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Abstract Generalized linear measurement error models, such as Gaussian regression, Poisson regression and

logistic regression, are considered. To eliminate the effects of measurement error on parameter estimation, a

corrected empirical likelihood method is proposed to make statistical inference for a class of generalized linear

measurement error models based on the moment identities of the corrected score function. The asymptotic

distribution of the empirical log-likelihood ratio for the regression parameter is proved to be a Chi-squared

distribution under some regularity conditions. The corresponding maximum empirical likelihood estimator of

the regression parameter π is derived, and the asymptotic normality is shown. Furthermore, we consider the

construction of the confidence intervals for one component of the regression parameter by using the partial

profile empirical likelihood. Simulation studies are conducted to assess the finite sample performance. A real

data set from the ACTG 175 study is used for illustrating the proposed method.
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1 Introduction

Generalized linear models arise frequently in practice and have attracted considerable research interest,

such as Gamma regression, inverse Gaussian regression, Poisson regression and logistic regression. Let

µ = E(Y |X), Var(Y |X) = V (µ, φ), where φ is a known dispersion parameter and V (·) is a known variance

function. The generalized linear model of Y given X is

g(µ) = XTβ, (1.1)

where g(·) is a known link function, β = (β1, . . . , βp)
T is a p× 1 vector of unknown regression parameter.

Wedderburn [25] considered the quasi-likelihood estimator. Firth [4] studied the efficiency of quasi-

likelihood. Chen and Cui [1] improved the efficiency of parameter estimation of the quasi-likelihood by

employing the empirical likelihood and incorporating extra constraints. See [16] for more details about

generalized linear models.
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However, the situation occurs frequently in medical research, where the covariates may not be exactly

observable. For example, the CD4 cell counts in AIDS dataset (see [11,14]), and the systolic blood pressure

and the high density lipoprotein in the Framingham Heart Study dataset (see [15,29]) are measured with

errors. If one ignores these measurement errors, the estimators and inference may be biased. We need

to correct the resulting bias. Let W be the observed value of the covariate X . We assume an additive

measurement error model,

W = X + U, (1.2)

where U ∼ N(0,Σuu) is independent of (X,Y ). If some elements of X are measured without errors,

the corresponding elements of U and related variance components in Σuu are set to zero. The measure-

ment error problem has been widely studied. Stefanski and Carroll [22] derived the efficient scores in a

structural generalized linear measurement-error model. Stefanski [21] and Nakamura [17] obtained the

corrected score functions of some generalized linear models, such as linear regression, Gamma regression,

inverse Gamma regression and Poisson regression. Stefanski [21] showed that the corrected score for lo-

gistic regression does not exist. Huang and Wang [6] proposed consistent functional methods for logistic

regression in which some covariates were not accurately ascertainable. Liang et al. [12], Li and Xue [9]

and Liang and Li [13] studied partially linear measurement error models. Zhou and Liang [33], and Zhang

et al. [31] developed semiparametric profile least-squares method based estimation procedures for semi-

parametric varying-coefficient partially linear models with error-prone linear covariates. Yi et al. [29,30]

discussed the simultaneous inference and bias analysis for longitudinal data with covariate measurement

errors and missing responses. Recently, a class of variable selection procedures for measurement error

models have been developed, see for example, [13, 15, 32]. The purpose of this paper is to construct the

confidence region of β for a class of generalized linear measurement error models.

To construct the confidence region for β, the direct way is to use the asymptotic normal distribution

of the estimator of β by a plug-in estimator of the asymptotic covariance matrix. But this may cause

larger errors for the confidence region since the estimator of the asymptotic covariance matrix is very

complicated. The asymptotic confidence intervals for β can also be constructed by using a bootstrap

method. The main advantage of the bootstrap method is that it does not reply on the asymptotic

distribution of β. However, statistical properties of the bootstrap method with measurement error data

need to be investigated. This is beyond the scope of this paper. Taking these issues into account, we

recommend using the empirical likelihood method to construct the confidence region for β. The empirical

likelihood was introduced for linear regression models by Owen [18]. Kolaczyk [7] extended the model

framework to generalized linear models. Cui and Chen [2], and Cui and Kong [3] applied the empirical

likelihood to linear and semi-linear errors-in-covariables models. Stute et al. [23] discussed the empirical

likelihood inference in nonlinear errors-in-covariables models with validation data. Other related works

include [8, 10, 24, 26–28,34] and among others.

