂)).

For model selection between FEM and REM, we propose
to compute the AIC values of both models and then select
the model with a smaller AIC value. Specifically for FEM in
(5), it has a total of k individual distributions with θ1, . . . , θk
being the unknown parameters; that is, the number of inde-
pendent parameters is d = k. Noting also that the MLE for
each θi is given by yi, the AIC value of FEM then can be
specified as

AICFEM = 2k − 2

k∑
i=1

ln(13)

[
1√
2πσ2

i

exp

{
− (yi − θ̂i)

2

2σ2
i

}]

= 2k +

k∑
i=1

ln(2πσ2
i ).

While for REM, we follow the same setting as in the
derivation of the I2 statistic (24) that τ2 is assumed to be
known. Consequently, there is only one parameter, i.e., θREM,
in model (3) that needs to be estimated. This yields the AIC
value of REM as

AIC′
REM = 2 +

k∑
i=1

ln{2π
(
σ2
i + τ2

)
}(14)

+
k∑

i=1

(yi − θ̂REM)
2

σ2
i + τ2

,

where θ̂REM is the MLE of θREM which is given in (4). More-

over, for the value of τ2 in θ̂REM and (14), we apply the

moment estimate τ̂2DL = max{0, {Q − (k − 1)}/(
∑k

i=1 wi −∑k
i=1 w

2
i /

∑k
i=1 wi)} proposed by [10]. Letting also θ̃REM =

{
∑k

i=1(σ
2
i + τ̂2DL)

−1yi}/{
∑k

i=1(σ
2
i + τ̂2DL)

−1}, the AIC value
of REM can be rewritten as

AICREM = 2 +

k∑
i=1

ln{2π
(
σ2
i + τ̂2DL

)
}(15)

+

k∑
i=1

(yi − θ̃REM)
2

σ2
i + τ̂2DL

.

Finally, with the numerical values of AIC for both models,
we select FEM for meta-analysis if AICFEM in (13) is less
than AICREM in (15), and vice versa.

5.2 Real data analysis

To apply the new criterion for model selection, we con-
sider a real data example of systematic review from [14].
The main purpose of the study is to investigate the effect
of parental migration on the health of left behind-children
and adolescents in low-income and middle-income countries.
Among the conducted meta-analyses in their study, we con-
sider the one with the weight-for-age Z scores as the out-
comes, where the standardized mean difference (SMD) of
the measure is assumed to be normally distributed. And for
ease of reference, we also present the observed effect sizes
and their respective variances in Table 1.

Table 1. Summary data of the three studies for meta-analysis
from [14]

Study yi σ2
i

Wang et al. (2001) −0.58 0.0055

Chen et al. (2012) −0.36 0.0099

Chen et al. (2013) −0.03 0.0018

By estimator (2) and the observed values in Table 1, the
common effect from CEM is given as

θ̂CEM =
−0.58/0.0055− 0.36/0.0099− 0.03/0.0018

1/0.0055 + 1/0.0099 + 1/0.0018

= −0.189.

Further by formulas (8) and (9), the Q statistic is

Q =
(−0.58 + 0.189)2

0.0055
+

(−0.36 + 0.189)2

0.0099

+
(−0.03 + 0.189)2

0.0018
= 44.795,

and the I2 statistic is

I2 =
44.795− (3− 1)

44.795
= 0.96.

Noting that I2 is as large as 0.96, a common effect is un-
likely to be true for the three studies. And more specifically,
by Cochrane Handbook for Systematic Reviews of Interven-
tions (23), one would suggest opting out CEM for further
consideration.

Now given CEM is no longer considered, as a next step,
we apply our AIC in Section 5.1 to perform model selection
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between FEM and REM. By (13), the AIC value of FEM is
given as

AICFEM = 6 + ln(2π × 0.0055) + ln(2π × 0.0099)

+ ln(2π × 0.0018)

= −4.624.

