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Abstract: This study examines the estimation of extreme conditional quantiles for

distributions with Weibull-type tails. We propose two families of estimators for the

Weibull tail-coefficient, and construct an extrapolation estimator for the extreme

conditional quantiles based on a quantile regression and extreme value theory. The

asymptotic results of the proposed estimators are established. This work fills a gap

in the literature on extreme quantile regressions, where many important Weibull-

type distributions are excluded by the assumed strong conditions. A simulation

study shows that the proposed extrapolation method provides estimations of the

conditional quantiles of extreme orders that are more efficient and stable than

those of the conventional method. The practical value of the proposed method is

demonstrated through an analysis of extremely high birth weights.
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1. Introduction

Weibull-type distributions with a common extreme value index at zero form

a rich family of light-tailed distributions, including, for example, the Gaussian,

gamma, Weibull, and extended Weibull distributions. As noted in Beirlant and

Teugels (1992), these distributions are conventionally used in the area of non-life

insurance. Recently, de Wet et al. (2016) mentioned that these distributions may

have a wide range of applications in other fields, such as hydrology, meteorology,

and environmental sciences.

There is an extensive body of literature on the analysis of univariate Weibull-

type tails, including the works of Berred (1991), Broniatowski (1993), Girard

(2004), Gardes and Girard (2005, 2008), Diebolt et al. (2008), Goegebeur, Beir-

lant and de Wet (2010), and Goegebeur and Guillou (2011). In contrast, few

studies have investigated the extremal behavior of Weibull-type tails under a

regression setting. Among those that have, de Wet et al. (2016) used kernel
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statistics to estimate the tail coefficient of a Weibull-type distribution and the

extreme conditional quantiles. Gardes and Girard (2016) focused only on esti-

mating the tail-coefficient of a Weibull-type distribution, based on a kernel esti-

mator of extreme conditional quantiles. It is well known that a nonparametric

quantile regression (QR) is not stable on the boundary of the predictor support,

and that estimations are challenging for multiple predictors, owing to the “curse

of dimentionality;” see Daouia,Gardes and Girard (2013). This motivates us to

investigate the extremal behavior of Weibull-type tails under a linear regression

setting. To the best of our knowledge, there is no existing literature on extreme

quantile estimations of Weibull-type tails under linear regression models.

Several studies have examined tail index regressions and extremal quantiles

under a regression setup. Assuming Pareto-type distributions that correspond

to positive extreme value indices, Wang and Tsai (2009) studied the tail index

regression model by employing the logarithmic function to link the tail index

to the linear predictor. Chernozhukov (2005) considered the extremal quantiles

in a linear regression framework, and derived the asymptotic properties under

three types of tail distributions corresponding to the extreme value index ξ < 0,

ξ = 0, and ξ > 0, respectively. However, for condition R1 to hold, the case

ξ = 0 is excluded for the simple location-scale shift model; see Example 3.2 in

Chernozhukov (2005). Therefore, the results in Chernozhukov (2005) are not

applicable to general models with Weibull-type distributions.

In this study, we develop new theory and methods with which to examine the

extremal behavior of Weibull-type tails. We reconsider the important condition

R1 in Chernozhukov (2005) in order to make it applicable for Weibull-type tails.

Furthermore, we propose two families of estimators for the Weibull tail-coefficient

based on a linear regression of quantiles, and construct an estimator for the

extreme conditional quantiles using the extrapolation method. The proposed

estimators do not suffer from the “curse of dimentionality,” and can be readily

applied to a wide range of studies with multiple predictors.

The remainder of this paper is organized as follows. In Section 2, we in-

troduce the linear QR model, as well as several regularity assumptions that are

needed to establish the asymptotic results of the new method. In Section 3, we

propose two families of estimators for the Weibull tail-coefficient, and construct

an efficient extrapolation estimator for the extreme conditional quantiles. The

asymptotic results of the proposed estimators are also derived in this section.

Miscellaneous issues are discussed in Section 4, including identifying Weibull-

type tails, a comparison of the asymptotic efficiency of different estimators, and
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the validation of the model and the technical assumptions. In Section 5, we

conduct a simulation study to evaluate the finite-sample performance of the pro-

posed estimators, and then compare the results with those of the conventional

method. In Section 6, we illustrate the usefulness of the new method by using it

to examine extremely high birth weights of live infants born in the United States.

All technical proofs are provided in the online Supplementary Material.

2. Model and Assumptions

Let {(Xi, Yi), i = 1, . . . , n} be independent copies of the random vector

(X, Y ), where X = (1, X2, . . . , Xd)
′ is a d-dimensional covariate and Y is a one-

dimensional response variable. For convenience, let X−1 = (X2, . . . , Xd)
′ denote

the covariate X without the first component, X denote the support of X, and

FY (y|x) be the continuous conditional distribution function of Y , given X = x.

Denote F̄Y (y|x) = 1 − FY (y|x) and let qY (τ |x) = inf{y : F̄Y (y|x) ≤ τ} be the

(1 − τ)th conditional quantile of Y , given X = x, also referred to as the τth

right-tailed conditional quantile.

