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SUMMARY

One major goal in microarray studies is to identify genes having different expression levels across different
classes/conditions. In order to achieve this goal, a study needs to have an adequate sample size to
ensure the desired power. Owing to the importance of this topic, a number of approaches to sample size
calculation have been developed. However, due to the cost and/or experimental difficulties in obtaining
sufficient biological materials, it might be difficult to attain the required sample size. In this article, we
address more practical questions for assessing power and false discovery rate (FDR) for a fixed sample
size. The relationships between power, sample size and FDR are explored. We also conduct simulations
and a real data study to evaluate the proposed findings. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The development of microarray technologies has revolutionized biomedical research. Microarrays
allow scientists to simultaneously estimate the expression levels of thousands of genes in a given
sample. Such high-dimensional data demand and motivate novel statistical approaches to the
experimental design, data analysis and interpretation. One main objective of microarray studies is to
identify genes with different expression levels between two or more conditions. Because thousands
of tests are conducted simultaneously, there is a significant multiple comparison issue and it is not
appropriate in general to control the false positives on a per comparison basis. Instead, the errors
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need to be controlled at a more stringent level. Two commonly used approaches are controlling the
family-wise error rate (FWER) and the false discovery rate (FDR). Control of FWER in microarray
studies can be conservative and usually has low power. In contrast, FDR measures the proportion
of false positives among the identified genes. It is less conservative and more commonly used in
microarray data analysis.

The power of a specific study is affected by the following factors: the proportion of differentially
expressed genes, the distribution of effect sizes, the variation across samples in each condition
and the sample size [1]. Sample size is probably the most important factor in the study design.
Due to its importance, a number of approaches to sample size calculation have been proposed in
the literature [2–11]. These studies have found that to achieve good power while controlling the
false positives at a low level (e.g. low FDR), a large sample size is usually required. For example,
under the rule that the number of genes called significant is the same as the number of nonnull
genes in the population, Tibshirani [12] observed that the sample size should be increased to 100
in order to get the FDR down to 5 per cent, depending on the proportion of genes truly changed
at two-fold. Similar ideal sample sizes were also reported by Jung [4], Pounds and Cheng [8] and
others. However, due to the cost and/or experimental difficulties in obtaining biological materials,
it might be difficult to attain such a large sample size.

In this article, in addition to re-addressing the sample size calculation problem, we present some
practical guidelines for assessing power and FDR for a fixed sample size (or for the largest sample
size available within the budget) in microarray experiments by studying the following two questions:

(1) For a fixed sample size and a desired FDR level, what is the maximum power achievable?
(2) For a fixed sample size and a desired power level, what is the minimum FDR achievable?

In addition, we address the relationship between power and FDR and the determination of an
appropriate FDR level to employ in practice. As an alternative to the common practice of declaring
all genes with corresponding test statistics above a given threshold as significant, we introduce the
concept of quantile thresholding where a fixed proportion of the genes that have the largest test
statistics are declared significant. The remainder of this paper is organized as follows. In Section 2,
we introduce the notation, describe the model and briefly review the history of FDR and its new
developments. We re-address the sample size calculation problem in Section 3 and study practical
questions for assessing power and FDR in Sections 4 and 5 with extensive simulations. Finally,
we analyze a real data set to evaluate the proposed findings in Section 6 and conclude the article
in Section 7 with some discussion.

2. T-STATISTICS AND FDR

Given a microarray experiment with m genes, one major goal is to identify differentially expressed
genes between different conditions. Let xi j ( j=1, . . . ,n1) and yi j ( j =1, . . . ,n2) denote the
observed expression levels of gene i under conditions 1 and 2, respectively. With proper normal-
ization, we assume that xi j and yi j are normally distributed with means �i1 and �i2 and standard
deviations �i1 and �i2. To identify differentially expressed genes is then equivalent to testing Hi0:
�i1=�i2 versus Hi1: �i1 �=�i2. We consider the following two-sample t-tests:

Ti = x̄i − ȳi
si

√
1/n1+1/n2

, i=1, . . . ,m
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where x̄i =∑n1
j=1 xi j/n1 and ȳi =∑n2

j=1 yi j/n2, and si is the pooled standard deviation defined as

si =((
∑n1

j=1(xi j − x̄i )2+∑n2
j=1(yi j − ȳi )2)/(n1+n2−2))1/2. Note that although we have assumed

a common variance for simplicity of exposition, the following analysis applies to unequal variances
or other t-tests (e.g. paired t-tests) as well.