The corrected empirical likelihood method has many important features. First, to eliminate the effects

of measurement errors on parameter estimation, we consider a correction for score functions based on

the moment identities in [6, 17]. Second, the empirical likelihood does not involve the plug-in estimate

for the limiting variance. Third, the shape and orientation of the empirical likelihood-based confidence

region are determined entirely by the data.

The remainder of the paper is organized as follows. In Section 2, the corrected empirical log-likelihood

ratio for some generalized linear measurement error models is proposed, and its asymptotic distribution

is shown to be the Chi-squared distribution with p degrees of freedom. We further obtain the maximum

empirical likelihood estimator of the regression coefficient, and investigate its asymptotic properties.

Section 3 reports the results of simulation studies and an application to a real data set. Finally, we

conclude the paper in Section 4 and present the proofs in Appendix.

2 Methodology and results

2.1 Corrected score function

Let {(X1, Y1), . . . , (Xn, Yn)} be a random sample from model (1.1). If Xi is observed, an unbiased score
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function of β is

ηi(β;Xi, Yi) =
∂µi

∂β
V −1
i (µ, φ)(Yi − µi). (2.1)

When Xi is subject to error and Wi is the observable value of Xi, ηi(β;Wi, Yi) by a direct replacement of

Xi by Wi will lead to a biased score function, i.e., E [ηi(β;Wi, Yi)] = 0 will not always hold. Motivated

by the idea of Nakamura [17], we construct an unbiased score function η∗i (Σuu, β;Wi, Yi) for β such that

E [η∗i (Σuu, β;Wi, Yi)] = 0.

To find the unbiased score function, by the moment identities associated with the error model (1.2), we

have

E(W |X) = X, E(WWT|X) = XXT +Σuu, (2.2)

E[W exp(WTβ)|X ] = (X +Σuuβ) exp(X
Tβ + βTΣuuβ/2), (2.3)

E[W exp(−WTβ)|X ] = (X − Σuuβ) exp[−XTβ + βTΣuuβ/2], (2.4)

E[W exp(−2WTβ)|X ] = (X − 2Σuuβ) exp[−2XTβ + 2βTΣuuβ]. (2.5)

In what follows, we construct the corrected score function for various measurement error regression

models that are widely used in practice.

(1) Gamma measurement error regression models. Let Y follow the Gamma distribution with

probability density

f(y) =
1

Γ(φ)θφ
yφ−1e−y/θ,

where φ is known, θ is a canonical parameter, and Γ(·) is the Gamma function. The mean and variance

of Y given X are µ = φθ and Var(Y |X) = µ2/φ, respectively. Consider the log linear measurement error

model
{

log(µi) = XT
i β,

Wi = Xi + Ui.

By (2.1), the score function is

ηi(β;Xi, Yi) = φXi[Yi exp(−XT
i β)− 1].

By the moment identities (2.2) and (2.4), we have the following corrected score function,

η∗i (Σuu, β;Wi, Yi) = φ(Wi +Σuuβ) exp(−WT
i β − βTΣuuβ/2)Yi − φWi.

(2) Inverse Gaussian or Wald measurement error regression models. Let Y follow the inverse

Gaussian distribution with mean µ and variance Var(Y |X) = φµ3. Consider the log linear measurement

error model
{

log(µi) = XT
i β,

Wi = Xi + Ui.

By the moment identities (2.4) and (2.5), the corrected score function is given by

η∗i (Σuu, β;Wi, Yi) = φ−1(Wi + 2Σuuβ) exp(−2WT
i β − 2βTΣuuβ)Yi

− φ−1(Wi +Σuuβ) exp(−WT
i β − βTΣuuβ/2).

(3) Poisson measurement error regression models. Let Y follow the Poisson distribution with

mean µ. Then Var(Y |X) = µ. Consider the log linear measurement error model
{

log(µi) = XT
i β,

Wi = Xi + Ui.
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We have the following corrected score function,

η∗i (Σuu, β;Wi, Yi) = WiYi − (Wi − Σuuβ) exp(W
T
i β − βTΣuuβ/2).

(4) Binary logistic measurement error regression models. We consider the logistic measurement

error regression model







P (Y = 1|X) =
1

1 + exp(−XTβ)
,

W = X + U,

with mean µ = [1 + exp(−XTβ)]−1 and variance Var(Y |X) = µ(1− µ). Then the score function is

ηi(β;Xi, Yi) = Xi{Yi − [1 + exp(−XT
i β)]

−1}.