In this study, we consider the following linear QR model:

qY (τ |x) = x′β(τ), for all τ ∈ (0, τU ], for some 0 < τU < 1, x ∈ X , (2.1)

where β(τ) is a vector of quantile coefficients. For any given τ , β(τ) can be

estimated by

β̂(τ) = arg min
β∈Rd

n∑
i=1

ρτ (Yi −X′iβ), (2.2)

where ρτ (u) = u{I(u > 0) − τ} is the asymmetric L1 “check” function. Let τn
be an intermediate quantile level in the sense that τn → 0 and nτn → ∞. It

was shown in Chernozhukov (2005) that at the intermediate quantile level, the

asymptotic normal theory still holds for β̂(τn) and, hence, for the conventional

conditional quantile estimator q̂n(τn|x) = x′β̂(τn) of qY (τn|x). Our main interest

is the estimation of conditional quantiles at the extreme quantile level ψn → 0,

which satisfies ψn → 0 and lnψn/ ln τn → κ ∈ (1,∞) as τn → 0. This allows

ψn to go to zero at an arbitrarily fast rate; see Section 4.3. Therefore, the

corresponding quantile qY (ψn|x) is further in the right tail and more extreme than

qY (τn|x). In such a case, the conventional quantile estimator q̂n(ψn|x) := x′β̂(ψn)

for qY (ψn|x) is often unreliable, owing to the sparsity of data in the extreme

tails. As a result, obtaining precise estimates of the extreme quantiles remains

a challenging task. Extreme value theory provides a valuable mathematical tool
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for solving this problem.

In this paper, we propose studying the linear QR model in (2.1) with Weibull-

type tails using extreme value theory. To start with, let u be a random variable

with the survival function F̄u(z) := P(u > z) and the upper endpoint s∗u = ∞.

Without loss of generality, we assume that F̄u(·) is continuous, differentiable, and

strictly decreasing. Recall that F̄u has a Weibull-type tail if there exists θ > 0

such that, for all ζ > 0,

lim
z→∞

ln F̄u (ζz)

ln F̄u(z)
= ζ1/θ. (2.3)

The parameter θ is also referred to as the Weibull tail-coefficient; this controls

the tail behavior such that a larger value of θ results in a slower decay of F̄u to

zero. Weibull-tailed distributions cover a wide class of light-tailed distributions

in the Gumbel maximum domain, including the Gaussian (θ = 1/2), exponential,

gamma, logistic (θ = 1), and Weibull distributions; see Section 4.3 for a more

specific discussion.

For convenience, we denote the cumulative hazard function by Hu(z) :=

− ln F̄u(z), and the quantile function by qu(τ) := F̄−1u (τ) = H−1u (ln(1/τ)), for all

τ ∈ (0, 1). By (2.3), Hu(·) is a regularly varying function, with index 1/θ: that

is,

lim
z→∞

Hu(ζz)

Hu(z)
= ζ1/θ, for all ζ > 0, (2.4)

which we denote by Hu(·) ∈ RV∞(1/θ). Note that (2.4) also holds locally uni-

formly on ζ > 0. By Proposition 0.1 in Resnick (1987), we have H−1u (·) ∈
RV∞(θ). Hence, there exists a slowly varying function l(·), such that

H−1u (z) = zθl(z), for z > 0, (2.5)

where l(·) satisfies that limz→∞ l(ζz)/l(z) = 1, for all ζ > 0. In addition, be-

cause Hu(z) is differentiable so that H−1u (z) is differentiable, we can obtain that

∂H−1u (z)/∂z ∈ RV∞(θ − 1).

Throughout the paper, we use a(t) ∼ b(t) to represent a(t)/b(t) → 1 when

t tends to a constant or to infinity. To establish the asymptotic results of the

estimators proposed in Section 3, we require the following regularity assumptions.

(C1) There exists a bounded vector βr ∈ Rd and a survival function F̄u of the

Weibull-type tail with tail-coefficient θ, such that (i) U = Y −X′βr, with

s∗U = ∞; and (ii) HU (z|x) ∼ K(x)Hu(z) uniformly on x ∈ X as z ↑ s∗U ,

where s∗U = inf
{
y : F̄U (y|x) ≤ 0

}
is the upper endpoint, and HU (z|x) =
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− ln F̄U (z|x), with F̄U (z|x) being the conditional survival function of U ,

given X = x. Furthermore, F̄U (z|x) is assumed to be continuous and strictly

decreasing with respect to z, and K(·) > 0 is a continuous bounded function

on the support X .

(C2) For any k ∈ (0, 1)∪(1,∞), H−1U (− ln(kτ)|x) /H−1U (− ln τ |x)−1 ∼ θ ln k/ ln τ

as τ → 0.

(C3) X is a compact set in Rd, and E(XX′) is a positive-definite matrix.

(C4) Under (C1)− (C3), we assume that

∂H−1U (− ln τ |x)

∂τ
∼ ∂H−1u (− ln τ/K(x))

∂τ
uniformly on x ∈ X .

(C5) The slowly varying function l(·) in (2.5) satisfies the following: (i) there

exist a constant % ≤ 0 and a regularly varying function b(z) ∈ RV∞(%) by

(2.3.8) in de Haan and Ferreira (2006), and b(z)→ 0 as z →∞, such that

locally uniformly on λ ≥ 1,

ln

(
l(λz)

l(z)

)
= b(z)D%(λ) (1 + o(1)) , as z→∞,

where D%(λ) =
∫ λ
1 t

%−1dt; (ii) l(z) = c exp{
∫ z
1 ε(t)/tdt}, where c > 0 and

ε : (0,∞)→ R is a continuous function, with ε(t)→ 0 as t→∞.

