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Abstract

For gene expression data analysis, an important task
is to identify genes that are differentially expressed
between two or more groups. Nevertheless, as biological
experiments are often measured with a relatively small
number of samples, how to accurately estimate the
variances of gene expression becomes a challenging
issue. To tackle this problem, we introduce a regularized
¢t distribution and derive its statistical properties
including the probability density function and the
moment generating function. The noncentral regular-
ized t distribution is also introduced for computing the
statistical power of hypothesis testing. For practical
applications, we apply the regularized ¢ distribution
to establish the null distribution of the regularized ¢
statistic, and then formulate it as a regularized ¢-test for
detecting the differentially expressed genes. Simulation
studies and real data analysis show that our regularized
t-test performs much better than the Bayesian ¢-test in
the “limma” package, in particular when the sample
sizes are small.

KEYWORDS

Bayesian t-test, hypothesis testing, noncentral regularized ¢
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1 | INTRODUCTION

With the advances in modern technologies, high-throughput omics data are becoming more and
more popular in various areas of science. A typical example of such data includes gene expression
data, which are frequently applied to detect the differentially expressed (DE) genes for exploring
the biological mechanisms in the gene level. For simplicity, let us first consider the one-sample
test. Let Xj; be the expression level of the jth gene in the ith sample that is normally distributed
with mean y; and variance ajz, where i =1,...,nandj = 1,..., G. Then for the jth gene, if we want
to test the hypothesis

H()j © Hj = Hjo versus Hlj LM # Hjo, ®

Student’s ¢ statistic is given as

T = Xj— ujo
i > ’
1 /sj /n

where X = Z?=1Xij /nand sj2 = Z?:l Xij — )_(j)z /(n — 1) are the sample mean and sample variance
of the jth gene, respectively. Due to the high-dimensionality of gene expression data, the number
of genes p is often larger or much larger than the sample size n. In particular, when the sample
size is small and the gene expression levels are similar, the sample standard deviation (SD) s; will
be very close to zero so that the test statistic value can be arbitrarily large as long as the sample
mean is nonzero. As a consequence, Student’s t-test will tend to detect many weakly expressed
genes as biologically significant.

To improve the performance of detecting DE genes, it is desired to have more accurate and
more stable estimates for the gene-specific variances. To achieve this, one popular approach in the
literature is borrowing information across genes to further improve their estimation accuracy. To
name a few earlier works, Tusher et al. (2001), Efron et al. (2001), and Storey and Tibshirani (2003)
added a small positive constant ¢, to the sample SD, the applied §; = 5; + ¢o as the denominator
of the test statistic. Baldi and Long (2001), Smyth (2004), and Phipson et al. (2016) considered an
inverse-gamma prior distribution for o> with vy degrees of freedom and scale parameter s, which
leads to the posterior estimates of the variances as 512 =(n- l)sj2 +vS5)/(n — 1+ vp). In other
words, they proposed to estimate the gene variance by a weighted average of the sample variance
and the hyperparameter value. To test the hypothesis (1), they proposed a Bayesian ¢ statistic as

Xj = Hjo
A /sja/n

They further showed by simulations that the Bayesian t-test is often more powerful and
meanwhile provides a lower false discovery rate than Student’s t-test. Since then, the Bayesian
t-test has played an important role in multiple testing problems. For instance, most existing
t-type statistics for detecting DE genes for microarray data or RNA-Seq data can be dated back to
formula (2), including the well-known test statistics in the “limma” package (Ritchie et al., 2015)
which have been extensively used in thousands of published biological studies.

Despite the huge popularity, we note however that the exact distribution of the test statistic (2)
has not yet been studied analytically. As pointed by Robinson et al. (2010) and Patrick et al. (2013),

()

0 —
j
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the posterior estimate s; does not follow a chi-square distribution, and consequently, T;B ) does
not follow an exact ¢ distribution. In the literature, several approaches have been proposed to
approximate the null distribution of the Bayesian ¢ statistic. For example, Tusher et al. (2001),
Cui and Churchill (2003), and Robinson et al. (2010) approximated the null distribution of Tj(B ) by
the permutation methods. On the other side, Baldi and Long (2001), Smyth (2004), and Phipson
et al. (2016) proposed to still use a Student’s ¢ distribution but with an enlarged degree of freedom
to approximate the null distribution of T®. Nevertheless, when the sample size is small, those
approximated null distributions may not perform well and often have a large deviation from their
exact distributions, which consequently lead to a lower statistical power or an inflated type I error
for the conducted tests.

