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Abstract: This paper considers ridge-type shrinkage estimation of a large dimen-
sional precision matrix. The asymptotic optimal shrinkage coefficients and the
theoretical loss are derived. Data-driven estimators for the shrinkage coefficients
are also conducted based on the asymptotic results from random matrix theory.
The new method is distribution-free and no assumption on the structure of the
covariance matrix or the precision matrix is required. The proposed method also
applies to situations where the dimension is larger than the sample size. Numer-
ical studies of simulated and real data demonstrate that the proposed estimator
performs better than existing competitors in a wide range of settings.
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1. Introduction

In multivariate statistical analysis, one often needs to estimate the precision
matrix, i.e., the inverse of the covariance matrix. The estimation of a precision
matrix has applications in such statistical problems as linear discriminant anal-
ysis (Anderson (2003)), Hotelling’s T 2 test (Hotelling (1931)), and Markowitz
mean-variance analysis (Markowitz (1952)). Let n be the sample size, p be the
dimension of observation, and Σp be the covariance matrix. When p is fixed and
n is large, the inverse of the sample covariance matrix, S−1

n , is commonly used to
estimate the precision matrix Ωp = Σ−1

p . For large dimensional data, however, p
can be as large as or even larger than n. As a consequence, the sample covariance
matrix Sn is close to or even a singular matrix. This brings in new challenges to
the estimation of the precision matrix. One remedy to this problem is to apply
the Moore-Penrose inverse of Sn (Srivastava (2007); Kubokawa and Srivastava
(2008)). Such an estimator may perform poorly in practice since some of the
eigenvalues are zero or close to zero.

Let X1, . . . , Xn be an independent random sample from a multivariate dis-
tribution (See, Bai and Saranadasa (1996) or Chen, Zhang, and Zhong (2010)),

Xi = Σ1/2
p Yi + µ0, i = 1, . . . , n, (1.1)
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where µ0 is a p-dimensional mean vector and Σp is a p × p positive definite

covariance matrix. Here Y = (Y1, . . . , Yn) = (Yij)p×n and {Yij , i, j = 1, 2, . . .} are

independent and identically distributed (i.i.d.) random variables with mean zero

and variance one. Let the sample covariance matrix be

Sn =
1

n− 1

n∑
j=1

(Xj − X̄)(Xj − X̄)T , (1.2)

where X̄ =
∑n

j=1Xj/n is the sample mean and the superscript T denotes the

transpose of a matrix or vector. If the data are Gaussian distributed, then for

p < n, (n−1)Sn follows a Wishart distribution and S−1
n /(n−1) follows an inverse

Wishart distribution. Since

E(S−1
n ) =

n− 1

n− p− 2
Σ−1
p , (1.3)

an unbiased estimator of the precision matrix Ωp is (n − p − 2)S−1
n /(n − 1). In

this paper, we are interested in estimating Ωp without the Gaussian assumption.

More specifically, our estimation will be distribution-free by using random matrix

theory (RMT).

In the literature, under certain model structures such as sparsity or ordering,

penalized methods have been widely proposed and applied (see, e.g. Friedman,

Hastie, and Tibshirani (2008), Yuan (2010), Cai, Liu, and Luo (2011)). When

such prior information about the structure of covariance matrix is not available,

one often considers shrinkage methods to improve the standard estimators after

James and Stein (1961). Thus, Stein (1975) proposed to shrink each eigenvalue

of the sample covariance matrix based on Stein’s loss function. See also Dey and

Srinivasan (1985), Daniels and Kass (1999, 2001), Mestre and Lagunas (2006),

Konno (2009), among many others. In a recent work by Ledoit and Wolf (2012),

the authors derived the optimal shrinkage coefficients for each eigenvalue and

proposed a nonlinear estimator for the precision matrix that significantly im-

proves the standard estimator. Nevertheless, these methods require that p be

less than n and none of the eigenvalues be zero.