To compute the AIC value of REM, we have
∑k

i=1 wi =

1/0.0055 + 1/0.0099 + 1/0.0018 = 838.384 and
∑k

i=1 w
2
i =

1/0.00552+1/0.00992+1/0.00182 = 351902.9. They further
yields that

τ̂2DL = max{0, 44.795− (3− 1)

838.384− 351902.9/838.384
} = 0.102,

and

θ̃REM =
−0.58

0.0055+0.102 + −0.36
0.0099+0.102 + −0.03

0.0018+0.102
1

0.0055+0.102 + 1
0.0099+0.102 + 1

0.0018+0.102

= −0.319.

Plugging these estimates into (15), we have the AIC value
of REM as

AICREM = 2 + ln{2π(0.0055 + 0.102)}
+ ln{2π(0.0099 + 0.102)}
+ ln{2π(0.0018 + 0.102)}

+
(−0.58 + 0.319)2

0.0055 + 0.102
+

(−0.36 + 0.319)2

0.0099 + 0.102

+
(−0.03 + 0.319)2

0.0018 + 0.102
= 2.281.

Lastly, since AICFEM = −4.624 is less than AICREM = 2.281,
we select FEM as the final model for meta-analysis with the
included studies.

To further compare FEM and REM and show that
FEM can be an appropriate model, we present their meta-
analytical results using the forest plot in Figure 4. While
for reference, the results for CEM are also presented in Fig-
ure 4. Firstly, we note that the average effect from FEM
and the mean effect from REM are numerically close to
each other, even though their estimation formulas in (4)
and (6) are rather different. The main reason is that, due
to the small number of studies, the between-study variance
is much larger than the within-study variances so that the
inverse-variance weights (33.4%, 32.1%, 34.5%) for REM are
nearly equally weighted. Secondly, we note that FEM and
REM are with very different confidence intervals. To be more
specific, FEM reports a significant result for the average ef-
fect, whereas REM fails to do so due to the unacceptably
large standard error of the mean effect. Finally, to verify
which model is more suitable, we also note that the first
and second studies are both significant, and the third study
also shows slight evidence, that the weight-for-age Z scores

Figure 4. Forest plot of the meta-analysis for the three
studies from [14].

of left-behind children and adolescents is smaller than that
of children with non-migrating parents. Then following the
spirit of meta-analysis, the overall effect of the three stud-
ies would also be more likely significant. This coincides more
with the meta-analytical result from FEM compared to that
from REM, and so it demonstrates that our AIC for model
selection is meaningful and can be applied to meta-analysis
with few studies.

6. GENERALIZED AIC FOR MODEL
SELECTION

Recall that, to compute AIC′
REM in (14), we have ap-

plied the moment estimate τ̂2DL for the unknown τ2, and
that yields the observable value of AICREM in (15). When
the number of studies is small, however, the estimate of τ2

is often unreliable, and so is true for the value of AICREM.
In this section, we propose a generalized AIC for model se-
lection between FEM and REM that aims to dramatically
reduce the dependence of the AIC value on the τ2 estimate.

6.1 Generalized AIC

To eliminate the influence of randomness, we take the ex-
pected values of AIC over the observed effects yi and define
them as the generalized AIC (GAIC) values. For FEM, since
AICFEM does not involve yi, we have

GAICFEM = E(AICFEM) = 2k +

k∑
i=1

ln(2πσ2
i ),(16)

which is, in fact, the same as AICFEM.
While for REM, we note that

∑k
i=1(yi − θ̂REM)

2/(σ2
i +

τ2) follows a chi-square distribution with k − 1 degrees of
freedom (19). Thus by (14), it yields that

E(AIC′
REM) = k + 1 +

k∑
i=1

ln
{
2π

(
σ2
i + τ2

)}
.