Remark 1. Condition (C1) implies that for any x ∈ X , the conditional cu-

mulative hazard function HU (·|x) and the univariate cumulative hazard Hu(·)
are tail equivalent up to a constant. Under (C1), for large z, we can write

HU (z|x) = K(x)Hu(z)(1 + α(z|x)), where α(z|x) → 0 as z → ∞ uniformly on

x ∈ X . Noting too that H−1u (·) ∈ RV∞(θ), we thus have

H−1U (− ln τ |x) = H−1u

(
− ln τ

K(x)
(
1 + α

(
H−1U (− ln τ |x) |x

)))

∼ H−1u
(
− ln τ

K(x)

)
, (2.6)

and H−1u (− ln τ/K(x)) ∼ H−1u (− ln(kτ)/K(x)) as τ → 0, for any k ∈ (0, 1) ∪
(1,∞). This leads toH−1U (− ln(kτ)|x)∼ H−1u (− ln(kτ)/K(x)) andH−1U (− ln(kτ)|
x) ∼ H−1U (− ln τ |x). Condition (C2) further assumes thatH−1U (− ln(kτ)|x)/H−1U (
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− ln τ |x)−1 and θ ln k/ ln τ are asymptotically equivalent; that is, they converge

to zero at the same rate. The rationality of (C2) is discussed in Section 4.3.

Conditions (C1), (C3), and (C4) can be regarded as adaptations of condi-

tions R1−R3 in Chernozhukov (2005) to Weibull-type tails. Condition (C5)(i) is

essentially the same as that in de Wet et al. (2016) and Girard (2004). The latter

is the second-order condition on l(·), with the second-order parameter ρ ≤ 0 that

controls the convergence rate of l(λz)/l(z) toward one. The closer ρ is to zero,

the slower is the convergence rate. Hence, condition (C5)(i) plays a crucial role

in deriving the asymptotic results of our proposed estimators. Condition (C5)(ii)

is essentially the same as condition (A.2) in Gardes and Girard (2016), which

is a special case of the Karamata representation; see Theorem B.1.6 in de Haan

and Ferreira (2006) for regularly varying functions. The function ε(·) in (C5)(ii)

determines the speed of the convergence of the slowly varying function l(·).

3. Proposed Estimators

In this section, we propose an extrapolation estimator for extreme conditional

quantiles. We also develop two types of estimators for the Weibull tail-coefficient

based on the regression quantiles.

For ease of notation, we denote qU (τ |x) = F̄−1U (τ |x), for all τ ∈ (0, 1). By

(2.6) and condition (C1), we have

qY (τ |x) = qU (τ |x) + x′βr = qu

(
τ1/K(x)

)
(1 + α(τ)) + x′βr,

for some α(τ)→ 0 as τ → 0. Therefore,

$
(
s, τ1/K(x)

)
=
qY (sτ |x)

qY (τ |x)

qu
(
τ1/K(x)

)
qu
(
(sτ)1/K(x)

) − 1→ 0,

for all s > 0 as τ → 0.

3.1. Estimation of extreme conditional quantiles

Let τ ∈ (0, 1) be sufficiently small. Then, by (2.5) and similar arguments to

those used in the proof of Lemma 2 in Gardes and Girard (2016), for any given

s ∈ (0, 1], we have

ln qY (sτ |x)− ln qY (τ |x) = ln

(
qu
(
(sτ)1/K(x)

)
qu
(
τ1/K(x)

) )
+ ln

[
1 +$

(
s, τ1/K(x)

)]
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= ln

(
H−1u (−ln(sτ)/K(x))

H−1u (−ln(τ)/K(x))

)
+ ln

[
1 +$

(
s, τ1/K(x)

)]
= θ [ln−2(sτ)− ln−2(τ)] + T (s, τ |x) , (3.1)

where ln−2(z) :=ln[ln(1/z)] and T (s, τ |x)=ln[l(− ln(sτ)/K(x))/l(− ln(τ) /K(x))]

+ ln[1 +$(s, τ1/K(x))]→ 0 as τ → 0. Then, for any s ∈ (0, 1],

qY (sτ |x)

qY (τ |x)
−
(

ln(sτ)

ln τ

)θ
→ 0. (3.2)

Suppose θ̂n is some consistent estimator of θ (see Section 3.2). Then, we can

estimate qY (ψn|x) by the following extrapolation estimator:

q̂n,E (ψn|x) = q̂n(τn|x)

(
lnψn
ln τn

)θ̂n
, (3.3)

where q̂n(τn|x) = x′β̂(τn), and β̂(τn) is defined in (2.2) at the intermediate quan-

tile level τn.

3.2. Estimation of the Weibull tail-coefficient

In this section, we propose several estimators for the Weibull tail-coefficient

θ. For any given r ∈ (0, 1), let sj = rj−1, for j = 1, . . . , J , where J is a positive

integer. By (3.1) and the fact that ln(1 + u) ∼ u as u→ 0, it follows that

ln qY (sj+1τ |x)− ln qY (sjτ |x)−
{

ln(1/r)

ln(1/τ)

}
θ → 0, as τ → 0.