To overcome the singularity problem when p ≥ n, Ledoit and Wolf (2004)

proposed a shrinkage estimator for Σp, a linear combination of Sn and the identity

matrix Ip with respect to a quadratic loss function. Other works include Schäfer

and Strimmer (2005), Warton (2008), and Fisher and Sun (2011). Very little

work has been done for estimating the precision matrix directly. To the best of

our knowledge, the only work in this direction is by Kubokawa and Srivastava

(2008), in which the authors considered a ridge-type estimator for the precision

matrix,

Ω̂p = α(Sn + βIp)
−1, (1.4)
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where α and β are two shrinkage coefficients. Here the derivation of the shrinkage

coefficients α and β in (1.4) can be more challenging than those in estimating Σp,

especially when p ≥ n. Kubokawa and Srivastava (2008) assumed the data to

be Gaussian distributed and employed an empirical Bayes method for specifying

the shrinkage coefficients, demonstrating that the resulting estimator dominates

the usual estimator.

We propose to derive the optimal shrinkage coefficients α and β for non-

Gaussian data under the loss function (Haff (1979); Krishnamoorthy and Gupta

(1989); Yang and Berger (1994)),

1

p
tr(Ω̂pΣp − Ip)

2. (1.5)

We first study the asymptotic properties of the matrix Σ
1/2
p (Sn+λIp)

−1Σ
1/2
p and

its relation with (Sn+λIp)
−1 by using RMT in Section 2. We study the theoretical

loss of the ridge-type estimator, derive the optimal shrinkage coefficients α and β,

and develop a data-driven shrinkage estimator for the precision matrix in Section

3. In Section 4, we conduct numerical studies with simulated and real data to

evaluate the performance of the proposed estimator and to compare it with some

existing methods. We conclude the paper in Section 5 and proofs are provided

in an online supplement.

2. Preliminary Results in RMT

Suppose Am is an m×m Hermitian matrix with eigenvalues λj , j = 1, . . . ,m.

We define the empirical spectral distribution (ESD) of the matrix Am as

FAm(x) =
1

m

m∑
j=1

I(λj ≤ x),

where I(·) is the indicator function. ESD plays an important role in multivariate

analysis and many statistics can be expressed as functionals of it, e.g., det(Am) =

exp(m
∫
log(x)dFAm(x)) and tr(Am) = m

∫
xdFAm(x). For more details, see a

recent monograph by Bai and Silverstein (2010) and the references therein. The

limit distribution of FAm , if it exists and is non-random, is called the limiting

spectral distribution (LSD) of the sequence {Am}.
In RMT, the Stieltjes transform of F is defined by

mF (z) =

∫
1

t− z
dF (t), z ∈ C+ ≡ {z ∈ C : Imz > 0}, (2.1)

and the inversion formula is

F{[c, d]} = lim
η→0+

1

π

∫ d

c
ImmF (ξ + iη)dξ, (2.2)
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where c < d are continuity points of F . By (2.2), F is uniquely determined by

its Stieltjes transform.

We need two conditions.

(S1) Both p and n tend to infinity in such a way that p/n → y ∈ (0,∞) and the

fourth order moment of Yij is bounded.

(S2) There exists constants c1 and c2 such that c1 ≤ λmin(Σp) ≤ λmax(Σp) ≤ c2;

FΣp tends to a non-random probability distribution H as p tends to infinity.

Theorem 1. Assume that (S1) and (S2) hold. As n → ∞, FΣ
−1/2
p (Sn+λIp)Σ

−1/2
p

converges almost surely to a non-random distribution F , whose Stieltjes trans-

form m(z) satisfies

m(z) =

∫
1

λ/t− z + 1/(1 + ym(z))
dH(t), (2.3)

where λ > 0 and z ∈ C+.

Theorem 1 can also be derived from Theorem 1.2 in Ledoit and Péché (2011)

where the 12th moment is needed. By Silverstein (1995), the Stieltjes transform

m0(z) of LSD of Sn is the solution to

m0(z) =

∫
dH(t)

t(1− y − yzm0(z))− z
. (2.4)

Lemma 1. For any λ > 0, m0(−λ) is the unique solution of the equation

m(−λ) =

∫
dH(t)

t(1− y + yλm(−λ)) + λ
, (2.5)

where 1− y + yλm(−λ) ≥ 0.