Inspired by the above observations, we propose to study the exact distribution of T®, and also
investigate how it can be applied to multiple testing with real applications. To be more specific,
we will reformulate the problem and introduce a regularized ¢ distribution, which includes two
shape parameters for modeling the test statistic in (2). We then show that, with a proper selec-
tion of the two parameters, the regularized ¢ distribution will include the normal distribution,
Student’s ¢ distribution, and the scaled ¢ distribution as important special cases. While for the
statistical power of the proposed test, we will also introduce the noncentral regularized ¢ distribu-
tion. Simulation studies show that the test associated with the regularized ¢ distribution is more
powerful in multiple testing than those with the null distributions based on the permutation or
approximation methods.

The rest of the paper is organized as follows. In Section 2, we introduce the regularized t
distribution and investigate its statistical properties. The noncentral regularized ¢ distribution is
introduced in Section 3. In Section 4, we conduct simulation studies to illustrate the usefulness
of the new proposed distribution in multiple testing. We further apply the new distribution to
analyze a real data example in Section 5. Finally, we conclude the paper with some future works
in Section 6, and provide the technical results in the Appendices.

2 | REGULARIZED T DISTRIBUTION

Assume that Z follows a standard normal distribution, U follows a chi-square distribution with v
degrees of freedom, and that Z and U are independent of each other. In statistics, it is well known
that the ratio

V4

\/U/v’

follows a Student’s ¢ distribution with v degrees of freedom. The ¢ distribution was first intro-
duced in 1908 by William S. Gosset, who is better known under the pseudonym “Student”
(Student, 1908).

To illustrate the usefulness of Student’s ¢ distribution, we considered the one-sample
hypothesis Hy : u = po versus Hy : p # uo, where i is a specified value. Let also Xj,..., X, be a
random sample from a normal distribution with mean y and variance ¢2. When o2 is known, the
test statistic for the hypothesis is given as

: (3)
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where X = >t Xi/nis the sample mean. Under the null hypothesis, noting that X ~ N(uo, 62/n),
T follows a standard normal distribution. This test is well known as the Z-test.

In practice, however, the variance ¢? is often unknown so that the Z-test is no longer
applicable. To have a valid test statistic, one needs to replace the unknown o2 by a sample estimate
in the denominator of T in (3). Say, for example, if we apply the sample variance, it will yield the
test statistic as

=)_(—uo=(}_(—ﬂo)/vo'2/n= Tz
\/s2/n \/$2 /o2 VUp-1/(n— 1)’

where U,_; = (n — 1)s?/c? and T is the same as defined in (3). Under the null hypothesis, T,
follows a standard normal distribution, U,_; follows a chi-square distribution with n — 1 degrees
of freedom, and that T, and U,_; are independent of each other. Then by the definition of
Student’s ¢ distribution, T follows a Student’s ¢ distribution with n — 1 degrees of freedom.

Ts 4)

2.1 | Definition

As mentioned in the introduction, for high-dimensional small sample size data, the sample
variances may not provide reliable estimates for the true variances. And consequently, the
associated t-tests using the sample variances are often at the risk of generating misleading results
including the uncontrolled type I errors or resulting in higher false discovery rates.

Motivated by the success of Bayesian ¢-test, many researchers have devoted to develop new and
novel estimates for the gene-specific variances (Cui et al., 2005; Opgen-Rhein & Strimmer, 2007;
Pimentel et al., 2017; Tong et al., 2014; Tong & Wang, 2007). To summarize, many variance esti-
mators for the jth gene can be formulated in a regularized form, 6].2 = Asjz +(1- /1)0]%, where
oj% is a fixed value serving as the shrinkage target, and A € (0,1) is the shrinkage parameter.