Let x ∈ X be a given covariate vector. Based on the conventional conditional

quantile estimation at the intermediate quantile levels, namely, q̂n(sjτn|x) =

x′β̂(sjτn), for j = 1, . . . , J , we can construct a weighted estimator of θ, as follows:

θ̂n,P (x) =
ln(1/τn)

ln(1/r)

J−1∑
j=1

ωj [ln q̂n (sj+1τn|x)− ln q̂n (sjτn|x)] ,

where {ωj}J−1j=1 is a sequence of nonnegative weights summing to one. The esti-

mator θ̂n,P (x) follows a similar spirit to the refined Pickand estimator introduced

in Daouia,Gardes and Girard (2013) for the conditional extreme value index.

Similarly to Daouia,Gardes and Girard (2013), we consider two special cases

of θ̂n,P (x). The first case uses constant weights ω1 = · · · = ωJ−1 = 1/(J − 1),
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yielding

θ̂cn,P(x) =
ln(1/τn)

(J − 1) ln(1/r)

[
ln q̂n

(
rJ−1τn|x

)
− ln q̂n (τn|x)

]
.

In the second case, we consider linear weights ωj = 2(J − j)/{(J − 1)J}, for

j = 1, . . . , J − 1, which results in

θ̂ln,P(x) =
2 ln(1/τn)

J(J − 1) ln(1/r)

J−1∑
j=1

[ln q̂n (sjτn|x)− ln q̂n (τn|x)] .

For comparison, we also introduce an estimator analogous to that proposed

in Gardes and Girard (2016):

θ̂n,H (x) =
ln(1/τn)
J∑
j=1

ln(1/sj)

J∑
j=1

[ln q̂n (sjτn|x)− ln q̂n (τn|x)] , (3.4)

where {sj : 0 < sJ < · · · < s1 ≤ 1} is a decreasing sequence. The estimator

θ̂n,H(x) is an adaptation of the Hill estimator (Hill (1975)) for univariate heavy-

tailed data; see also Daouia et al. (2011) and Wang, Li and He (2012) for Hill-type

estimators under a regression setup.

Remark 2. From a theoretical point of view, we can use θ̂n(x) to estimate the

coefficient θ at any given x ∈ X . However, given the sample data {xi}ni=1, our

experience suggests that θ̂n(x̄), with x̄ =
∑n

i=1 xi/n, is often more stable than

θ̂n(x) when x is not in the centroid of the design space. This is mainly because

there are often more data around x̄, and the conventional conditional quantile

estimator at x̄ is less susceptible to quantile crossing issues; see Koenker (2005,

Chap. 2.5).

3.3. Asymptotic results

Here, we establish the asymptotic results of the proposed estimators. Through-

out, we assume that τn → 0 and nτn →∞ as n→∞. For any s > 0, define

q̃n (s|x) =
√
nτn ln

(
1

τn

)(
q̂n(sτn|x)

qY (sτn|x)
− 1

)
.

Let
d−→ and

d
= denote “convergence in distribution” and “equality in distribution,”

respectively.



EXTREMAL LINEAR QUANTILE REGRESSION WITH WEIBULL-TYPE TAILS 1365

We first present the asymptotic joint distribution of the random vector

(q̃n(s1|x), . . . , q̃n(sJ |x)), for any given x ∈ X and a positive sequence sj ∈ (0, 1],

for j = 1, . . . , J .

Theorem 1. Suppose conditions (C1)− (C5) hold. For all x ∈ X , if τn → 0 as

n→∞, such that nτn →∞, then

(q̃n (s1|x) , . . . , q̃n (sJ |x))′
d−→ (q∞ (s1|x) , . . . , q∞ (sJ |x))′

d
= N(0,Σq(x)),

where (Σq(x))j,j′ = θ2(x′Ω1x)H−2(x)(max(sj , sj′))
−1, for j, j′ = 1, . . . , J , Ω1 =

Q−1H QXQ−1H , QX=E(XX′), QH =E[(H(X))−1XX′], and H(x)=[K(µX)/K(x)]θ,

with µX = E(X).

Theorems 2 and 3 present the asymptotic results of the two proposed Weibull

tail-coefficient estimators: the Pickand-type estimator θ̂n,P (x), and the Hill-type

estimator θ̂n,H(x) with x ∈ X being a given design vector.

Theorem 2. Suppose conditions (C1) − (C5) hold. Let sj = rj−1, for j =

1, . . . , J , where r ∈ (0, 1). For any x ∈ X , if √nτn max
(
1/ ln(1/τn), |b(ln(1/τn))|

)
→ 0, and

√
nτn ln(1/τn) maxj=1,...,J |$(sj , τn

1/K(x))| → 0, then

√
nτn

(
θ̂n,P(x)− θ

)
d−→ N

(
0, (ln r)−2W ′Σq(x)W

)
,

where W = (w0 − w1, . . . , wj−1 − wj , . . . , wJ−1 − wJ)′, with w0 = wJ = 0.