The condition 1 − y + yλm(−λ) ≥ 0 in Lemma 1 is necessary and can be

regarded as a variant of the condition in Silverstein and Choi (1995). Here we

use an example to illustrate this point. Assuming Σp = Ip, (2.5) has the two

solutions:

m(1)(−λ) =
1

2yλ
(−(1− y + λ) +

√
(1− y + λ)2 + 4yλ),

m(2)(−λ) =
1

2yλ
(−(1− y + λ)−

√
(1− y + λ)2 + 4yλ),

whereas 1− y+ yλm(1)(−λ) > 0 and 1− y+ yλm(2)(−λ) < 0. This is why Chen

et al. (2011) claimed m0(−λ) = m(1)(−λ), not m0(−λ) = m(2)(−λ).
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Theorem 2. Assume that (S1) and (S2) hold. For any λ > 0, as n → ∞ we

have
1

p
tr(Σ1/2

p (Sn + λIp)
−1Σ1/2

p )
a.s.−→ R1(λ),

1

p
tr(Σ1/2

p (Sn + λIp)
−1Σ1/2

p )2
a.s.−→ R2(λ),

where
a.s.−→ is almost sure convergence and

R1(λ) =
1− λm0(−λ)

1− y(1− λm0(−λ))
,

R2(λ) =
1− λm0(−λ)

(1− y(1− λm0(−λ)))3
− λm0(−λ)− λ2m′

0(−λ)

(1− y(1− λm0(−λ)))4
.

In addition, we have

1

p
tr((Sn + λIp)

−1)
a.s.−→ m0(−λ),

1

p
tr((Sn + λIp)

−2)
a.s.−→ m′

0(−λ) =
dm0(z)

dz
|z=−λ.

In Section 3, we will use Theorem 2 to construct new estimators for the

precision matrix Ωp. Note that Chen et al. (2011) proposed similar results as

those in Theorem 2, under the assumption that the data are Gaussian distributed.

We have relaxed their conditions by removing the Gaussian assumption.

3. Shrinkage Estimation of Precision Matrix

We consider a ridge-type estimator for the precision matrix,

Ω̂p = α(Sn + βIp)
−1, (3.1)

where α > 0 and β > 0 are shrinkage coefficients. By Theorem 2, we have

1

p
tr(ΣpΩ̂− Ip)

2 a.s.−→ α2R2(β)− 2αR1(β) + 1

= R2(β)(α− R1(β)

R2(β)
)2 + 1− (R1(β))

2

R2(β)
. (3.2)

By (3.2), the optimal α is αopt = R1(β)/R2(β) for any fixed β. This leads to the

simplified loss function

L(β) = 1− (R1(β))
2

R2(β)
. (3.3)

Let L0 = minβ>0 L(β) be the minimum loss and βopt = argminβ>0 L(β) be the

optimal parameter of β.
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Theorem 3. For any y < 1, we have L0 = minγ>0 LH(γ), where

LH(γ) = 1−
(∫

t

t+ γ
dH(t)

)2((∫ t2

(t+ γ)2
dH(t)

)−1
− y

)
, γ ≥ 0.

Specially, when H(x) is a degenerate distribution at σ2, the minimum loss is

L0 = 0. For a general distribution H(x), LH(γ) achieves its global minimum

value L0 at γ∗ satisfying

f1(γ
∗)f3(γ

∗)− f2(γ
∗)f2(γ

∗)

f2(γ∗)f2(γ∗)(f1(γ∗)− f2(γ∗))
= y, (3.4)

where fk(x) =
∫
(t/(t+ x))kdH(t). Correspondingly, L(βopt) = L0 where βopt

satisfies

γ∗ =
βopt

1− y(1− βoptm0(−βopt))
.

For simplicity, we have assumed that y < 1 in Theorem 3. A similar result

can be obtained for y ≥ 1. When H(x) is not a degenerate distribution, from

the proof it is known that the optimal parameter βopt is located in a bounded

interval [C1, C2] where 0 < C1 < C2 < ∞.