Let n=n1+n2 denote the total number of arrays and �=n1/n the allocation proportion for
condition 1. Note that �= 1

2 represents a balanced design. When n is large, Ti is approximately
normally distributed with mean

√
n�(1−�)�i and variance 1, where �i =(�i1−�i2)/�i is the so-

called effect size. Thus, by assuming a reasonably large n (for example, n�10) for the moment so
that the approximation holds well, we can restate the hypothesis as Hi0: �i =0 versus Hi1: �i �=0.
When n is very small, we recommend the use of the exact t-distribution for the T -statistic rather
than a simple normal approximation.

Table I summarizes the various outcomes of testing m hypotheses, of which m0 represents the
total number of true null hypotheses and m1 represents the total number of false null hypotheses.
The quantity V is the number of false positives and R is the total number of rejections. In multiple
testing, the ratio of the false discoveries, V/R, is often of interest. Benjamini and Hochberg [13]
defined the FDR as

FDR=E

(
V

R

∣∣∣∣ R>0

)
P(R>0) (1)

Noting that in microarray studies, the scientists are rarely interested in the situation where no
genes are selected (i.e. R=0). Storey [14] introduced the positive FDR (pFDR) by removing the
term P(R>0) in (1). In the asymptotic setting, FDR and pFDR are equivalent and they possess
the same asymptotic properties. This can be observed by noting that limm→∞ P(R>0)=1 for any
nontrivial threshold. Both FDR and pFDR consider the expectation of the ratio V/R. Recently,
the quantity E(V )/E(R), called the proportion of false positives by Fernando et al. [15] or the
decisive FDR (dFDR) by Bickel [16], has also been introduced. We refer to it as dFDR for the
remainder of the article. dFDR is meaningful as long as P(R>0) �=0. Although dFDR fails to
describe the simultaneous fluctuations in V and R, it has some desirable properties such as it can
be optimized using decision theory without the independence assumption [16]. It is also interesting
to note that under the weak dependence criterion such as finite blocks and ergodic dependence,
there is little difference between FDR and dFDR because limm→∞ |FDR−dFDR|=0 [17].

Let M0 (size m0) denote the set of true null hypotheses and M1 (size m1) the set of false null
hypotheses. Let �0=m0/m denote the proportion of true null hypotheses. Let Hi =0 if the i th null
hypothesis is true, and Hi =1 otherwise. We reject the null hypothesis Hi0 if its corresponding
p-value, pi , is smaller than or equal to a given threshold �∈(0,1). Then it is easy to see that

dFDR(�)=
∑

i∈M0
P(pi��|Hi =0)∑

i∈M0
P(pi��|Hi =0)+∑

i∈M1
P(pi��|Hi =1)

(2)

Table I. Outcomes when testing m hypotheses.

Accept Reject Total

Null true U V m0
Alternative true T S m1
Total W R m=m0+m1
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Note that (2) holds under any dependence structure among the test statistics, as long as the
marginal distribution for each test statistic is maintained. As mentioned above, since there is little
practical difference between FDR, pFDR and dFDR when m is large and the dependence between
genes is not strong, we will not distinguish them in this article since microarray data usually
contain thousands of genes. Let �i = P(pi��|Hi =1) denote the power for the i th hypothesis test
and �=∑

i∈M1
�i/m1 the average power. Because the p-values corresponding to the true null

hypotheses are uniformly distributed, we have

FDR(�)= m0�

m0�+∑
i∈M1

�i
= �0�

�0�+(1−�0)�
(3)

3. SAMPLE SIZE CALCULATION

In this section, we derive the required sample size for achieving the desired power � while
controlling the level of FDR at �. On the basis of equation (3), we have

�= �(1−�0)

(1−�)�0
� (4)

Recall that for a reasonably large n, Ti is approximately normally distributed with mean√
n�(1−�)�i and variance 1. Therefore, Ti ∼N(0,1) for i ∈M0, and Ti ∼N(