Theorem 3. Suppose conditions (C1)−(C5) hold. Let 1 = s1 > s2 > · · · > sJ >

0 be a positive decreasing sequence. For any x ∈ X , if √nτn ln(1/τn) maxj=1,...,J

|$(sj , τn
1/K(x))| → 0 and

√
nτn max

(
1/ ln(1/τn), |b(ln(1/τn))|

)
→ 0, then

√
nτn

(
θ̂n,H(x)− θ

)
d−→ N

(
0,ΛJH

−2(x)θ2
(
x′Ω1x

))
,

where

ΛJ =

 J∑
j=1

[
2(J − j) + 1

sj

]
− J2

 J∑
j=1

ln

(
1

sj

)−2. (3.5)

For the Hill-type estimator, in practice, we can choose sj = 1/j, as in Daouia

et al. (2011). Consequently, ΛJ = J(J−1)(2J−1)/(6 ln2(J !)). In this case, ΛJ is

a convex function of J , and is minimized at J = 9, with Λ9 = 1.245. Throughout

the paper, we use θ̂n,H(x) with the “optimal” tuning parameters sj = 1/j and

J = 9.
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Finally, we establish the asymptotic normality of the proposed extrapolation

estimator for the extreme conditional quantitle, q̂n,E(ψn|x), based on an asymp-

totically normal tail-coefficient estimator θ̂n, which can be either the Pickand- or

the Hill-type.

Theorem 4. Suppose conditions (C1) − (C5) hold, and κn := lnψn/ ln τn →
κ ∈ (1,∞) as n → ∞. Let θ̂n be an estimator of θ satisfying

√
nτn(θ̂n − θ)

d−→ N(0, σ2θ), with σ2θ > 0. Then, for any x ∈ X , if
√
nτn max{|b(ln(1/τn))|,

|$(ψn/τn, τn
1/K(x))|} → 0, we have

√
nτn

lnκn

(
q̂n,E(ψn|x)

qY (ψn|x)
− 1

)
d−→ N(0, σ2θ).

4. Miscellaneous Issues

4.1. Identifying Weibull-type tails

The expression in (3.1) suggests that if the conditional distribution of Y has

a Weibull-type tail, then ln(qY (τ |x)) will be approximately linear in ln−2(τ), with

slope θ. Motivated by this, we consider a graphical tool to check the assumption

of Weibull-type tail for the conditional distribution of Y . Specifically, given the

sample data {(xi, yi)}ni=1, we can obtain the conventional estimator q̂n(τj |x̄) at

the sample mean x̄ for a grid of small quantile levels τ1, . . . , τm. Then, we can

draw a quantile plot by plotting ln(q̂n(τj |x̄)) against ln−2(τj), with j = 1, . . . ,m.

If the distribution has a Weibull-type tail, the points should lie roughly on a

straight line. The graphical diagnosis at one design point, x̄, is reasonable,

because condition (C1) implies that, for any x, x′ ∈ X , z 7→ HU (z|x) and

z 7→ HU (z|x′) are tail equivalent up to a constant. The above steps are described

in further detail in the case study in Section 6.

4.2. Comparison of asymptotic variances

Theorem 4 suggests that the estimation accuracy of the proposed extreme

quantile estimator q̂n,E(ψn|x) depends heavily on that of the Weibull tail-coefficient

estimator. Define δP = W ′ΣW/(ln r)2, with Σj,j′ = θ2/(rj−1 ∨ rj′−1), for j, j′ =

1, . . . , J , and δH = ΛJθ
2. By Theorems 3 and 4, we have W ′Σq(x)W/(ln r)2 =

[(x′Ω1x)/H2(x)]δP and ΛJθ
2(x′Ω1x)/H2(x) = [(x′Ω1x)/H2(x)]δH . Therefore,

to compare the asymptotic variances of θ̂n,P (x) and θ̂n,H(x), it suffices to com-

pare δP and δH , where both are quadratic functions of θ. For convenience, denote

δcP and δlP as special cases of δP for constant and linear weights, respectively, and
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Figure 1. Plots of δcP , δlP , and δopH against the Weibull tail-coefficient θ.

δopH as a special case of δH with the “optimal” tuning parameters sj = 1/j and

J = 9. For the Pickand-type estimators, we select the tuning parameters J and

r by searching over J = {2, 3, . . . , 10} and R = {0.01, 0.02, . . . , 0.99}, respes-

tively, to identify the optimal pair that gives the smallest δP . Figure 1 shows

that the three Weibull tail-coefficient estimators have similar efficiency for small

θ ∈ (0, 0.5], but that for larger θ, θ̂n,H and θ̂ln,P tend to be more efficient than

θ̂cn,P .

4.3. Model validation

In this section, we show that conditions (C1) and (C2) are very general, and

that they cover a wide range of conventional regression models as special cases.

We also present several important Weibull-type distributions that fulfill the con-

ditions in (C5). For illustration, we first present two conventional regression

models that satisfy condition (C1).

(M1) Consider the location shift model

Y = X′β + u,

where u is independent of X, and the survival function F̄u(·) of u has a
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Weibull-type tail. This model is a special case of (C1), where X ′βr = X′β,

U ≡ Y −X′β = u, and K(x) = 1, given X = x. Moreover, F̄U (z|x) = F̄u(z),

for any z ∈ R, such that HU (z|x) ∼ K(x)Hu(z) uniformly on x ∈ X as

z →∞.

(M2) Consider the heteroscedastic model

Y = X′β +
(
X′ξ

)
u,

where the scale function x′ξ > 0, for any X = x ∈ X , u is independent of

X, and the survival function F̄u(·) of u has a Weibull-type tail. It is easy

to see that

F̄−1Y (τ |X) = X′β +
(
X′ξ

)
F̄−1u (τ).