Here αopt and βopt are unknown and need to be estimated. We consider a

data-driven method for estimating αopt and βopt. Let

R̂1(λ) =
a1(λ)

1− ŷa1(λ)
,

R̂2(λ) =
a1(λ)

(1− ŷa1(λ))3
− a2(λ)

(1− ŷa1(λ))4
,

where ŷ = p/n, a1(λ) = 1− (1/p)tr( 1λSn+ Ip)
−1, and a2(λ) = (1/p)tr((1/λ)Sn+

Ip)
−1 − (1/p)tr((1/λ)Sn + Ip)

−2. Let the empirical loss function of L(λ) be

Ln(λ) = 1− (R̂1(λ))
2

R̂2(λ)
.

We take β∗
n = argminβ∈[C1,C2] Ln(β) and α∗

n = R̂1(β
∗
n)/R̂2(β

∗
n). In case β∗

n is not

unique, we specify the smallest solution.

Theorem 4. Assume that (S1) and (S2) hold. For any λ > 0, Ln(λ)
a.s.−→ L(λ)

as n → ∞. In addition,

1

p
tr(α∗

n(Sn + β∗
nIp)

−1Σp − Ip)
2 a.s.−→ L0 as n → ∞. (3.5)
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Theorem 4 shows that the proposed estimator can achieve the minimum loss

L0 asymptotically. In view of this, we propose the estimator of Ωp as

Ω̂∗
p = α∗

n(Sn + β∗
nIp)

−1. (3.6)

For Ω̂∗
p, when y < 1, from the proof of Theorem 3 we can show that L0 < LH(0) =

y. Then, by noting that

1

p
tr
(n− p− 2

n− 1
ΣpS

−1
n − Ip

)2 a.s.−→ y

1− y
, (3.7)

the new estimator Ω̂∗
p performs asymptotically better than the classical estimator

S−1
n and also the unbiased estimator (n− p− 2)/(n− 1)S−1

n . The new estimator

also applies to y ≥ 1, in such situations where the estimators based on S−1
n or the

non-zero eigenvalues of Sn (Srivastava (2007); Ledoit and Wolf (2012); Bodnar,

Gupta, and Parolya (2013)) are no longer applicable.

4. Numerical Studies

4.1. Monte Carlo simulation study

The components of data such as gene expression data can have different

scales. As in Warton (2008), we propose a two-stage procedure to implement the

new estimator. We first normalize the data to eliminate the effect of different

scales. By doing so, we are actually handling the sample correlation matrix Rn

and the proposed inverse correlation matrix estimator is R̂−1
n = α∗

n(Rn+β∗
nIp)

−1.

We then use diag(Sn) to rescale the inverse correlation matrix and estimate the

precision matrix Ωp by

Ω̂New = (diag(Sn))
−1/2R̂−1

n (diag(Sn))
−1/2.

We compared the new estimator with the following three estimators.

I. The scaled standard estimator (referred to as the SSE estimator)

Ω̂SSE =
n− p− 2

n− 1
S−1
n I(p < n) +

p

n− 1
S+
n I(p ≥ n), (4.1)

where S+
n is the Moore-Penrose inverse of Sn. This estimator covers several

methods, including Stein (1975), Mestre and Lagunas (2006), Srivastava

(2007), and Kubokawa and Srivastava (2008).

II. The estimator in Efron and Morris (1976) (referred to as the EM estimator)

Ω̂EM =
n− p− 2

n− 1
S−1
n +

p2 + p− 2

(n− 1)tr(Sn)
Ip. (4.2)
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III. The empirical Bayes ridge-type estimator from Kubokawa and Srivastava

(2008) (referred to as the KS estimator)

Ω̂KS = p((n− 1)Sn + tr(Sn)Ip)
−1. (4.3)

For illustration purposes, we also included a recent shrinkage estimator de-

signed for estimating the covariance matrix. Fisher and Sun (2011) considered

a combination between Sn and diag(Sn) to estimate Σp, Σ̂FS = λ̂Sn + (1 −
λ̂)diag(Sn), where λ̂ was estimated by Fisher and Sun (2011). We then estimate

Ωp by

Ω̂FS = (λ̂Sn + (1− λ̂)diag(Sn))
−1. (4.4)

We refer to this as the FS estimator.

To conduct simulation studies in a wide range of settings, we considered four

models for generating the covariance matrix.