√
n�(1−�)�i ,1) for

i ∈M1. For two-sided tests, we reject Hi0 if |Ti |>z1−�/2, where z� is the �th quantile of N(0,1).
Let �(·) denote the cumulative distribution function of N(0,1). Using the fact that z1−� =−z�,
we have �i (�)=�(

√
n�(1−�)|�i |+z�/2)+�(−√

n�(1−�)|�i |+z�/2) and thus

�(�)= 1

m1

∑
i∈M1

(�(
√
n�(1−�)|�i |+z�/2)+�(−√

n�(1−�)|�i |+z�/2)) (5)

Note that the second term in equation (5) is the minor term as long as the quantity
√
n�(1−�)|�i |

is nontrivial. Combining (5) and (4), we have

�= �(1−�0)

(1−�)�0

1

m1

∑
i∈M1

(�(
√
n�(1−�)|�i |+z�/2)+�(−√

n�(1−�)|�i |+z�/2)) (6)

The required sample size can then be obtained by solving equation (6), which can be done using
numerical methods such as the bisection method [4] or a simple grid search. The R code for
implementing the bisection method is available from the authors upon request. In practice, to
calculate the required sample size, we need to estimate the proportion of true null hypotheses
and the corresponding effect sizes in the set M1 (see the following section for more details).
Throughout this article, we take the smallest integer larger than n whenever necessary.

Equation (6) suggests that the required sample size is inversely proportional to �(1−�). This
implies that the most efficient design to achieve a desired power is the balanced design, i.e. �= 1

2 .
It is also easy to see that the required sample size decreases as the effect size increases. For the
special case that |�i |≡�>0 for all i ∈M1, by ignoring the minor term in equation (5) we have
n≈(z�−z�/2)

2/(�(1−�)�2), which is the same result found in Jung [4].
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4. POWER CALCULATION

In this section, we calculate the maximum power achievable, denoted by �max, when the sample
size n and the level of FDR � are given. For �(�) in equation (5), we show in Appendix A that

Lemma 1
(i) �(�) is a strictly increasing function of �∈[0,1] and (ii) �(�)/� is a strictly decreasing function
of �∈[0,1].

By (ii) and the fact that FDR(�)=�0/[�0+(1−�0)�(�)/�], FDR(�) is a strictly increasing
function of �∈[0,1] as long as �0 �=1. This suggests that the assigned level of FDR should not
be larger than �0. Because both �(�) and FDR(�) are strictly increasing functions of �, the power
is also a strictly increasing function of FDR. Therefore, for any given level of FDR �, there exists
a unique �max such that �max=�(�max), where �max satisfies FDR(�max)=�. This implies that, to
find �max, it suffices to find the unique maximum threshold �max. From equation (3), we have

�0�max

�0�max+(1−�0)�(�max)
=� (7)

where

�(�max)= 1

m1

∑
i∈M1

(�(
√
n�(1−�)|�i |+z�max/2)+�(−√

n�(1−�)|�i |+z�max/2))

By solving �max in equation (7) using numerical methods mentioned in Section 3, the maximum
power achievable can be estimated as

�̂max=�(�̂max)= (1−�)�̂0
�(1− �̂0)

�̂max (8)

where �̂0 is an estimate of the proportion of true null hypotheses.

4.1. Simulation study

To explore the effects of n, �, �0 and �i on the relationship between �max and FDR, we consider
the following four scenarios (plotted in Figure 1): (A) to explore the effect of n, we consider
n=10,20,40,80 with �=0.5, �0=0.8 and {�i , i ∈M1}∼U[0,2]; (B) to explore the effect of �,
we consider �=0.1,0.2,0.3,0.5 with n=20, �0=0.8 and {�i , i ∈M1}∼U[0,2]; (C) to explore
the effect of �0, we consider �0=0.4,0.6,0.8,0.95 with n=20, �=0.5 and �i ∼U[0,2] and (D)
to explore the effect of �i , we draw {�i , i ∈M1} from U[0,2], U[1,2], 1, 1.5 with n=20, �=0.5
and �0=0.8. Note that without loss of generality, by symmetry we have assumed that �i>0 for
any i ∈M1. Further, we set m=2000 throughout the simulations since it has little impact on the
relationship between �max and FDR.