Now if the regularized estimator &jz is applied to estimate ¢? in (3), we will have the regularized
¢ statistic as

X —mo Xj = Hjo Zj

o2 B Irs2 _ 2 B o2
VEim \Jtus+a-ae \/,1%+(1—/1)£
J

where Z; = (X; — pjo)/ 4 /ajz/n, v/e2/nand U, = (n— 1)sj2/aj2. Under the null hypothesis, Z;
follows a standard normal distribution, U, follows a chi-square distribution with n — 1 degrees
of freedom, and Z; and U,_; are independent of each other. To the best of our knowledge,
however, the exact distribution of this regularized ¢ statistic has never been studied in the
literature. As alternatives, researchers often applied the approximation or permutation methods
to establish the null distribution of T;.

To systematically study the regularized ¢ statistic, we treat a =4 and b= (1 — A)aj% /aj2 as
two regularization parameters in formula (5), and then define the regularized t distribution
as follows.

) (5

Definition 1. Assume that Z follows a standard normal distribution, U follows a
chi-square distribution with v degrees of freedom, and that Z and U are independent
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of each other. Then for any a > 0 and b > 0, the probability distribution of
ro— 2 __ ©

VaUj/w+b

defines a regularized ¢ distribution with v degrees of freedom and regularization
parameters a and b. For convenience, we also refer to T as a regularized ¢t random
variable, and denote it by T ~ t,(a, b).

Following the definition, it is clear that the regularized ¢ distribution includes some important
distributions as special cases. Whena = 1and b = 0, it gives a Student’s ¢ distribution. Whena # 1
and b = 0, it gives a scaled ¢ distribution; and more specifically by Praetz (1972), a = vo?/(v — 2)
with v > 2 is most frequently used. In addition, when a = 0 and b > 0, the regularized ¢ distribu-
tion reduces to a normal distribution with zero mean and variance 1/b. And because of this, we
only consider a > 0 in the definition of the regularized ¢ distribution.

Also following the definition, there is another interesting connection between the regularized
t distribution and the normal distribution, with the proof given in Appendix A.1 in Data S1.

Theorem 1. Let T = Z/+/a(U/v) + b be a regularized t random variable with param-

eters v>0, a>0 and b >0, where Z and U are two random variables as defined
D D

in (6). Then, T—> N(0,1/(a + b)) as v — oo, where — denotes the convergence in

distribution.

Finally, it is noteworthy that the regularized ¢ distribution has no essential difference between
0 <a <1 anda > 1. To demonstrate it, we let X follow the regularized ¢ distribution ¢,(a;, b1)
with 0 < a; <1 and by > 0. Then if Y = X/4/w, with @, > 1/a; being a positive constant, by
(6) we have Y ~ t,(woa1, wob;). This shows that a regularized ¢ distribution with 0 < a; < 1 and
b; > 0 can be easily transformed to another regularized ¢ distribution with a, = wpa; > 1 and
b, = wyb; > 0. In view of this, we will focus on 0 < a < 1 only in the remainder of the paper.

2.2 | Probability density function

In this section, we derive the probability density function (PDF) and the cumulative distribution
function (CDF) of the regularized t distribution.

Theorem 2. Let I'(-) be the gamma function. For t € (—o0, ), the PDF of the regular-
ized t distribution is

(i) whenb =0,

_ [areu () ae\ T
fro = ve  T(v/2) <1+ v> ’

(ii) whenb > 0,
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where U(x,y,2) = fome‘”tx‘l(l + tY~*~1dt /T'(x) is the confluent hypergeometric function
of the second kind, and the real parts of x and z are required to be positive values
(Abramowitz & Stegun, 1972; Prosser, 1994).

The proof of Theorem 2 is given in Appendix A.2 in Data S1. Accordingly, the CDF of the
regularized t distribution can be written as

t
Fr(t) = / frwdu.

As mentioned before, when a =1 and b =0, the regularized ¢ distribution is equivalent to
Student’s ¢ distribution. In this case, the PDF is given as

r 1)/2 2
PR (L )/><1 ‘

_ +—> 2, —00 < [ < 00.
\val'(v/2)

\%
And accordingly, the CDF of Student’s ¢ distribution is Fr(f) = I+ (v/2,1/2) /2 for t <0,
or Fr(t) =1 —1,/0+4p)(v/2,1/2) /2 for t > 0, where I(y,z) is the regularized incomplete beta
function (Dutka, 1981). For more details, one may refer to Definition Al in Appendix A
in Data S1.