M1. Σ1 is diagonal with 20% of the population eigenvalues equal to 1, 40% equal

to 3, and the rest 40% equal to 10.

M2. Σ2 = Σ
1/2
1 Σ0Σ

1/2
1 , where Σ0 = (σij)p×p and σij = 0.5|i−j| for 1 ≤ i, j ≤ p.

M3. Σ3 = Σ
1/2
1 Σ00Σ

1/2
1 , where Σ00 = (σij)p×p and σij = I(i = j) + 0.2I(i ̸= j).

M4. Σ4 = U2diag(λ1, . . . , λp)U
T
2 , where λj = 2 + 0.125j, j = 1, . . . , p and the

rows of U2 are eigenvectors of Σ0.

Model 1 is a diagonal spiked example which is well studied in RMT (Bai and

Silverstein (1998), Ledoit and Wolf (2012)). Model 2 is an example of a sparse

matrix whose entries decay as they move away from the diagonal. Model 3

serves as a dense matrix example, and Model 4 is an example with many distinct

eigenvalues. With respect to the random part Y = (Yij)p×n, we considered the

standard normal Yij ∼ N(0, 1), the mixture normal Yij ∼ 0.5N(0, 1)+0.5N(1, 1),

Student’s t-distribution Yij ∼ t(5), and the log-normal log(Yij) ∼ N(0.5, 0.52).

In each case, Yij was standardized to have unit variance.

With 100 simulations for each simulation setting, we report in Table 1 the

average losses (1.5) for the new estimator and the competitors, where the data

were simulated from the normal and the mixture normal distribution, respec-

tively. Seven combinations (p, n) were considered, among which three were p < n,

one were p = n, and the rest three were p > n. Specially, the combination

(p, n) = (1, 000, 100) represents the popular setting of high-dimensional low-

sample-size data. The EM estimator is excluded in the last four combinations

since Sn is singular when p ≥ n. From the results in Table 1, we observe that

the new estimator Ω̂New always outperforms the existing competitors, no matter
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whether p is less than n or not. There is not much difference in terms of which

covariance matrix is used. In addition, when p ≥ n, the shrinkage estimators are

always better than the SSE estimator and the Moore-Penrose inverse S+
n does

not perform well in large dimensional data.

Since the new estimator is distribution free, to investigate its performance

under other distributions, we conducted another simulation study where the data

were simulated from Student’s t-distribution and the log-normal distribution.

All other settings were kept as before. With 100 simulations for each setting,

we report in Table 2 the average losses for (p, n) = (100, 200) and (200, 100).

Together with the results in Table 1, we see that the performance of the new

estimator was only slightly affected by the violation of normality assumption; the

comparison results among the estimators remained similar for all the distribution

considered. We also conducted simulations for other combinations of (p, n), with

the conclusions remaining the same.

Our third study was to investigate how p and n affect the performance of

the new estimator. Since the performance of the estimators was quite consistent

for different distributions and different covariance matrices, we considered only

Gaussian data with covariance matrix from Model 2. For the ratio p/n either

1/2 or 2, we plot the average losses in Figure 1, where the results for the KS

and FS estimators are also included for comparison. We observe that the loss of

the new estimator reduces quickly to the minimum loss L0 when p or n is large.

For instance, when n > 100, the relative error between the average loss and the

minimum loss is always less than 10%. Whereas for the other two estimators,

the relative errors can be several times as large as the minimum loss.

4.2. Real data analysis

Shrinkage estimators of the covariance matrix are commonly applied to lin-

ear discriminant analysis. See, for example, Friedman (1989), Srivastava and

Kubokawa (2007), Kubokawa and Srivastava (2008), Fan, Feng, and Wu (2009),

Cai, Liu, and Luo (2011), Fisher and Sun (2011), among others. Here, we il-

lustrate the usefulness of the proposed shrinkage estimator with the Leukemia

data in Golub et al. (1999) and the breast cancer data in Hess et al. (2006).