In all settings, �max increases as FDR increases as expected because power is an increasing
function of FDR. For the same FDR level, Panel A shows that although �max increases with the
sample size as expected, the increase in power levels off when n becomes larger, which implies
that there is little benefit for further increasing the sample size after a certain size. Panel B restates
the fact that a balanced design is always more efficient. Panels C and D indicate that �max increases
when the proportion of true null hypotheses decreases or when the level of effect size increases.
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Figure 1. Plots of the power versus FDR. Four curves (solid, dashed, dotted, dash-dotted) correspond
to four different values of n (10,20,40,80) in panel A (various sample sizes), four different values
of � (0.1,0.2,0.3,0.5) in panel B (various �), four different values of �0 (0.4,0.6,0.8,0.95) in panel
C (various null proportions) and four different sets of {�i , i ∈M1} (U[0,2],1,U[1,2],1.5) in panel

D (various effect sizes), respectively.

Another interesting finding from these results is that most curves of �max on FDR are concave with
a clear elbow, especially when the power is nontrivial. To balance the trade-off between power
and FDR, we suggest the use of an FDR near the elbow point, which provides an effective power
while controlling FDR at a low level. Accurate determination of the FDR level can be critical.
One approach based on decision theory is to maximize the quantity c1�max(FDR)−c2FDR, where
c1�0 is the benefit of the achieved power and c2�0 is the cost paid for the falsely discovered
hypotheses. In addition, although m has little impact on the relationship between �max and FDR,
in practice, a larger FDR might have to be chosen to accommodate the typical microarray studies
having the order of 54 000 genes. More research is required to determine the FDR level for an
efficient control.

To check the validation of (8) in practice, we conduct simulations to evaluate the performance
of �̂max by reporting �̂max−�max as a measure of accuracy. Set m=2000 as before. Our first
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simulation study investigates the effect of �̂i by assuming that a consistent estimate of �0 is available
at this moment [18]. Noting that we estimate the effect size as (x̄i − ȳi )/si which is approximately
normally distributed with mean �i and variance 1/n1+1/n2 (see Section 2), we simulate �̂i from
N(�i ,1/n1+1/n2), where the true effect size �i is drawn from U[0,2]. We consider a balanced
design for simplicity and consider three different values of n (10,30, and 50). We further consider
two different levels of FDR (0.01 and 0.05) and three different values of �0 (0.6, 0.8 and 0.95).
We run 5000 simulations and report the mean values of �̂max−�max and their standard deviations
in Table II. In general, the FDR level has little impact on the accuracy of �̂max, whose accuracy
decreases as the sample size reduces. We observe little difference between �̂max and �max when
the sample size is at least moderately large. For a small sample size, e.g. n=10, �̂max is slightly
larger than �max. In addition, for each given sample size, �̂max becomes more variable when �0 is
approaching 1.

Our second simulation study does not assume the existence of a consistent estimate of �0. We set
�0=0.8 for illustration. Noting that most existing estimators for �0 in the literature are conservative
and overestimate �0 [19, 20], we consider two different values of �̂0 at 0.85 (i.e. m̂1=300) and 0.9
(i.e. m̂1=200). In each simulation, we draw m̂1 samples from {�̂i , i ∈M1} without replacement.
All other settings are the same as before. Let �̃max denote the estimated power, and we report the
mean values of �̃max−�max and their standard deviations in Table III. We also list in Table III the
corresponding results for �̂0=0.8 from the previous simulation study for comparison. Similar to
previous results, the FDR level has little impact on the accuracy of �̃max. We observe that when

Table II. Simulation results for the mean values of �̂max−�max and their standard deviations
(parentheses) in various settings.

�0 FDR n=50 n=30 n=10

0.6 0.01 0.0001 (0.007) 0.004 (0.008) 0.075 (0.009)
0.05 0.0000 (0.007) 0.002 (0.009) 0.066 (0.011)

0.8 0.01 0.0003 (0.010) 0.007 (0.012) 0.069 (0.011)
0.05 −0.0001 (0.010) 0.003 (0.012) 0.074 (0.014)

0.95 0.01 0.0004 (0.020) 0.013 (0.024) 0.051 (0.018)
0.05 0.0003 (0.021) 0.006 (0.024) 0.070 (0.022)

Table III. Simulation results for the mean values of �̃max−�max and their standard deviations
(parentheses) in various settings.