Then, for X′βr = X′β and U ≡ Y −X′β = (X′ξ)u, we have

HU (z|x) = − ln P
(
(x′ξ)u > z|x

)
= Hu

((
x′ξ
)−1

z
)

∼
(
x′ξ
)−1/θ

Hu (z) ,

as z → ∞, by (2.3). Thus, condition (C1) is satisfied, with K(x) =

(x′ξ)−1/θ, for any x ∈ X .

Next, we present some important Weibull-type distributions as examples

that satisfy condition (C5).

(E1) Let u follow the Gaussian distribution N(µ, σ2), with σ > 0.

We have H−1u (z) = z1/2l(z), and an asymptotic expansion of l(·) as

l(z) =
√

2σ − σ

23/2
ln z

z
+O

(
1

z

)
.

This leads to θ = 1/2, ρ = −1, c =
√

2σ exp (−1/4), and b(z) = ε(z) =

ln z/(4z).

(E2) Let u follow the gamma distribution Γ(β, α), with α, β > 0.

We have the density function f(z) = βαΓ−1(α)zα−1 exp(−βz), andH−1u (z) =

zl(z), with

l(z) =

{
1
β if α = 1,

1
β + α−1

β
ln z
z +O

(
1
z

)
if α 6= 1.
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This leads to θ = 1, ρ = −1, c = exp (α− 1)/β, and b(z) = ε(z) = (1 −
α) ln z/z.

(E3) Let u follow the Weibull distribution W(α, λ), with α, λ > 0.

We have the density function f(z) = (α/λ)(z/λ)α−1 exp(−(z/λ)α), H−1u (z) =

λz1/α, and l(z) = λ, for all z > 0. This leads to θ = 1/α, ρ = −∞, c = λ,

and b(z) = ε(z) = 0.

(E4) Let u follow the extended Weibull distribution EW(α, β), with α > 0 and

β ∈ R.

The survival function of u is given by F̄u(z) = r(z) exp (−zα), where r(·) ∈
RV∞(β). In addition, H−1u (z) = z1/αl(z), with

l(z) = 1 +
β

α2

ln z

z
+O

(
1

z

)
.

This leads to θ = 1/α, ρ = −1, c = exp (β/α2), and b(z) = ε(z) =

−β(ln z)/(α2z).

(E5) Let u follow the modified Weibull distribution MW(α), with α > 0.

Let V ∼ W(α, 1) and u = V lnV . Thus, H−1u (z) = z1/αl(z), with l(z) =

α ln z. This leads to θ = 1/α, ρ = 0, c = α, and b(z) = ε(z) = 1/ ln z.

In what follows, we show that (C2) holds for both the location shift model

(M1) and the heteroscedastic model (M2) with Weibull-tailed errors. By (2.5)

and (C5), and after some calculation, we have that

H−1u (− ln(kτ))

H−1u (− ln τ)
− 1 ∼ θ ln k

ln τ
as τ → 0. (4.1)

Note that H−1U (− ln τ |x) = H−1u (− ln τ), for any τ ∈ (0, 1) in (M1). Thus, it

is clear that condition (C2) holds under (M1). Second, by H−1U (− ln τ |x) =

(x′ξ)H−1u (− ln τ) and x′ξ > 0 in (M2), it is easy to check that condition (C2) is

also fulfilled under (M2) by using (4.1).

To verify the conditions required in Theorems 1−4, we need to determine

the appropriate rates of τn and ψn. Specifically, we need that as n → ∞, τn
satisfies τn → 0, nτn → ∞,

√
nτn ln(1/τn) maxj=1,...,J |$(sj , τ

1/K(x)
n )| → 0, and

√
nτn max

{
1/ ln(1/τn), |b(ln(1/τn))|, |$(ψn/τn, τ

1/K(x)
n )|

}
→ 0, for all x ∈ X .

The condition nτn → ∞ implies that τn should be of a larger order than 1/n.

In Propositions 1 and 2, provided in the online Supplementary Material, we
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show that under both the location shift model (M1) and the heteroscedastic

model (M2), τn = k0(ln lnn)/n, for some constant k0 > 0, is suitable for all

five Weibull-type tail distributions in (E1) − (E5). Then, a reasonable choice

of ψn is ψn = k1/n
1+ν or k1 lnn/nν+1, for some k1 > 0 and ν > 0, leading to

κn = lnψn/ ln τn → 1 + ν > 1 as n → ∞. This implies that any conditional

quantile qY (ψn|x) with order higher than qY (τn|x) can be estimated effectively

by our extrapolation method, because the rate of ψn = k1/n
1+ν or k1 lnn/nν+1

→ 0 as n→∞ can be arbitrarily fast, given a suitable ν.

5. Simulation Study

In this section, we conduct a simulation study to assess the finite-sample

performance of the proposed extreme quantile estimator. Consider the following

data-generating process:

Yi = 1 +Xi1 +Xi2 +Xi3 +
(Xi1 +Xi2)Vi

2
, i = 1, . . . , n,

where {Xij}ni=1 are independent and identically distributed (i.i.d.) random vari-

ables from the uniform distribution U(0, 1), for j = 1, 2, 3, and {Vi}ni=1 are gen-

erated from the following five Weibull-type distributions: N(0, 9), with θ = 0.5;

W(5, 1), with θ = 0.2; W(1, 1), with θ = 1; MW(2/3), with θ = 1.5; and

MW(1/2), with θ = 2. In each case, the true conditional quantile of Y is

qY (ψn|x) = 1 + x1 + x2 + x3 + (x1 + x2)F̄
−1
V (ψn)/2, for ψn ∈ (0, 1) and x =

(1, x1, x2, x3)
′. We consider n = 1, 000 in the simulation study, and repeat the

simulation 200 times for each case.