Further, by replacing the remaining τ2 with τ̂2DL, we have
the GAIC value for REM as

GAICREM = k + 1 +

k∑
i=1

ln
{
2π

(
σ2
i + τ̂2DL

)}
.(17)
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Compared to AICREM in (15), it is evident that GAICREM

depends less on the τ2 estimate, and so it provides a more
stable estimate for the value of AIC′

REM.
By (16) and (17), both of GAICFEM and GAICREM de-

pend on the number of studies k and the within-study vari-
ances σ2

i . Hence for easy comparison, we further take the
difference between them as follows:

GAICFEM −GAICREM = k − 1 +

k∑
i=1

ln
σ2
i

σ2
i + τ̂2DL

.(18)

We then select FEM to perform meta-analysis if GAICFEM−
GAICREM < 0; and otherwise, we apply REM as usual.
Also by (18), it suggests that FEM will be preferred when
the number of studies is small and/or the estimate of the
between-study variance is much larger than the within-study
variances.

6.2 Real data analysis

To apply the GAIC method for model selection, we revisit
the real data example in Section 4.2. Note that the values of
AIC and GAIC are the same for FEM, but not for REM. To
check whether the two criteria will select the same model,
by (18) we have

GAICFEM −GAICREM = 2 + ln
0.0055

0.0055 + 0.102

+ ln
0.0099

0.0099 + 0.102

+ ln
0.0018

0.0018 + 0.102
= −7.452.

Now since GAICFEM − GAICREM < 0, we once again se-
lect FEM to perform meta-analysis for the included studies.
That is, for this real study, the model selection by GAIC is
the same as that by AIC.

It is also interesting to point out that GAICFEM −
GAICREM = −7.452 < −6.905 = AICFEM − AICREM, which
implies that, with the elimination of randomness, GAIC is
more inclined to select FEM for meta-analysis. More com-
parison on the AIC and GAIC values for REM is given in
the next section.

7. COMPARISON BETWEEN AICREM AND
GAICREM

Following the key idea of AIC, for a model selection be-
tween FEM and REM, we are required to compare AICFEM

in (13) and AIC′
REM in (14) and then choose the smaller

value. As mentioned in Section 5, AICFEM can be readily
computed from the sample data, but, by contrast, AIC′

REM

is not computable due to the unknown τ2. To overcome this
problem, we have proposed two estimators, AICREM in (15)
and GAICREM in (17), for estimating the unknown AIC′

REM.

Figure 5. Numerical comparison on the accuracy of AICREM

and GAICREM to estimate AIC′
REM, where the red lines with

triangles represent the MSE of AICREM/k, and the green lines
with circles represent the MSE of GAICREM/k.

In this section, we conduct simulation studies to compare
their performance and suggest the better one for practical
use.

To generate data from model (3), we consider k ranging
from 2 to 20, let τ2 = 0.5, 1 or 2, and set θREM = 0 with-
out loss of generality. For the within-study variances, we let
σ2
i be randomly drawn from a scaled chi-square distribution

with ν degrees of freedom, i.e., from χ2
ν/ν. We further con-

sider three different degrees of freedom, ν = 5, 25 or 100, to
represent different levels of heterogeneity in the within-study
variances. Then for each combination of (k, τ2, ν), we gener-
ate the data using model (3), and apply (14), (15) and (17)
to calculate the values of AIC′

REM, AICREM and GAICREM

for each simulation. Finally, with M = 20,000 repetitions,
we compute the mean squared errors (MSE) of AICREM/k
and GAICREM/k to evaluate the accuracy of AICREM and
GAICREM for estimating AIC′

REM as follows:

MSE(AICREM/k) =
1

kM

M∑
j=1

(AIC(j)
REM −AIC′ (j)

REM)
2,

MSE(GAICREM/k) =
1

kM

M∑
j=1

(GAIC(j)
REM −AIC′ (j)

REM)
2.
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With MSE as the criterion, it is clear that the smaller the
MSE is, the more accurate the estimator is.