The Leukemia data contains a total of 7,129 genes for 47 acute lymphoblastic

leukemia (ALL) and 25 acute myeloid leukemia (AML). The breast cancer data

has 22,283 genes for 133 patients who may achieve pathologic Complete Response

(pCR). Among the 133 patients, 34 of them achieved pCR, whereas the other 99

did not.

We applied the proposed method to the linear discriminant analysis (LDA)

and consider five discriminant methods with their discriminant scores as follows.
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Table 1. Empirical risks of the proposed estimator and existing estimators
for the normal and mixture normal distributions.

N(0, 1) 0.5N(0, 1) + 0.5N(1, 1)
Method M1 M2 M3 M4 M1 M2 M3 M4

(p, n) = (50, 100)
SSE 1.0849 1.0905 1.0701 1.0866 1.1071 1.0905 1.1039 1.1089
EM 1.4617 1.7308 1.9892 1.3955 1.4873 1.7379 1.9790 1.3676
KS 0.4641 0.5250 0.4996 0.3943 0.4639 0.5257 0.4990 0.3954
FS 0.0240 0.3721 0.6362 0.1348 0.0239 0.3680 0.6379 0.1319
New 0.0238 0.2423 0.1268 0.1164 0.0233 0.2409 0.1259 0.1149

(p, n) = (100, 200)
SSE 1.0478 1.0516 1.0363 1.0398 1.0523 1.0423 1.0528 1.0584
EM 1.4127 1.6660 2.4586 1.3501 1.4407 1.6860 2.4189 1.3403
KS 0.4654 0.5265 0.5019 0.4100 0.4650 0.5252 0.5041 0.4112
FS 0.0111 0.3497 1.2435 0.1728 0.0105 0.3505 1.2575 0.1711
New 0.0109 0.2343 0.0975 0.1451 0.0103 0.2337 0.0938 0.1445

(p, n) = (100, 1000)
SSE 0.1135 0.1132 0.1126 0.1131 0.1131 0.1123 0.1123 0.1122
EM 0.1290 0.1383 0.1682 0.1251 0.1285 0.1375 0.1679 0.1243
KS 0.8259 0.8378 0.8318 0.8169 0.8259 0.8378 0.8318 0.8170
FS 0.0021 0.0942 0.1354 0.0814 0.0020 0.0938 0.1351 0.0812
New 0.0021 0.0811 0.0343 0.0748 0.0020 0.0809 0.0340 0.0745

(p, n) = (100, 50)
SSE 6.0464 8.5135 6.2353 3.7927 6.0684 8.5984 6.3137 3.8912
KS 0.3516 0.5088 0.3969 0.2071 0.3520 0.5085 0.4001 0.2069
FS 0.0527 0.7336 1.5249 0.2562 0.0515 0.7362 1.5335 0.2515
New 0.0483 0.3780 0.2251 0.1936 0.0470 0.3777 0.2291 0.1918

(p, n) = (200, 100)
SSE 6.0486 8.4596 6.1888 4.3786 6.0110 8.5202 6.1581 4.3508
KS 0.3503 0.5028 0.3729 0.2376 0.3509 0.5029 0.3747 0.2375
FS 0.0225 0.6534 5.0668 0.2743 0.0221 0.6529 4.9641 0.2734
New 0.0218 0.3597 0.1597 0.2069 0.0212 0.3594 0.1629 0.2069

(p, n) = (1000, 100)
SSE 0.9800 1.2232 1.0954 0.9475 0.9805 1.2275 1.0903 0.9475
KS 0.4531 1.0757 0.6274 0.2957 0.4539 1.0735 0.6158 0.2959
FS 0.0235 0.7302 8.9487 0.3534 0.0226 0.7285 9.6948 0.3520
New 0.0251 0.4039 0.3228 0.2506 0.0246 0.4038 0.3188 0.2501

(p, n) = (100, 100)
SSE 1.09e7 9.96e7 1.63e8 3.05e8 2.61e7 4.61e7 3.42e8 1.19e8
KS 0.3529 0.4348 0.3924 0.2660 0.3524 0.4349 0.3926 0.2668
FS 0.0243 0.5349 2.0889 0.2069 0.0224 0.5292 2.0496 0.2038
New 0.0237 0.3130 0.1409 0.1658 0.0217 0.3112 0.1460 0.1643
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Table 2. Empirical risks of the proposed estimator and existing estimators
for Student’s t−distribution and the log-normal distribution.