Our focus is the estimation of the extreme conditional quantiles qY (ψn|x),

where ψn = 1/n1+ν , with ν = 0.01 (resulting in ψn = 0.001). For comparison, we

consider the conventional QR estimator q̂n(ψn|x) = x′β̂(ψn), and three variations

of the proposed extreme conditional quantile estimator, q̂P,cn,E(ψn|x), q̂P,ln,E(ψn|x),

and q̂Hn,E(ψn|x), based on the tail-coefficient estimators θ̂cn,P(x̄), θ̂ln,P(x̄), and

θ̂n,H(x̄), respectively. Here, x̄ = (1, x̄1, x̄2, x̄3)
′ with x̄j = R−1

∑R
s=1 xsj , for

j = 1, 2, 3, and {xsj}Rs=1 (R = 100) are drawn randomly from U(0, 1).

To examine the sensitivity of the proposed estimators to the choice of τn,

we let τn = k0(ln lnn)/n, and plot the RMISE versus k0 ∈ [2, 30] in Figure

1 of the online Supplementary Material. Here, the RMISE is defined as the

square root of the mean integrated squared error between a conditional quantile

estimator and the truth qY (ψn|x), integrated over x and across 200 simulations.
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Figure 1 yields the following observations. For the Gaussian, Weibull(5,1), and

Weibull(1,1) distributions with small or modest tail-coefficients, the estimator

q̂P,ln,E is more sensitive to the choice of k0, and is generally more efficient than

the conventional QR estimator for k0 ∈ [2, 10]. However, the estimators q̂P,cn,E and

q̂Hn,E are more efficient than the QR estimator, in general, for k0 ∈ [2, 20]. On

the other hand, for the MW(2/3) and MW(1/2) distributions with larger tail-

coefficients, the estimator q̂P,ln,E appears to be more efficient than q̂P,cn,E and q̂Hn,E,

and all three are clearly more efficient than the QR estimator across k0 ∈ [2, 30].

The tuning parameter k0 plays a similar role to the threshold value in the

extreme value literature; that is, it balances the bias and the variance, and has

to be properly chosen. Several methods exist for choosing the threshold-type

tuning parameter; see Caeiro and Gomes (2016) for a review on this topic. In

practice, we choose k0 by adapting the procedure in Neves et al. (2015) based

on path-stability. Specifically, in our simulation study, we regard the path of the

tail-coefficient estimation as a function of k0. Then, we choose the smallest value

of k0 within [2, 30], starting from which, the estimation θ̂ becomes most stable.

Table 1 summarizes the RMISE of the conventional QR estimator and the

three extrapolation estimators based on τn = k0(ln lnn)/n, with k0 chosen by the

path-stability procedure. The Hill-type estimator and the Pickand-type estima-

tor with constant weights perform similarly, and both are clearly more efficient

than the QR estimator across all five distributions considered. The Pickand-type

estimator with linear weights performs best for the two MW distributions, which

have larger tail-coefficients, but the method is less efficient than the other two

extrapolation estimators for distributions with a tail-coefficient θ ≤ 1. These

observations support the theoretical comparison in Section 4.2.

6. Analysis of Birth Weights

To illustrate the usefulness of the proposed methods, we study the effects

of various behaviors of pregnant women on extremely high quantiles of birth

weights of live infants born in the United States. It is well known that a low birth

weight is associated with many health problems. On the other hand, a high birth

weight can also have serious adverse effects on both maternal and child health.

For example, a baby born with an excessively high birth weight may be at in-

creased risk at birth of injuries, respiratory distress syndrome, low blood sugar,

jaundice, and long-term health risks such as type-2 diabetes, childhood obesity,
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Table 1. The root mean integrated squared errors of different estimators of qY (ψn|x),
with ψn = n−1.01 and n = 1, 000. Values in parentheses are the standard errors. q̂n is the
conventional quantile regression estimator, and q̂P, cn,E , q̂P, ln,E, and q̂Hn,E are the extrapolation
estimators based on the Pickand-type tail-coefficient estimators with constant and linear
weights, and the Hill-type tail-coefficient estimator, respectively. For the extrapolation
estimators, τn = k0(ln lnn)/n, where k0 is chosen using the path-stability procedure.

Distribution q̂P, cn,E q̂P, ln,E q̂Hn,E q̂n

N (0, 9) 0.6143 0.8067 0.6260 0.7753

(0.0194) (0.0189) (0.0184) (0.0233)

W(5, 1) 0.0344 0.0423 0.0342 0.0392

(0.0009) (0.0009) (0.0008) (0.0012)

W(1, 1) 0.6892 0.8264 0.6921 0.8712

(0.0168) (0.0178) (0.0172) (0.0329)

MW(2/3) 11.264 8.394 11.150 17.041

(0.5043) (0.4223) (0.4736) (0.8208)

MW(1/2) 54.730 39.437 52.879 84.043

(1.6219) (1.4245) (1.4677) (3.9583)

and metabolic syndrome; see, for instance, Aye et al. (2010) and Mohammadbeigi

et al. (2013).