Note that the corrected score function does not exist for this model because the termXi[1+exp(−XT
i β)]

−1

cannot be corrected by Nakamura [17]. Instead, we follow Huang and Wang [6] and introduce the proper

weight for the score function ηi(β;Xi, Yi) so that ηi,ω(β;Wi, Yi) is corrected. Define

ηi,ω(β;Xi, Yi) = ω(β;Xi, Yi)ηi(β;Xi, Yi),

where

ω(β;Xi, Yi) = 1 + exp(XT
i β).

If there is a function η∗i (Σuu, β;Wi, Yi) such that

E [η∗i (Σuu, β;Wi, Yi)|Xi, Yi] = ηi,ω(β;Xi, Yi),

then η∗i (Σuu, β;Wi, Yi) is an unbiased score function. By the moment identities (2.2) and (2.3), the

corrected score function is

η∗i (Σuu, β;Wi, Yi) = WiYi + (Wi +Σuuβ) exp(−WT
i β − βTΣuuβ/2)Yi −Wi.

2.2 Empirical likelihood

Note that {η∗i (Σuu, β;Wi, Yi); 1 6 i 6 n} are independent of each other with

E{η∗i (Σuu, β;Wi, Yi)} = 0.

The empirical log-likelihood ratio function for β is defined by

l(Σuu, β) = −2max

{ n
∑

i=1

log(npi)

∣

∣

∣

∣

pi > 0,

n
∑

i=1

pi = 1,

n
∑

i=1

piη
∗

i (Σuu, β;Wi, Yi) = 0

}

,

where pi (i = 1, . . . , n) are nonnegative real numbers. By the Lagrange multiplier method, it can be

shown that

l(Σuu, β) = 2

n
∑

i=1

log[1 + λTη∗i (Σuu, β;Wi, Yi)], (2.6)

where λ is a p× 1 vector that is the solution to

n
∑

i=1

η∗i (Σuu, β;Wi, Yi)

1 + λTη∗i (Σuu, β;Wi, Yi)
= 0. (2.7)

Denote Ω = E{η∗(Σuu, β;W,Y )η∗T(Σuu, β;W,Y )}. Suppose that the parameter space Θ is compact.

The asymptotic distribution of the empirical log-likelihood ratio statistic l(Σuu, β) is established in The-

orem 2.1.
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Theorem 2.1. Suppose that the matrix Ω is not singular, E(XXT) < ∞ and E(UUT) < ∞. If β is

the true parameter and n → ∞, then

l(Σuu, β)
L−→ χ2

p,

where
L−→ denotes the convergence in distribution and χ2

p is the Chi-squared distribution with p degrees

of freedom.

Let χ2
p(α) be the α quantile of χ2

p for 0 < α < 1. Theorem 2.1 implies that an approximate 1 − α

confidence region for β is given by

Rα(β̌) = {β̌ | l(β̌) 6 χ2
p(1− α)}.

Remark 2.1. The naive empirical log-likelihood ratio (NELR) that is neglecting the measurement

errors is not a Chi-squared distribution, because ηi(β;Wi, Yi), by a direct replacement of Xi by Wi, is a

biased score function.

We can also define the maximizer of −l(β), say β̂, as the maximum empirical likelihood estimator of

β. As the number of constraints equals the number of parameters, it may be shown that the optimal

pi = 1/n (see Owen [18], Qin and Lawless [20]). Then, the maximum empirical likelihood estimator for

β is the solution of

n
∑

i=1

η∗i (Σuu, β;Wi, Yi) = 0.

We state the asymptotic normality of the maximum empirical likelihood estimator in the following the-

orem.

Theorem 2.2. Under the conditions of Theorem 2.1, if Γ is a positive definite matrix and n → ∞,

then

√
n(β̂ − β)

L−→ N(0,Γ−1Ω(Γ−1)T),

where

Γ = E{∂η∗(Σuu, β;W,Y )/∂β}.
To construct the confidence region for β based on Theorem 2.2, we need to use the plug-in estimator

for the covariance of β. By the moment method, the consistent estimators of Γ and Ω are

Γ̂ =
1

n

n
∑

i=1

{

∂η∗i (Σuu, β̂;Wi, Yi)

∂β

}

,

Ω̂ =
1

n

n
∑

i=1

{η∗i (Σuu, β̂;Wi, Yi)η
∗T
i (Σuu, β̂;Wi, Yi)}.