Theorem 3. For the PDF of the regularized t distribution in (7), we have

(i) fr(t)is an even function, that is, fr(t) = fr(—t) for any t > 0.
(ii) fr(t) is a unimodal distribution such that its first derivative is positive when t < 0,
negative when ¢ > 0, and zero when ¢ = 0.
(iii) fr(t) is a convex function when ¢ is close to zero, and is a concave function when the
absolute value of ¢ goes to large.
(iv) fr(t)is infinitely differentiable for any —co < t < co.

Theorem 3 provides some basic properties for the PDF of the regularized ¢ distribution, and its
proofis given in Appendix A.3 in Data S1. Specifically by Theorem 3(i) and 3(ii), both the median
and mode of the regularized t distribution are located at the origin point. For more properties
of fr(¢) including its effects on the parameters, one may refer to Theorem B1 in Appendix B.5 in
Data S1. In addition for visualization purposes, we have also plotted the PDFs of the regularized
t distribution with different values of v, a, and b in Figure 1.

Figure 1a shows the PDFs of the regularized ¢ distribution with a = 1, b = 0 and varying v.
From Definition 1, those PDFs degenerate to the PDFs of Student’s ¢ distribution with v degrees
of freedom. Figure 1b shows the PDFs of the regularized ¢ distribution with a = 0.5, b = 0.5 and
varying v. When v becomes larger, the tails of the PDFs become shorter and the peaks of the PDFs
turn to be higher. Besides, the PDFs are close to each other when v increases from 10 to 30. This
coincides with Theorem 1 that, as v — oo, the regularized ¢ distribution converges to a normal
distribution with mean 0 and variance 1/(a + b). Figure 1c shows the PDFs of the regularized ¢
distribution with b = 0.5 and v = 1 but with varying a. When a becomes larger, the tails of the
PDFs are shorter and the peaks of the PDFs are higher. Note that this also coincides with Theorem
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FIGURE 1 The probability density functions of the regularized ¢ distribution, ¢,(a, b), with different values
ofv,a,and b.(a)a=1and b=0;(b)a=0.5and b=0.5;(c)b=0.5andv=1;(d)a=0.5and v =1.

B1 in Appendix B.5 in Data S1. Figure 1d shows the PDFs of the regularized ¢ distribution with
a = 0.5 and v = 1 but with varying b. Similar to the effects on a, when b becomes larger, the tails
of the PDFs also become shorter and the peaks of the PDFs will be higher, which again coincides
with Theorem B1 in Appendix B.5 in Data S1.

2.3 | Moments and moment generating function

In this section, we derive the finite-order moments of the regularized ¢ distribution, followed
by its moment generating function (MGF) which is also essential in learning the statistical
behaviors of a certain distribution. For ease of notation, we let k!! = k(k — 2) - - - 2 for even k, and
k"' =k(k—-2)---1forodd k.

Theorem 4. Let T be a regularized t random variable with v > 0, a > 0 and b > 0.
Then for the kth moment of T, we have
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(i) whenb =0,
0, kis odd, k < v,
ky = _ (VK2 Dv=k)/2) .
E(T") = (k-1 () o) kis even, k < v, (8)
undefined, k>v.
(ii)) when b > 0,
k is odd,

E(TH = )

H v—k
(k—1)! - (ﬁ)sz UG, R ks even.

The proof of Theorem 4 is given in Appendix A.4 in Data S1. This theorem shows that the mean
of the regularized ¢ distribution is zero if it exists, which can also be derived from Theorem 3(i)
that the regularized ¢ distribution has a symmetric PDF about t = 0. Also by (8) and (9), we can
derive the variance of T as

LA b=0,v>2,
a(v-2)
Var(T) = 1 p3 1 (L): UL, L, &), b>0,v>0,
2a 2°2° 2a
undefined, otherwise.

Theorem 5. Let T be a regularized t random variable with v > 0,a > 0and b > 0. The
MGEF of T exists if and only if b > 0. When b = 0, T is a heavy tailed random variable
and its MGF does not exist.