t(5) ln N(0.5, 0.52)
Method M1 M2 M3 M4 M1 M2 M3 M4

(p, n) = (100, 200)
SSE 1.1349 1.1395 1.1443 1.1238 1.1447 1.1536 1.1522 1.1541
EM 1.5246 1.7657 2.5691 1.4270 1.5371 1.7902 2.5634 1.4607
KS 0.4627 0.5265 0.4996 0.4088 0.4631 0.5256 0.5014 0.4091
FS 0.0307 0.3845 1.3683 0.1956 0.0418 0.3964 1.3840 0.2054
New 0.0306 0.2435 0.1091 0.1581 0.0411 0.2476 0.1137 0.1643

(p, n) = (200, 100)
SSE 6.4237 9.0814 6.5239 4.6874 6.5340 9.1796 6.5612 4.6670
KS 0.3530 0.5064 0.3767 0.2378 0.3534 0.5064 0.3760 0.2380
FS 0.0619 0.7394 5.1303 0.3259 0.0837 0.7601 5.6854 0.3488
New 0.0585 0.3727 0.1813 0.2277 0.0803 0.3792 0.1899 0.2402

Figure 1. Average losses of the new estimator and the competitors for differ-
ent combinations of p and n, where the data are Gaussian distributed and
the covariance matrix is generated using Model 2. The minimum losses L0

are reported for comparison.
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LDASSE: di = (x0 − x̄i)
T Ω̂SSE(x0 − x̄i) for i = 1, 2.

LDAEM: di = (x0 − x̄i)
T Ω̂EM(x0 − x̄i) for i = 1, 2.

LDAKS: di = (x0 − x̄i)
T Ω̂KS(x0 − x̄i) for i = 1, 2.

LDAFS: di = (x0 − x̄i)
T (Σ̂FS)

−1(x0 − x̄i) for i = 1, 2.

LDANew: di = (x0 − x̄i)
T Ω̂New(x0 − x̄i) for i = 1, 2.

Here, x0 is the new observation for classification and x̄i are the sample means

of group i, respectively. The discriminant rules for the methods were to classify

x0 to group 1 if d1 < d2, and to group 2 otherwise. For a more comprehensive

comparison, we also included three widely used classifiers in the literature: the

diagonal linear discriminant analysis (DLDA) in Dudoit, Fridlyand, and Speed

(2002) or Bickel and Levina (2004), the nearest shrunken centroids (NSC) method

in Tibshirani et al. (2003), and the higher criticism thresholding (HCT) method

in Donoho and Jin (2008).

To assess the misclassification rates, for each data set we first randomly

selected p = 25, 50, 100, 500 or 1,000 genes, and randomly divided the total

samples into two distinct sets, one for the training set and the other for the test

set. We fixed the training set sizes as 23 ALL and 12 AML for the Leukemia

data, and 17 pCP and 49 N-pCR for the breast cancer data. We then repeated

the procedure 1,000 times and now report their average misclassification rates

in Table 3. From the results, it is evident that the new discriminant method

LDANew gives a comparable performance in both data sets for different p values.

Our proposed estimator for the precision matrix can be useful in practice.

5. Discussion

We consider a class of ridge-type estimators Ω̂p = α(Sn + βIp)
−1 of the

precision matrix Ωp. Under the loss function tr(Ω̂pΣp − Ip)
2/p, the optimal

shrinkage coefficients α and β are determined and estimated consistently. The

resulting estimator Ω̂∗
p = α∗

n(Sn + β∗
nIp)

−1 has a simple and closed form. A

different but similar idea in spirit can be found in Bodnar, Gupta, and Parolya

(2013), in which αS−1
n + βIp is constructed for the precision matrix. This idea

can be traced back to, for example, Efron and Morris (1976), Haff (1977, 1979)

and Yang and Berger (1994). Nevertheless, those estimators suffer from the

singularity problem when p is larger than or equal to n. From this point of view,

the proposed estimator Ω̂∗
p has extended existing methods from small to large

dimensions.