But, Σuu is usually unknown in practice. When Σuu is unknown, the measurement error covariance

matrix Σuu can be estimated by partial replication (see Liang et al. [12]). We observe

Wij = Xi + Uij , j = 1, . . . ,mi.

Let W i be the sample mean of the replicates, then, a consistent, unbiased method of moment estimate

for Σuu is

Σ̂uu =

∑n
i=1

∑mi

j=1(Wij −W i)(Wij −W i)
T

n
∑

j=1

(mi − 1)
.

Note that Cov(W i) = m−1
i Σuu, we replace Wi and Σuu by W i and m−1

i Σ̂uu, respectively. Hence,

the unbiased score function is η∗i (m
−1
i Σ̂uu, β;W i, Yi) and the corresponding log-likelihood ratio denotes

l(Σ̂uu, β). Throughout this section, we assume that 1
n

∑n
i=1 m

−1
i converges to a finite constant as n → ∞.
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Theorem 2.3. Under the conditions of Theorem 2.1, as n → ∞, we still have the following conclusion,

l(Σ̂uu, β)
L−→ χ2

p.

We may maximize {−l(Σ̂uu, β)} to obtain an estimator for the parameter β, say β̃. We give the

following asymptotic distribution of β̃.

Theorem 2.4. Under the conditions of Theorem 2.1, if Γ∗ is a positive definite matrix and n → ∞,

then

√
n(β̃ − β)

L−→ N(0,Γ∗−1Ω∗(Γ∗−1)T),

where

Γ∗ = lim
n→∞

1

n

n
∑

i=1

E{∂η∗(m−1
i Σuu, β;W i, Yi)/∂β}

and

Ω∗ = lim
n→∞

1

n

n
∑

i=1

E{η∗(m−1
i Σuu, β;W i, Yi)η

∗T(m−1
i Σuu, β;W i, Yi)}.

The consistent estimators of Γ∗ and Ω∗ are easily defined as

Γ̂∗ =
1

n

n
∑

i=1

{

∂η∗i (
1
mi

Σ̂uu, β̃;W i, Yi)

∂β

}

,

Ω̂∗ =
1

n

n
∑

i=1

{

η∗i

(

1

mi
Σ̂uu, β̃;W i, Yi

)

η∗Ti

(

1

mi
Σ̂uu, β̃;W i, Yi

)}

.

2.3 Partial profile empirical likelihood

When β is a more than two-dimensional vector, we cannot graph the joint confidence region for β.

However, we can calculate the confidence intervals of one component of β by constructing a partial profile

empirical likelihood ratio. Let er be the unit vector of length p with 1 at position r for r = 1, . . . , p. With

an argument similar to Xue and Zhu [28], the estimators of the r-th component βr are

β̂r = eTr β̂ and β̃r = eTr β̃

when Σuu is known and unknown, respectively. Write

η∗i (β) ≡ η∗i (Σuu, β;Wi, Yi)

and

η̂∗i (β) ≡ η∗i

(

1

mi
Σ̂uu, β;W i, Yi

)

.

Let

η∗ir(βr) = eTr Γ̂
−1η∗i (β̂1, . . . , β̂r−1, βr, β̂r+1, . . . , β̂p),

η̂∗ir(βr) = eTr Γ̂
∗−1η̂∗i (β̃1, . . . , β̃r−1, βr, β̃r+1, . . . , β̃p).

Then, the partial profile empirical log-likelihood ratios for βr with known and unknown Σuu are defined

by

lr(Σuu, βr) = −2max

{ n
∑

i=1

log(npi)

∣

∣

∣

∣

pi > 0,

n
∑

i=1

pi = 1,

n
∑

i=1

piη
∗

ir(βr) = 0

}

,

and

lr(Σ̂uu, βr) = −2max

{ n
∑

i=1

log(npi)

∣

∣

∣

∣

pi > 0,

n
∑

i=1

pi = 1,

n
∑

i=1

piη̂
∗

ir(βr) = 0

}

.

Under the assumptions of Theorems 2.1 and 2.3, we will show that the asymptotic distributions of

lr(Σuu, βr) and lr(Σ̂uu, βr) are standard Chi-squared with 1 degree of freedom.
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Theorem 2.5. Under the assumptions of Theorem 2.1, as n → ∞, we have

lr(Σuu, βr)
L−→ χ2

1.