The proof of Theorem 5 is given in Appendix A.5 in Data S1. This theorem shows that the
existence of the MGF for the regularized ¢ distribution is fully determined by the regularized
parameter b. In other words, the regularized ¢ distribution behaves like Student’s ¢ distribution
when b = 0, and it behaves like the normal distribution when b > 0. In view of this, for the regu-
larized ¢ statistic in (5), it may not be accurate to approximate its null distribution by Student’s ¢
distribution, especially when the sample size is small. Nevertheless, we also note that such a heavy
tailed approximation has be commonly applied in the literature including, for example, Baldi and
Long (2001), Smyth (2004), Cui et al. (2005), Law et al. (2014), and Pimentel et al. (2017). More-
over, to visualize the tails of the regularized ¢ distribution, we have also plotted several PDFs with
v = 5under the setting of a + b = 1 in Figure 2. From the right panel of Figure 2, it clearly shows
that the tails of the regularized ¢ distribution will quickly converge to the tail of the standard
normal distribution rather than Student’s ¢ distribution when b increases from 0 to 1.

Finally, for reference, we have also followed the Wikipedia style and provided the summary
statistics of the regularized ¢ distribution in Table 1.

3 | NONCENTRAL REGULARIZED T DISTRIBUTION

In the power analysis of Student’s t-test, the noncentral ¢ distribution is a generalization of
Student’s ¢ distribution with a shifted mean in the numerator. Specifically, if we consider the
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FIGURE 2 The probability density functions of the regularized ¢ distribution, ¢,(a, b), with v = 5 and
a+b=1.
following ratio

Z+u

\/U/v’

it will lead to a noncentral ¢ distribution with v degrees of freedom and noncentrality parameter
u # 0. Inspired by this, we define the noncentral regularized ¢ distribution as follows.

(10)

Definition 2. Assume that Z follows a standard normal distribution, U follows a
chi-square distribution with v degrees of freedom, and that Z and U are independent
of each other. For any given a > 0, b > 0 and y # 0, the probability distribution of

Z+u

VaUj/v+b

defines a noncentral regularized ¢ distribution with v degrees of freedom, regular-
ization parameters a and b, and noncentrality parameter x. We also refer to W as a
noncentral regularized ¢ random variable, and denote it by W ~ t,(a, b; p).

W = (11

In the special case when a =1,b =0 and u # 0, the noncentral regularized ¢ distribution
reduces to a noncentral ¢ distribution. In addition, as v — oo, the noncentral regularized ¢
distribution will converge to a normal distribution with mean p and variance 1/(a + b). The
following theorem gives the PDF, the moments and the MGF of the noncentral regularized
t distribution.

Theorem 6. Let W be a noncentral regularized t random variable with v > 0, a > 0,
b>0and u # 0. Then,
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TABLE 1 Regularized ¢ distribution.

Notation t,(a,b)
v > 0 — degrees of freedom

Parameters a > 0 — regularized shape parameter

b > 0 — regularized shape parameter

Support t € (—o0, )
PDF f(t)=\/§(lz’—;)%U<§,%3,%+%)e_% forb > 0
f(t):\/gm#/lzb<1+$>_%l forb=0
CDF F(t)= ['_fwdu
Mean 0 forb>0
0 forb=0andv>1
Undefined forb=0and0<v<1
Median 0
Mode 0
Variance b§_1<i)§U<§,§,Z—;> forb > 0
a(viz) forb=0andv > 2
Undefined forb=0and0<v<2
Skewness 0 forb>0
0 forb=0andv >3
Undefined forb=0and0<v <3
MGF ﬁ(%)%fomU(g,§,”—Z+%)e5‘_¥dt forb > 0
Undefined forb=0

(i) the PDF of W, defined on w € (—c0, o), is given as

_ Vz/” v\: e 2 [T 2,2 =1 ,—-s2(v/a+w?)/2+puws .
fW(W)_r(v/z)(Z> ex /\/Es(s —-b):""e ds;

(ii) the kth moment of W is

undefined, b=0.k>v,
k
v \2I=k/2) K\ oL e (41 3
E(Wk)z <2a> r(v/z)\/,_[ r§9<r>22ﬂ F( 5 >, b=0,k<v,
‘ v
b 2

b2 (bv\Zpy (v vi2-k bv) kYo% k- (1L

S(a)u(aee) g ()eer(s). o
where S = {r : riseven,r < k};