�̂0 FDR n=50 n=30 n=10

0.8 0.01 0.0003 (0.010) 0.007 (0.012) 0.069 (0.011)
0.05 −0.0001 (0.010) 0.003 (0.012) 0.074 (0.014)

0.85 0.01 −0.0003 (0.016) 0.006 (0.017) 0.069 (0.013)
0.05 −0.0002 (0.016) 0.002 (0.018) 0.074 (0.017)

0.9 0.01 −0.0001 (0.024) 0.006 (0.025) 0.069 (0.017)
0.05 −0.0007 (0.023) 0.002 (0.025) 0.075 (0.022)
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the inconsistency of �̂0 increases (i.e. �̂0−�0 increases), the mean difference between �̃max and
�max stays similar but the variation increases. Overall, �̃max is fairly robust to the choice of �̂0.

5. FDR CALCULATION

In this section, we calculate the minimum level of FDR achievable, denoted by FDRmin, when
the sample size n and the desired power � are given. Similar arguments to those in Section 4
indicate that FDR is also a strictly increasing function of power; thus, there exists a unique
FDRmin such that the desired power � is achieved. An easy way to calculate FDRmin is through
FDRmin=FDR(��)=�0��/[�0��+(1−�0)�], where �� is the unique solution of

∑
i∈M1

(�(
√
n�(1−�)|�i |+z�/2)+�(−

√
n�(1−�)|�i |+z�/2))=m1�

Under this setting, �� can be solved using numerical methods as before. The relationship between
FDRmin and power is also readable from Figure 1. In general, to achieve a desired power, FDRmin
increases with the proportion of true null hypotheses but decreases with the effect sizes and sample
size.

Let �i , i ∈M1, denote the threshold of the i th hypothesis test so as to have a detection power �
and �� denote the common threshold such that the average power equals �. For the special case
that |�i |≡�>0, the �i are all the same and thus �� =∑

i∈M1
�i/m1. In general, this relationship

does not hold between �� and {�i , i ∈M1} when the |�i | are not all the same. By ignoring
the minor term in equation (5) (or similarly for a one-sided test), �i has an explicit form as
�i/2=�(−√

n�(1−�)|�i |+z�). Define �̄=∑
i∈M1

�i/m1, �i (�̄)=�(
√
n�(1−�)|�i |+z�̄/2) and

�(�̄)=∑
i∈M1

�i (�̄)/m1. In Appendix B we show that

Lemma 2
(i) When �+ �̄/2�1, we have �(�̄)�� and thus �̄���; (ii) when �+ �̄/2>1, we have �(�̄)<� and
thus �̄<��.

Furthermore, we have FDR(�̄)�FDR(��) if �+ �̄/2�1 and FDR(�̄)<FDR(��) if �+ �̄/2>1
by noting that FDR(�) is an increasing function of �. In practice, it is common that scien-
tists are more interested in validating a small number of genes (e.g. top 10 or top 50 genes)
than all the genes inferred to be differentially expressed. This implies that using a quantile
threshold can also be of interest. Let �(k) denote the kth smallest value in {�i , i ∈M1}, �i (�(k))=
�(

√
n�(1−�)|�i |+z�(k)/2)+�(−√

n�(1−�)|�i |+z�(k)/2), then #(�i (�(k))��)=k. That is, when
�(k) serves as a common threshold for all the tests, the detection power is at least � for each of the
top k significant genes with �i��(k). For the special case that �med=median{�i , i ∈M1}, we have
P(�i (�med)��)=0.5, which implies that the detection power is at least � for half of the genes
with �i�median{�i , i ∈M1}.

6. REAL STUDY

We use a well-studied data set, the colon cancer data set [21] containing n1=22 normal colon tissue
samples and n2=40 colon tumor samples with expression levels from 2000 genes in each sample to
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evaluate the proposed findings. The main objective of this colon cancer study is to identify important
genes that can distinguish colon tumors from normal tissues. We follow the same normalization
steps as those in Huang and Pan [22]. That is, to remove possible array effects, we standardize
the data in each array by subtracting the median expression level of the array and then dividing
this value by the difference in its third quantile and its first quantile of the expression levels.