Under the assumptions of Theorem 2.3, we have

lr(Σ̂uu, βr)
L−→ χ2

1.

Applying Theorem 2.5, we can construct the approximate 1− α confidence intervals for βr.

Remark 2.2. The above method can be applied to construct the confidence regions for any two

different components (βr, βs). The method is as follows: First, η∗irs(βr, βs) or η̂
∗
irs(βr, βs) is obtained by

replacing the other components of β except for (βr, βs) in η∗i (β) or η̂
∗
i (β) with their estimators and using

(er, es) to replace er. Second, we construct the empirical likelihood confidence region for (βr, βs) by using

lrs(Σuu, βr, βs) or lrs(Σ̂uu, βr, βs).

3 Numerical studies

In this section, we investigate the finite sample performance of the proposed method via simulation

studies and real data analysis. We will report the results for the Poisson measurement error regression

model and the logistic measurement error regression model. Other models have the similar results and

are therefore omitted. We only give the one-dimensional and two-dimensional cases in the simulation

studies. When β is a three-dimensional vector, say β = (β1, β2, β3)
T, we can calculate the confidence

intervals of β1, β2 and β3 by Theorem 2.5, respectively. Because the simulation results are similar to

those of the one-dimensional and two-dimensional cases, therefore we omit this case. But we consider

the three-dimensional case in real data analysis. The following questions are considered in the simulation

studies.

(1) Compare the empirical distribution of the corrected empirical log-likelihood ratio (CELR) and

the naive empirical log-likelihood ratio (NELR) that is neglecting the measurement errors with a direct

replacement of X by W with the theory distribution in Theorem 2.3.

(2) Compare the confidence intervals of β obtained by the three methods: the naive empirical log-

likelihood (NEL) that is neglecting the measurement errors, the corrected empirical likelihood method

(CEL) based on Theorem 2.3 and the normal approximation method (NA) based on Theorem 2.4.

3.1 One-dimensional case

We consider the Poisson measurement error regression model. The response variable Y is generated from

Poisson(µ) with

log(µ) = XTβ, W = X + U,

where β = 1, X is generated from N(1, 1), and U is generated from N(0, σ2
u). We take σu = 0.2, 0.4 and

0.6 to represent different levels of measurement errors. σu is unknown, to estimate σu, two replicates of

W are generated. The sizes of the samples are n = 100, 150, and 200. For each setting, we simulate 2000

times to assess the performance.

First, we compare the finite sample distribution of l(β) with the asymptotic distribution of χ2
1 when

n = 150. The Q-Q plots of CELR and NELR are given in Figure 1. It is clear to see that the distribution

of CELR can be approximated by χ2
1 for the different levels of measurement errors, but the distribution

of NELR performs not well because the naive score function is biased.

To evaluate the performance of the confidence intervals of β, the averages of 95% confidence intervals

and the corresponding coverage probabilities are computed. The results are reported in Table 1. From

Table 1, we can see the following results. Firstly, the confidence intervals based on NEL are biased and the

coverage probabilities are low when the level of the measurement error is high. Secondly, the confidence
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Figure 1 The Q-Q plots of CELR and NELR with σu = 0.2, 0.4 and 0.6 when n = 150 for the Poisson measurement error

regression model

Table 1 The average lengths and coverage probabilities of β based on NEL, CEL and NA for the Poisson measurement

error regression model when the nominal level is 0.95

Average lengths Coverage probabilities

n σu NEL CEL NA NEL CEL NA

100 0.2 0.0895 0.0907 0.0925 0.8966 0.9142 0.9048

0.4 0.1102 0.1169 0.1211 0.7850 0.9108 0.8760

0.6 0.1466 0.1537 0.1582 0.5610 0.8834 0.8506

150 0.2 0.0740 0.0755 0.0774 0.9075 0.9305 0.9110

0.4 0.0954 0.1013 0.1024 0.7370 0.9115 0.9030

0.6 0.1284 0.1326 0.1342 0.4320 0.9040 0.8730

200 0.2 0.0661 0.0666 0.0669 0.8970 0.9310 0.9190

0.4 0.0857 0.0897 0.0902 0.6890 0.9135 0.9040

0.6 0.1203 0.1178 0.1202 0.3455 0.9065 0.8980

intervals and coverage probabilities based on CEL and NA depend on the measurement error and the

sample size. The confidence intervals increase and the coverage probabilities decrease as the measurement

error increases for a fixed sample size. The average interval lengths decrease as the sample size increases

while the corresponding coverage probabilities increase for a fixed level of measurement error. Thirdly,

CEL gives shorter interval lengths and higher coverage probabilities than NA.