(iii) the MGF of W exists if and only if b > 0; and when b = 0, W is a heavy tailed random
variable and its MGF does not exist.
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The proof of Theorem 6 is given in Appendix A.6 in Data S1. This theorem indicates that
the existence of the MGF for the noncentral regularized ¢ distribution is fully determined by the
regularized parameter b and is irrelevant to the shift in 4. For more details about the noncentral
regularized ¢ distribution, one may refer to the additional PDF plots in Appendix B.1 in Data S1.

4 | MONTE CARLO SIMULATION STUDIES

In this section, we carry out simulation studies to evaluate the performance of the regularized test
based on the regularized ¢ distribution. For ease of presentation, we present the simulations for the
two-sample test only, where one is the treatment group and the other is the control group. We also
compare our regularized ¢-test (R-t) to the Bayesian ¢-test with the null distribution approximated
by Student’s t distribution (B-t) or by the permutation method (P-¢), respectively.

41 | Typelerrorrate

We first evaluate the gene-specific type I error rate for each test. To start with, we generate data for
G = 1000 independent genes. For the jth gene, let Xj;,..., X, ; be an independent random sample
of size n; from N(uy;, ajz), Yyj,..., Yy, be an independent random sample of size n, from N (i, ajz),
and that the two samples are independent of each other. For computing the type I error rate, we
further let y1; = pp; = 0 for all genes. The variance sz is randomly sampled from a scaled inverse
chi-square distribution, ngdoj / ;(z(doj), with dy; = 100 degrees of freedom and location param-
eter g“gj (Opgen-Rhein & Strimmer, 2007; Smyth, 2004). Also to account for different levels of
heterogeneity, we let cjozj = 0.25 for the first 500 genes and ng = 4 for the last 500 genes.

To test whether the genes are differentially expressed, we consider the hypotheses Hy; : uy; =
Maj versus Hyj @ pyj # mojforj = 1,..., G. The regularized ¢ statistic for the jth gene is then given as

_ X -7,
e i (12)
N Spoolj
where N = n; + n,, )_(] and 1_/] are the two sample means of the jth gene, and Efmu =[(N -

2)S12)001J +voSg]/(N — 2 + vp) with slzjoou being the pooled sample variance and v, and s¢ being two
hyperparameters. By the definition in Section 2, under the null hypothesis we have

Tj ~ ty-2(aj, by), (13)

with a; = (N — 2)/(N — 2+ vp) and b; = vos3 /[(N — 2 + vo)sz]. We further specify the values of v,
and sg by following the same procedure as in Ritchie et al. (2015), and estimate the unknown 1/ ajz
by its unbiased estimate (N —4)/[(N — 2)sf)00u]. For more details, see Appendix B.2 in Data S1.
Finally, to assess the performance of R-t, B-t and P-t, we consider the sample sizes as (n;, n;) =
(3,3), (5, 5) or (30,30), respectively.

For each scenario, we repeat the simulations for 1000 times and compute the gene-specific
type I error rates for each test. Figure 3 plots the gene-specific type I error rates for the three tests
at the nominal level @ = 0.05. We note that R-t is able to control the gene-specific type I error rates
in most settings. While for B-f, when the sample sizes are small, it either provides an inflated or
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FIGURE 3 TypeIerror rates of each gene among R-t, B-t and P-t. The horizontal dashed red lines
represent the nominal level of @ = 0.05. The gene-specific type I error rate is plotted for each test versus the index
number of genes.

a conservative type I error rate. More specifically, it exhibits a conservative type I error rate for
the genes with smaller variances, and a significantly inflated type I error rate for the genes with
larger variances, mainly because the null distribution built by B-¢ (always set as IN—24v,, T€gardless
of the unknown gene-specific variances) can be far away from the exact null distribution, and so
provides a less satisfactory control for the type I error rate. In addition, we note that P-t performs
very similarly as B-t, with the reasons explained in Appendix B.3 in Data S1. Finally, when the
sample sizes are large, the three tests perform similarly and all keep the type I error rates around
the nominal level. This coincides with Theorem 1 that the regularized ¢ distribution converges to
a normal distribution when the degrees of freedom is large, showing that the three tests are all
asymptotically equivalent.
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FIGURE 4 Empirical power comparisons among R-¢, B-t and P-t. The horizontal dashed red lines
represent the nominal level of @ = 0.05. The power is plotted for each test versus the effect size A.