We use Storey’s method [20] to estimate the proportion of true null hypotheses. Noting that the
alternative p-values are more likely to be small, for a reasonably large p0∈(0,1), the majority of
p-values larger than p0 should correspond to the true null hypotheses. This suggests a conservative
estimate of �0 as �̂0=#{pi>p0}/m(1− p0). In this study, p0 is chosen as the median of all
p-values as in Ge et al. [23]. Now since the sample sizes for both tissues are at least moderate,
for simplicity, we calculate the p-values using the normal approximation. From the data set, we
obtain �̂0=0.616 and thus m̂1=768. We then treat the largest 768 values of observed |�̂i | as the
true {�i , i ∈M1}, where �̂i =(x̄i − ȳi )/si .

The plots of �̂max on FDR for various combinations of (n1,n2) are presented in Figure 2. It is
clear that the power increases as the total sample size increases when the ratio n1/n2 stays the
same. The dash-dotted line with n1=n2=31 is always above the solid line. This demonstrates
again that a balanced design is most efficient. It is also interesting to note that under the same level
of FDR, the power with (n1,n2)=(6,56) is even lower than that with (n1,n2)=(11,20), which
indicates that an extremely unbalanced design is not recommended in practice unless necessary.
As an illustration to determine the FDR level in the solid line, if we choose c1=1− �̂0 and c2= �̂0,
an efficient control suggests an FDR level at 0.098.

Figure 3 displays the pattern of FDR on power when the quantile threshold, �(k), is employed.
We consider �(100), �med, �(500) and ��, where �� is the threshold such that the average power is
exactly � (Section 5). As expected, FDR(�(k)) increases with k for any given power level. It is
interesting to see that �med has similar performance as ��, which suggests that �med can serve as
a proxy of �� in practice. In addition, when only a small number of top genes, e.g. k=100, are of
interest to scientists, we can control FDR at a very satisfactory level.

FDR

po
w
er

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 2. Plots of power versus FDR for the colon cancer data set. Five curves (solid, dashed, dotted,
dash-dotted and long-dashed) correspond to five different pairs of (n1,n2): (22,40), (11,20), (6,10),

(31,31) and (6,56), respectively.
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Figure 3. Plots of FDR versus the power when the quantile thresholds are used. Four curves (solid, dashed,
dotted and dash-dotted) correspond to four different thresholds (��, �med, �(100) and �(500)).

7. DISCUSSION

Our work is motivated by the fact that the sample size required for achieving good power and
low FDR in microarray studies is usually large and hard to obtain, due to the cost and/or other
experimental difficulties. Instead of sample size calculation under FDR control, we have studied
several practical questions for assessing power and FDR for a fixed sample size. The relationships
between power, sample size and FDR are explored. We hope our methods can help with microarray
study designs. Our methods can be further used in the post-experimental stage, such as to determine
the appropriate level of FDR control or to use a quantile threshold to follow up the top genes in
the validation study.

For simplicity of exposition, we have focused on experiments with two conditions. Our methods
can be generalized to more than two conditions or to more general settings. We have further
assumed that there is little difference between FDR, pFDR and dFDR. The relationship between
power and FDR is explored through the concept of dFDR. We note that the results in Sections
3–5 are still valid when the test statistics are correlated with each other by noting that (2) holds
in general. When the weak dependence of Storey et al. [17] does not hold, we cannot claim that
FDR and dFDR are asymptotically equivalent; thus, the relationship between power and FDR may
no longer hold. Further research is needed to explore the relationship between power and FDR
(or pFDR) in the situations where the data are strongly correlated. In addition, we have assumed
that the sample size is reasonably large (e.g. n>10), such that the T -statistics are approximately
normally distributed. When only a small sample size is available, we recommend the use of the
exact t-distribution for the T -statistic rather than a simple normal approximation. Simulations (not
shown) indicate that the patterns are also similar.