3.2 Two-dimensional case

We generate data from the logistic measurement error regression model

logit(Y = 1|X) = XTβ, W = X + U,
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where β = (0.4, 0.8)T, X1 and X2 are generated from N(0, 1), and U is generated from a two-dimensional

normal distribution with mean 0 and covariates matrix Σuu = 0.42I2. We generate two replicates of W

to estimate covariates matrix because Σuu is unknown. We compute the finite sample distributions of

CELR and NELR with n = 100, 150, and 200 and report the results in Figure 2. From Figure 2, we can

see that the distribution of CELR provides a better approximation to χ2
2 than that of NELR.

The average confidence regions for β based on 2000 simulation runs and its coverage probabilities are

computed with n = 150 and σu = 0.4. Figure 3 shows that CEL gives smaller confidence region than

NA. The empirical coverage probabilities of NEL, CEL and NA are 0.902, 0.918 and 0.908, respectively.

Figure 2 The Q-Q plots of CELR and NELR with n = 100, 150 and 200 when σu = 0.4 for the logistic measurement

error regression model

Figure 3 The 95% average confidence regions for (β1, β2), based on NEL (dotted curve), CEL (dotted-dashed curve),

and NA (solid curve) when n = 150 and σu = 0.4
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Figure 4 Duplicated baseline CD4 count measurements from 885 antiretroviral-naive patients in the ACTG 175 study

Table 2 The estimators and confidence intervals of β based on NEL, CEL and NA in ACTG 175 study

Estimators Confidence intervals

β NEL CEL/NA NEL CEL NA

β1 4.8929 8.1066 (4.1929, 5.5929) (7.5808, 8.5074) (7.6182, 8.5949)

β2 −1.1173 −1.6656 (−1.6693,−0.4173) (−1.8041,−1.5797) (−2.1173,−1.2138)

β3 −0.0469 −0.0038 (−0.6568, 0.5257) (−0.6401, 0.5921) (−0.6212, 0.6136)

3.3 A real example

In this subsection, we analyze an AIDS clinical study conducted by the AIDS Clinical Trials Group

(ACTG 175, see [6]). The data set is available in the R package “speff2trial”. This randomized trial

was designed to evaluate treatment with either one or two nucleosides in HIV-infected adults having a

screening CD4 count between 200 and 500 and no history of AIDS-defining illness (Hammer et al. [5]). We

are interested in the relationship between the true baseline CD4 count, the history of intravenous drug use

and the symptomatic HIV infection. We analyze 885 antiretroviral naive patients who have duplicated

baseline CD4 count measurements. Figure 4 shows the duplicated baseline CD4 count measurements

from 885 patients. We adopt the logistic regression model with three covariates. Y is the symptomatic

HIV infection (0= asymptomatic, 1= symptomatic). We take X1 = 1 for the intercept term. X2 is the

true baseline log(CD4). The CD4 count is subject to the measurement error, σ2
u can be estimated to

be 0.0565 by replication experiments. X3 is the history of intravenous drug use (0=no, 1= yes). The

estimators and confidence intervals of β based on NEL, CEL and NA are reported in Table 2. From

Table 2, we see that the history of intravenous drug use has no significant effect on the symptomatic HIV

infection, and CEL gives shorter confidence intervals than NA. As expected, when the measurement error

is taken into account, we find a somewhat stronger negative association between the CD4 count and the

symptomatic HIV infection.

4 Conclusion

In this paper, a corrected technique for constructing the empirical log-likelihood ratio is proposed for a

class of generalized linear measurement error models. The idea of “correction” comes from Stefanski [21],

Nakamura [17], and Huang and Wang [6]. The corrected empirical log-likelihood ratio has an asymptotic
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Chi-squared distribution, whereas the naive empirical log-likelihood is not asymptotically Chi-square

distributed because the naive score function is biased. The advantages of our proposed method are

demonstrated in simulation studies and in a real data example. Finally, we note that the methodology

in this paper is general and can be readily extended to some other models, including the commonly used

generalized partially linear measurement error models.
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Appendix: Proof of theorems

Proof of Theorem 2.1. First, we will show that

max
16i6n

‖η∗i (β)‖ = op(n
1/2). (A.1)

It is well known that for any sequence of i.i.d. random variables {ξi, 1 6 i 6 n} with E(ξ2i ) < ∞,

max16i6n |ξi| a.s.−→ 0, which implies that

max
16i6n

|η∗i,s(β)| = op(n
1/2).