As clarified in the beginning of Section 6, when the num-
ber of studies is small, τ2 cannot be estimated reliably that
is heavily used in AIC′

REM. To visualize the impact of k on
the estimation accuracy, we plot the MSE values of AICREM

and GAICREM along with the number of studies in Figure 5
for comparison. From the results in Figure 5, we can see
that GAICREM always provides a more accurate estimate
than AICREM when the number of studies is small. Such an
advantage is getting more evident when the degrees of free-
dom ν is also large. In particular, when the within-study
variances are all the same (or equivalently when ν → ∞),
GAICREM will perform better than AICREM in most settings.

According to [8], there are a total of 22,453 meta-analyses
in the January 2008 issue of the Cochrane Database of Sys-
tematic Reviews, and the median number of studies included
in those meta-analyses is only 3 studies (with the interquar-
tile range from 2 to 6). This indicates that our simulation
settings with k ranging from 2 to 20 are able to cover the
majority of meta-analyses in the literature. In addition, our
simulated within-study variances, with ν ranging from 5 to
100, have also covered a wide range of the heterogeneity
level for the within-study variances. To conclude, GAICREM

can always be recommended to estimate AIC′
REM, as long as

the number of studies and/or the heterogeneity level for the
within-study variances are/is not extremely large.

8. CONCLUSION

The common-effect model (CEM), the fixed-effects model
(FEM) and the random-effects model (REM) consist of the
three fundamental models for meta-analysis. When the het-
erogeneity exists, CEM may not be reasonable due to its
restrictive assumption on a common effect for all the stud-
ies. On the other side, when there are only few studies, REM
will also suffer from the inaccurate estimate of the between-
study variance. By contrast, FEM can effectively avoid the
limitations on CEM and REM, and thus provides a good
compromise between them for meta-analysis with few stud-
ies. Methods for model selection between CEM and REM
have been well studied in the literature, in which the com-
monly used statistics include, for example, the Q statistic
and the I2 statistic. It is also noteworthy that the Q statis-
tic can be applied as well to model selection between CEM
and FEM. To the best of our knowledge, however, there is
no existing method for model selection between FEM and
REM up to now.

In this paper, we propose a novel method for model selec-
tion between FEM and REM based on the AIC technique.
The new method is also applied to a real data example and
it shows a reasonable result for model selection. To further
reduce the unexpectedly large variation in AIC, we also
propose a generalized AIC (GAIC) method for model se-
lection. Through real data analysis and simulation studies,

it is evident that the GAIC method performs better than
the AIC method in most settings, and so can be routinely
recommended for practical use. Specifically, to apply GAIC
for model selection, we first compute the difference between
GAICFEM and GAICREM as

GAICFEM −GAICREM = k − 1 +

k∑
i=1

ln
σ2
i

σ2
i + τ̂2DL

,

where k is the number of studies, σ2
i are the within-study

variances, and τ̂2DL = max{0, {Q − (k − 1)}/(
∑k

i=1 wi −∑k
i=1 w

2
i /

∑k
i=1 wi)} is the moment estimate in [10]. We

then select FEM to perform meta-analysis if GAICFEM −
GAICREM < 0; but if not, then REM will be applied. To
conclude the paper, we hope to reiterate that this is the first
work in meta-analysis for model selection between the fixed-
effects model and the random-effects model, and we expect
that our proposed GAIC criterion will have the potential
to be widely applied in meta-analysis and evidence-based
medicine.

There are some future directions related to the current
work. Firstly, Bayesian Information Criterion (BIC) can
be another potential approach for model selection between
FEM and REM, and following its establishment, a compari-
son on the performance of model selection based on AIC and
BIC is also needed. In addition, following our new method,
the AIC value of CEM can also be derived as

AICCEM =

k∑
i=1

⎧⎪⎨
⎪⎩ln

(
2πσ2

i

)
+

(
yi − θ̂CEM

)2

σ2
i

⎫⎪⎬
⎪⎭+ 2.

That is, our new method can also be applied for model selec-
tion between CEM and REM. Hence as another future work,
we will also revisit the model selection between CEM and
REM, conduct extensive simulation studies to compare the
performance of the Q statistic, the I2 statistic and the AIC
criterion, and make some new recommendations for meta-
analysis.
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