The shrinkage estimator is constructed between the sample covariance ma-

trix and the identity matrix. Inspired by Schäfer and Strimmer (2005) and Fisher
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Table 3. The average misclassification rates (%) of the new discriminant
method and other methods for the Leukemia data and the breast cancer
data, respectively. The standard deviations are also given in parentheses.

p = 25 p = 50 p = 100 p = 500 p = 1, 000
Leukemia data

DLDA 24.723( 8.587) 20.284( 7.769) 16.719(7.484) 14.454(7.417) 13.413(7.277)
NSC 25.500( 9.781) 20.786( 8.684) 16.570(7.914) 10.859(7.119) 8.546(6.124)
HCT 25.870( 9.647) 20.692( 8.596) 16.124(7.606) 11.481(7.353) 9.786(7.127)

LDASSE 33.811( 9.578) 27.611( 9.394) 18.751(7.952) 12.949(6.152) 10.589(5.414)
LDAEM 29.824(10.301) NA NA NA NA
LDAKS 25.143(10.046) 21.016( 9.237) 17.157(8.091) 10.273(5.338) 8.005(4.604)
LDAFS 26.186(11.125) 20.811(10.406) 15.838(8.753) 7.949(4.741) 7.097(4.460)
LDANew 23.595( 9.026) 18.257( 7.557) 14.414(6.464) 7.981(4.698) 7.154(4.457)

Breast cancer data
DLDA 36.704(7.542) 34.867(7.371) 33.207(7.546) 31.657(7.003) 31.252(7.576)
NSC 37.518(7.935) 35.637(7.669) 33.554(7.448) 31.391(6.680) 30.485(6.679)
HCT 36.813(7.741) 34.127(7.249) 31.655(6.990) 28.851(6.172) 27.924(6.751)

LDASSE 36.124(6.229) 39.102(6.844) 36.921(6.367) 31.182(5.592) 30.364(5.544)
LDAEM 36.034(7.299) 37.161(8.234) NA NA NA
LDAKS 35.669(7.166) 33.715(6.726) 31.418(5.999) 28.809(5.241) 27.660(5.026)
LDAFS 34.751(7.968) 32.008(8.542) 28.812(8.657) 24.192(4.058) 26.584(4.520)
LDANew 33.652(6.947) 30.782(7.423) 28.142(7.811) 24.155(4.077) 26.640(4.621)

and Sun (2011), one can also consider other target matrices so that the resulting

estimator is Ω̂p = α(Sn + βT )−1. Compared with the squared error loss func-

tion (Ledoit and Wolf (2004); Warton (2008); Fisher and Sun (2011); Ledoit and

Wolf (2012)), the loss function considered in this paper can accommodate situa-

tions with extreme eigenvalues (Daniels and Kass (2001)). Stein’s loss function

(Stein (1975)) is another alternative of interest and deserve further study for the

corresponding behavior of the proposed estimator.

The proposed ridge-type shrinkage estimator may be suboptimal for high-

dimensional data with p much larger than n. To have a good estimate of Ωp,

one may need to rely on some prior information on the structure of the precision

matrix. For instance, under the sparsity assumption that most of the off-diagonal

elements in Ωp are zero or near zero, Cai, Liu, and Luo (2011) proposed a con-

strained ℓ1 minimization method for Ωp. See also the recent review paper of

Tong, Wang, and Wang (2014) and the references therein. Nevertheless, as ar-

gued in Ledoit and Wolf (2012), such prior information on the structure of the

precision matrix may not be available or even trustworthy. In such scenarios,

shrinkage methods can be considered and they will provide more or less improve-

ment on the estimation. Estimators for sparse matrices may not be guaranteed

to be well-conditioned (Xue, Ma, and Zou (2012); Rothman (2012)) whereas the
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ridge-type shrinkage estimator is always invertible and positive definite. Our

proposed estimator has a simple structure and the shrinkage coefficients can be

easily calculated. Most existing methods for sparse precision matrices involve one

or more tuning parameters and cross-validation procedures are often required for

choosing the parameter values. For large precision matrix with little structures

information, we can recommend the use of the proposed ridge-type shrinkage

estimator.
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