Since E|η∗i,s(β)|2 < ∞, where η∗i,s is the s-th component of η∗i , this proves (A.1).

By using the same arguments that are used in (2.14) in Owen [19], we can prove that

‖λ‖ = Op(n
−1/2). (A.2)

From (2.7), we have

n−1
n
∑

i=1

η∗i (β)(1 − λTη∗i (β)) + n−1
n
∑

i=1

η∗i (β)
λTη∗i (β)η

∗T
i (β)λ

1 + λTη∗i (β)
= 0. (A.3)

The last term on the left-hand side in (A.3) has a norm bounded by

n−1
n
∑

i=1

‖η∗i (β)‖3‖λ‖2|1 + λTη∗i (β)|−1 = o(n1/2)Op(n
−1)Op(1) = op(n

−1/2).

Therefore,

λ =

[

1

n

n
∑

i=1

η∗i (β)η
∗T
i (β)

]−1
1

n

n
∑

i=1

η∗i (β) + op(n
−1/2).

By (A.1) and (A.2), we have

max
16i6n

|λTη∗i (β)| = Op(n
−1/2)op(n

1/2) = op(1).
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Hence, applying the Taylor expansion of log(·) around 1 in (2.6), we have for some ri between 1 and

1 + λTη∗i (β) (i = 1, . . . , n),

l(Σuu, β) = 2
n
∑

i=1

{

λTη∗i (β)−
1

2
(λTη∗i (β))

2 +
1

3

(λTη∗i (β))
3

(1 + ri)3

}

= 2λT
n
∑

i=1

η∗i (β)− λT
n
∑

i=1

η∗i (β)η
∗T
i (β)λ+ op(1)

=

[

1√
n

n
∑

i=1

η∗i (β)

]T[
1

n

n
∑

i=1

η∗i (β)η
∗T
i (β)

]−1[
1√
n

n
∑

i=1

η∗i (β)

]

+ op(1). (A.4)

It is easy to see that

E

(

1√
n

n
∑

i=1

η∗i (β)

)

= 0,

and

Cov

(

1√
n

n
∑

i=1

η∗i (β)

)

= Ω.

Using the central limit theorem, we have

1√
n

n
∑

i=1

η∗i (β)
L−→ N(0,Ω). (A.5)

By the law of large numbers, we obtain

1

n

n
∑

i=1

η∗i (β)η
∗T
i (β)

P−→ Ω.

Using this together with (A.4), we obtain

l(Σuu, β) =

[

1√
n

n
∑

i=1

η∗i (β)

]T

Ω−1

[

1√
n

n
∑

i=1

η∗i (β)

]

+ op(1). (A.6)

By (A.5), we have

Ω−
1

2

1√
n

n
∑

i=1

η∗i (β)
L−→ N(0, Ip), (A.7)

where Ip is the p× p identity matrix. Results (A.6) and (A.7) together lead to Theorem 2.1.

Proof of Theorem 2.2. Applying the Taylor expansion, we have

√
n(β̂ − β) =

{

1

n

n
∑

i=1

∂η∗i (β)

∂β

}−1{
1√
n

n
∑

i=1

η∗i (β)

}

+ op(1).

By the central limit theorem, together with (A.5), we can prove Theorem 2.2.

Proof of Theorem 2.3. Because Σ̂uu is a consistent, unbiased moment estimator of Σuu, we have

1

n

n
∑

i=1

η̂∗i (β)η̂
∗T
i (β)

P−→ Ω∗, (A.8)

and

1√
n

n
∑

i=1

η̂∗i (β)
L−→ N(0,Ω∗). (A.9)
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In a similar way to Theorem 2.1, we can prove that l(Σ̂uu, β) is asymptotically equivalent to

[

1√
n

n
∑

i=1

η̂∗i (β)

]T[
1

n

n
∑

i=1

η̂∗i (β)η̂
∗T
i (β)

]−1[
1√
n

n
∑

i=1

η̂∗i (β)

]

.

This together with (A.8) and (A.9) proves Theorem 2.3.

The proofs of Theorems 2.4 and 2.5 are similar to those of Theorems 2.2 and 2.3, we hence omit their

proofs.