We use the June 1997 Detailed Natality Data published by the National

Center for Health Statistics, which contains the birth weights of 31,912 infants

born to black mothers. We let the response Y be the birth weights in grams,

and consider eight covariates: X1 is a binary variable indicating whether the

mother was married; X2 indicates whether the infant is a boy; X3 represents the

mother’s age (mean 26); X4,1, X4,2, and X4,3 indicate whether the mother had no

prenatal visit, visited for the first time in the second trimester, and visited for the

first time in the third trimester, respectively; X5 denotes the mother’s education

level (0 for less than high school, 1 for high school, 2 for some college, and 3 for

college graduate); X6 indicates whether the mother smoked during pregnancy;

X7 represents the average daily number of cigarettes per day the mother smoked;

and X8 denotes the mother’s weight gain during pregnancy (mean 29 pounds).

The same data set was also analyzed in Abreveya (2001), Koenker and Hallock

(2001), and Chernozhukov and Fernández-Val (2011). However, the former two

focused on analyzing typical birth weights in the range between 2,000 and 4,500

grams, and the latter examined extremely low birth weights in the range between

250 and 1,500 grams. In contrast, we focus on the extremely high quantiles of
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Figure 2. Diagnosis of the Weibull-type tail for the birth-weight data.

birth weights, over 4,500 grams.

Let X = (1, X1, X2, X3, X
2
3 , X4,1, X4,2, X4,3, X5, . . . , X8, X

2
8 )T , where X3, X

2
3

and X8, X
2
8 are centered at zero. We consider the following linear quantile

regression model: qY (τ |X) = X′β(τ), τ ∈ (0, 1).

To examine whether the conditional distribution of Y has a Weibull-type

tail, we follow the suggestion in Section 4.1 and plot ln(q̂n(τ |x̄)) against ln−2(τ)

for τ ∈ {0.01, 0.0095 , . . . , 0.001} in Figure 2. The plot suggests that there is a

strong linear relationship between ln(q̂n(τ |x̄)) and ln−2(τ). Hence, our proposed

method is appropriate for analyzing the data. Similarly to the simulation study,

we choose J and r by following the grid search method discussed in Section 4.2,

and let τn = k0(ln lnn)/n. Figure 3 shows the path of the three tail-coefficient

estimators against k0 ∈ [2, 100]. Note that we exclude k0 = 1, because this results

in a small τn such that the tail-coefficient is estimated to be zero. Using the path-

stability procedure in Neves et al. (2015), the adaptive k0 is chosen as 45, 63, and

40 for θ̂cn,P(x̄), θ̂ln,P(x̄), and θ̂n,H(x̄), respectively, and the corresponding estimates

are θ̂cn,P(x̄) = 0.225, θ̂ln,P(x̄) = 0.166, and θ̂n,H(x̄) = 0.247, respectively. Figure

3 shows that the path of θ̂cn,P(x̄) is relatively more stable than those of θ̂ln,P(x̄)

and θ̂n,H(x̄) when k0 ∈ [40, 100].

Figure 4 plots the estimated extremely high conditional quantiles of the birth
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Figure 3. Three estimators of the Weibull tail-coefficient θ versus k0 for the high birth
weight.

weights of baby girls and boys born to black mothers, of the average profile, from

the conventional QR and the proposed extrapolation estimators against the per-

centile level 100(1−ψn), where ψn = k1/n
1.01 with k1 ∈ {0.1, 0.2, . . . , 0.9, 1, 2, . . . ,

50}, and from the three extrapolation estimators based on θ̂cn,P(x̄), θ̂ln,P(x̄), and

θ̂n,H(x̄), denoted by EC, EL, and EH, respectively.

The following observations are derived from Figure 4. First, the estimates

from the conventional QR method are not monotonically increasing with the

quantile level, whereas such monotonicity is ensured by the extrapolation es-

timators. Second, for 100(1 − ψn) ranging over [99.8588, 99.9576], both the

QR and the extrapolation estimators suggest that the quantiles of the birth

weights of boys are higher than those of girls. However, for extremely high per-

centiles 100(1−ψn) > 99.9831, the QR estimates suggest an opposite relationship,

namely, that girls have higher birth weights than boys. This result is surprising,

because we often found that male infants are heavier than female infants, in gen-

eral. Based on the QR, the 99.98th percentile of the birth weight of an infant

girl born to an average mum is estimated to be 5,269.218 grams, and the 99.99th

percentile is estimated to be 5,674.657 grams. Further investigation shows that

these high estimates from the QR are mainly affected by one infant girl who has

an extremely high birth weight of 6,776 grams, and was born to a mother whose
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Figure 4. Estimation of the extremely high conditional quantile of the birth weights of
baby girls and boys born to black mothers of the average profile, using the conventional
QR and three extrapolation estimators.

first prenatal visit was during the second trimester. In contrast, the proposed

estimators are based on extrapolations from the (1 − ψn)th quantile and, thus,

are less susceptible to the extreme measurements of individual subjects.

Supplementary Material

The online Supplementary Material includes four sections. In Section S1,

we provide seven lemmas that are needed to derive the asymptotic results of the

proposed estimators. In Section S2, we provide two propositions that are used in

Section 4.3. Technical proofs of all four theorems are presented in Section S3. In

Section S4, we present Figure 1, which plots the RMISE of different estimators

versus k0 for the simulation study.
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