4.2 | Statistical power

To compare the statistical power for the three tests, we follow the same simulation setting as in
Section 4.1 except that m; = 200 genes are now differentially expressed (DE). We first randomly
sample w1m; and (1 — z;)m; genes from the first 500 and the last 500 genes, respectively. We
further set y1; = 0 and uy; = Ay;o; for those DE genes, where A is the effect size and y; is a binary
random variable with P(y; = 1) = P(y; = —1) = 0.5. Consequently, a smaller r; indicates that the
DE genes tend to have a larger variance. Finally, with z; = 0.1, 0.5, 0.9, we repeat the simulations
for 1000 times, and compute the empirical power as the proportion of the number of identified
DE genes to the total number of true DE genes.

Figure 4 presents the simulated power of R-¢, B-t and P-t versus the effect size A ranging from
0.2 to 1. We note that B-t and P-t will exaggerate the statistical power when most DE genes tend
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TABLE 2 The detected numbers of differentially expressed (DE) genes by R-t, B-t and P-t, respectively,
where «a is the nominal level.

a = 0.01 a = 0.025 a = 0.05
R-t B-t P-t R-t B-t P-t R-t B-t P-t
DE genes 225 221 210 333 324 294 432 428 381
ITo)
S | ° °
o
=
0
o .
o
o
S |
o

FIGURE 5 False positive rate (FPR) comparisons among R-t, B-t and P-t. The gene-specific FPR is plotted
for each test versus the corresponding gene variance. The horizontal dashed red lines represent the nominal level
of @ = 0.05.

to have a larger variance (e.g., # = 0.1), since B-t and P-t significantly inflate the gene-specific
type I error rates of those DE genes with larger variances. Moreover, B-t and P-t will reduce the
statistical power when most DE genes tend to have a smaller variance (e.g., # = 0.9), since B-t and
P-t exhibit a conservative gene-specific type I error rates of those DE genes with smaller variances.
On the contrary, it is evident that R-t always provides a stable power across different values of 71,
mainly because R-t is the only test among the three that is able to control the gene-specific type I
error rates around the nominal level. Finally, when the sample sizes are large, the power curves of
B-t, R-t and P-t are nearly overlapped, showing that the three tests are asymptotically equivalent,
which is also consistent with Theorem 1 and Figure 3.

5 | REAL DATA ANALYSIS

We consider the colon data from Alon et al. (1999), which contains gene expression levels of 40
tumor and 22 normal colon tissues samples for 6500 human genes obtained from an Affymetrix
oligonucleotide array. The dataset is publicly available in the R package “datamicroarray”
(John, 2016). We select the top 2000 genes with the highest minimal intensity across all 62 samples
as in Alon et al. (1999) and further take the log2 transformation for the raw expression data. Let
Xij,..., X490, be the expression levels of gene j from the 40 tumor samples, and Y7 ,..., Y2, be those
from the normal samples. Assume that each gene from different tumor (or normal) samples are
independently normally distributed with mean p4; or uy;, respectively. Then to test the hypotheses
My = Hj VETSUS pyj # uy; for j = 1,...,2000, we compute the p-values for each gene based on R-t,
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B-t and P-t, respectively. With the detected DE genes in Table 2 at the nominal level « = 0.01, 0.025
or 0.05, we observe that R-t detects more DE genes than B-f and P-f in all the settings.