APPENDIX A: PROOF OF LEMMA 1

(1) The first result is made trivial by noting that both �(
√
n�(1−�)|�i |+z�/2) and �(−√

n�(1−�)

|�i |+z�/2) are increasing functions of �∈[0,1].
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(2) Let 	(·) denote the density function of N(0,1). By Hung et al. [24] or Sackrowitz and
Samuel-Cahn [25], it is easy to see that the density function of pi is

f (pi ) = 	(
√
n�(1−�)|�i |+z pi/2)

2	(z pi/2)
+ 	(−√

n�(1−�)|�i |+z pi/2)

2	(z pi/2)

∝ exp(−√
n�(1−�)|�i |z pi/2)+exp(

√
n�(1−�)|�i |z pi/2)

Note that f (pi )≡1 for any i ∈M0. When i ∈M1, f (pi ) is a strictly decreasing function of
pi ∈[0,1] by noting that z pi /2 is a strictly increasing function of pi ∈[0,1] and g(x)=ex +e−x is
strictly decreasing on x ∈(−∞,0). This implies that �i (�)/� is a strictly decreasing function of
�∈[0,1] for i ∈M1, and so is �(�)/�.

APPENDIX B: PROOF OF LEMMA 2

We prove result (i) first. For ease of notation, denote 
i =�i/2 and 
̄=∑
i∈M1


i/m. Result (i)

is then equivalent to proving that
∑

i∈M1
�(

√
n�(1−�)|�i |+z
̄)�m1� when �+ 
̄�1. Denote


i = 
̄+di where di ∈(−
̄,1− 
̄). Noting that
√
n�(1−�)|�i |= z�−z
i , to prove (i), it suffices to

prove that ∑
i∈M1

�(z�+z
̄−z
̄+di
)�m1�

When m1=2, let g(d)=�(z�+z
̄−z
̄+d)+�(z�+z
̄−z
̄−d)−2� and we need to prove that

g(d)�0 for any d∈(−
̄,1− 
̄). Without loss of generality, we assume d�0. Denote z
̄+d = y, then

d=�(y)− 
̄. We have

�d
�y

= �
�y

∫ y

−∞
	(t)dt=	(y)

This implies that (�/�d)z
̄+d =1/	(z
̄+d) and similarly (�/�d)z
̄−d =−1/	(z
̄−d). Thus,

�
�d

g(d) = −	(z�+z
̄−z
̄+d)

	(z
̄+d)
+ 	(z�+z
̄−z
̄−d)

	(z
̄−d)

� e−B1/2−e−B2/2

2�	(z
̄+d)	(z
̄−d)

where B1=(z�+z
̄−z
̄−d)
2+z2


̄+d
and B2=(z�+z
̄−z
̄+d)

2+z2

̄−d

. Noting that z�+z
̄�0 since

�+ 
̄�1, we have

B1−B2=2(z�+z
̄)(z
̄+d −z
̄−d)�0

since z
̄+d�z
̄−d for any d�0. Therefore, (�/�d)g(d)�0 and thus g(d)�g(0)=0.
Form1=3, we define g(d1,d2)=�(z�+z
̄−z
̄+d1

)+�(z�+z
̄−z
̄+d2
)+�(z�+z
̄−z
̄−(d1+d2)

)

−3�. Without loss of generality, we assume (d1�0,d2�0) or (d1<0,d2<0). For d1d2<0, we can
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classify it to case 1 by reordering the terms of g(d1,d2) when d1+d2>0, or case 2 otherwise.
Similar arguments as above lead to g(d1,d2)�0 for both (d1�0,d2�0) and (d1<0,d2<0).

Denote M+
1 ={i :di�0, i ∈M1} and M−

1 ={i :di<0, i ∈M1}. And let L+ =#{M+
1 } and L− =

#{M−
1 }. Clearly, L++L− =m1. Thus, by the fact that

∑
i∈M+

1
di +∑

i∈M−
1
di =0, we have

∑
i∈M1

�(z�+z
̄−z
̄+di
) = ∑

i∈M+
1

�(z�+z
̄−z
̄+di
)+ ∑

i∈M−
1

�(z�+z
̄−z
̄+di
)

� (L+−1)�+�(z�+z
̄−z
̄+∑
i∈M+

1
di

)

+(L−−1)�+�(z�+z
̄−z
̄+∑
i∈M−

1
di

)

�m1�

Therefore, �(�̄)��.
The proof of result (ii) is shown to be essentially the same as in (i) by noting that z�+z
̄>0

for �+ 
̄>1, and thus omitted.
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