To further compare the performance of the three tests, we now evaluate the gene-specific
false positive rate (FPR). To achieve this goal, we apply the bootstrap method to generate two
artificial groups for the 2000 genes that mimic the null and alternative hypotheses, respectively.
Specifically, we randomly sample two distinct classes of size 10 with replacement from the tumor
group. Since both classes are partitioned from the tumor data, the null hypothesis can be regarded
as the truth. We repeat the procedure for 4000 times, and perform the three tests at the nominal
level @ = 0.05. The rejection rate is then computed to represent the FPR for each gene, which
is further plotted in Figure 5 along with the corresponding gene variance. From the figure, it is
evident that the gene-specific FPRs of R-t are all around the nominal level and not affected by the
gene-specific variances. Nevertheless, both of B-t and P-t display an inflated FPR for genes with a
larger variance and a conservative FPR for genes with a smaller variance, showing that they may
not be valid tests for practical use.

6 | CONCLUSION

For high-dimensional data, traditional statistical tests often suffer from low powers in multiple
testing due to the small number of collected samples. Borrowing information across variables
help to stabilize the test statistics, and consequently, improve their detection ability. In this paper,
motivated by the framework of empirical Bayesian and shrinkage estimation, we propose a new
distribution family, the regularized ¢ distribution, and also demonstrate that most of existing test
statistics based on Bayesian and shrinkage techniques fall into this new distribution family. We
derive the density function of the regularized ¢ distribution and also thoroughly investigate its sta-
tistical properties. We further apply the regularized ¢ distribution to gene expression data analysis
and compare its performance with the Bayeisan ¢t-test, which is the most popular method in the
“limma” package. Simulation studies and real data analysis lend further support to our proposed
regularized ¢-test.

Apart from micro-array data analysis, the regularized ¢ distribution can also be applied to
more modern type of data including, for example, the detection of DE genes in RNA-Seq data.
Law et al. (2014), Kvam et al. (2012), and Zhang et al. (2019) considered the nature of discrete-
ness of the RNA-Seq data. They performed a data transformation for the read counts in RNA-Seq
after normalization by sequencing depth. Given that their transformed data is about normal, our
proposed regularized t-test can still be directly used. In addition, we note that the negative bino-
mial (NB) model-based method (Conesa et al., 2016) is another popular method for detecting DE
genes in RNA-Seq data, which can also be traced back to the Bayesian -test. To be more specific,
we let ¢ be the dispersion parameter of the NB distribution for the jth gene, and ¢; be the corre-
sponding mean expression level after normalization by sequencing depth. Then to test whether
0; = 0 for each gene, the authors provided a ¢-type statistic as

9.
T =1, (14)
J Sj

where 6, is the sample estimate of 6;, and §12 = a + b¢; is the variance of 51 Note also that §]2 isa
linear function of the dispersion parameter ¢;. Hence, an improved estimate of ¢; may further
improve the detection power of T}l) .

dny) suonIpuoD pue sl | Y1 88S “[€202/TT /2] uo Ariqiauliuo A ‘Asiaiun sndeg Buoy BuoH Aq 55921 'SO/TTTT OT/10p/W0 A8 1M Aleig puljuoy/sdny wo.j papeojumod ‘v ‘€202 ‘69V6L97T

fojwA:

38UBD 17 SUOWILIOD aAIaID 3|ged!|dde ayy Ag pausenoh ae sajoiLe YO ‘asn Jo sajn. o) AruqiT auljuQ A8|1AA UO (SUOTIPUOD-pI



HU ET AL. L. L. 1899
Scandinavian Journal of Statistics

In a similar vein as Bayesian ¢-test, many methods have been proposed to improve the estima-
tion accuracy of ¢;. For example, edgeR moderates the dispersion estimate for each gene toward a
common estimate across all genes (McCarthy et al., 2012; Robinson et al., 2010). DESeq corrects
the dispersion estimates that are too low through modeling of the dependence of the dispersion on
the average expression strength over all samples (Anders & Huber, 2010). DESeq2 estimates the
dispersions based on the empirical Bayesian method, which provides an automatic determina-
tion for the shrinkage intensities based on the available information in the data (Law et al., 2014;
Pimentel et al., 2017). Nevertheless, similarly as the Bayesian ¢ statistic in (2), we note that the null
distribution of T;l) in those methods were, once again, either approximated by a normal distribu-
tion, or approximated by permutation tests. When the sample sizes are small, the approximated
null distributions may have a large deviation from the true distribution of T;l). In view of this, we

expect that further research may also be needed to derive the exact distribution of Tj(l) for both
theoretical interest and practical use.
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