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Abstract—Although many feature selection methods for classification have been developed, there is a need to identify genes in high-

dimensional data with censored survival outcomes. Traditional methods for gene selection in classification problems have several

drawbacks. First, the majority of the gene selection approaches for classification are single-gene based. Second, many of the gene

selection procedures are not embedded within the algorithm itself. The technique of random forests has been found to perform well in

high-dimensional data settings with survival outcomes. It also has an embedded feature to identify variables of importance. Therefore,

it is an ideal candidate for gene selection in high-dimensional data with survival outcomes. In this paper, we develop a novel method

based on the random forests to identify a set of prognostic genes. We compare our method with several machine learning methods and

various node split criteria using several real data sets. Our method performed well in both simulations and real data analysis.

Additionally, we have shown the advantages of our approach over single-gene-based approaches. Our method incorporates

multivariate correlations in microarray data for survival outcomes. The described method allows us to better utilize the information

available from microarray data with survival outcomes.

Index Terms—Cancer, gene selection, iterative feature elimination, microarrays, random forest, survival.

Ç

1 INTRODUCTION

THE identification of genes with high prognostic value
and predictive power in clinical trials may help patients

with cancer and other diseases. This may result from
discovery of genes that serve as novel drug targets or those
that can help guide better therapeutic decisions.

Many gene selection methods in the classification setting
have been proposed in recent years. One of the earlier
approaches was developed by Dı́az-Uriarte and Alvarez de
Andrés [1] for selecting genes with a random forests
recursive feature elimination algorithm for class prediction.
Duan et al. [2] proposed a recursive support vector machine
gene selection algorithm. Tang et al. [3] described a two-
stage recursive feature elimination strategy for gene
selection. Niijima and Okuno [4] extended the Laplacian
linear discriminant analysis and developed a new algorithm
for unsupervised feature selection. Mao and Tang [5]
proposed a regularized recursive Mahalanobis separability
measure for gene selection for classification problems.

Mundra and Rajapakse [6] developed a filter-based support
vector machine recursive feature elimination based on
mutual information for the same purpose. Luo et al. [7]
proposed an improved support vector machine recursive
cluster elimination that utilizes clusters to further improve
gene selection performance for the classification setting.

Bøvelstad et al. [8] have pointed out the importance of
survival prediction. There are some implicit feature selec-
tion techniques such as boosting for survival outcomes [9].
Others developed Bayesian approach using model aver-
aging [10]. However, few methods of multivariate gene
selection have been developed for censored survival data.
Current approaches are mostly univariate approaches, and
the number of genes is usually chosen with an arbitrary
cutoff. The purpose of this paper is to introduce an iterative
feature elimination algorithm for gene selection using
random survival forests. The technique of random forests
is among the best for correlating survival time with
microarray data [11], [12]. We extend existing methods to
survival phenotype and compare our method with other
machine learning approaches that are known to do well in
the survival setting. Our approach provides an alternative
to univariate gene selection (such as Dunkler et al. [13]) for
survival outcomes, with enhanced operating characteristics
allowing the researchers to focus on a smaller set of genes
for high-dimensional data.

2 METHODS

2.1 Random Forests

The random forest technique was first proposed for classifi-
cation and regression settings [14]. The first version of
survival forests, random forests for censored data, was
implemented in [15]. The key difference between random
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forests classification/regression and its survival counterpart
is that for random survival forests [16], the outcome of interest
is a set of survival times with a corresponding censoring
indicator. As a result, the split criteria for censored survival
data are different from standard random forests for classifi-
cation and regression, which uses the Gini criterion [14].

These differences are outlined in more detail in Section 2.2.
However, the main properties of the original random forests
are preserved in the random survival forests algorithm. For
gene expression data, we treat each individual gene as a
continuous intensity value. A random survival forest
encompasses many binary trees, each formed by a determi-
nistic algorithm. First, each tree is built using a bootstrap
sample of the patients of interest. Second, a best binary split is
chosen using a subset of genes in the data set. Unlike
classification and regression trees (CARTs), no pruning is
involved. Several split criteria are available in random
survival forests; we apply log-rank (LR), log-rank score
(LRS), conserve, and random, for split criteria as described in
Section 2.3. Each observation is assigned to a leaf, the
terminal node of a tree, according to the order and values of
the predictor variables.

2.2 Random Survival Forests Algorithm

1. Draw bootstrap samples from the original data ntree
times, where ntree is the number of trees. For each
bootstrap sample, some observations are left out-of-
bag (OOB).

2. A binary survival tree is grown for each bootstrap
sample.

3. Let p be the number of genes in the data set; at each
node of the tree, the number of genes selected at
random for splitting will be p1=2. This choice as
suggested by Lunetta et al. does not have strong
influence on the prediction error and variable
importance [14], [15], [17].

4. Using one of the split criteria described in Section 2.3,
a node is split using the single gene from the p1=2

randomly chosen genes that maximizes the survival
difference between the children nodes.

5. The splitting continues until each terminal node size
reaches the minimum number of events with unique
survival times. The default is three for right censored
data [16].

6. The binary survival trees are then aggregated to
obtain the ensemble cumulative hazard estimates as
detailed below.

The binary trees are aggregated to form the forest
through using ensemble cumulative hazard function
(eCHF). The idea is essentially grouping the hazard
estimates from the terminal nodes. The CHF estimates for
a terminal node L is the Nelson-Aalen estimator

�̂LðtÞ ¼
X
ti;L�t

dti;L
Rti;L

; ð1Þ

where ti;L ¼ distinct survival time, dti;L ¼ the number of
events and Rti;L ¼ the number of individuals at risk at time
ti;L. For every binary survival tree with Q terminal nodes,
there will be Q different CHF estimators. The CHF estimate
for an individual inew with gene predictor genenew can be

found by identifying which terminal node includes the
individual. That is, the CHF estimate is equal to �̂LðtÞ if inew

ended in terminal node L. The eCHF is simply the sum of

the CHFs across the bootstrap samples divided by number
of trees. Let n be the total number of individuals, the

expected number of ensemble events can be obtained by
summing over time Tj for j ¼ 1 to n.

The OOB error rate is based on a prediction measure
called Harrell’s concordance index, denoted as C [18]. The
OOB error rate, defined as 1� C, where C 2 [0,1], measures
how well the random forests correctly ranks the survival of
any pair of individuals. A value of (1� C) of 0.5 corresponds
to a random guess and 0 means perfect concordance. The
random survival forests implements both “randomsplit”
and “permute” for variable importance. The latter is the
same way Breiman used to perturb a variable in the original
Random Forests algorithm [14]. The variable importance for
each gene, used in Step 1) of Section 2.4, is calculated by
permutation. The random survival forests algorithm per-
mutes the values of the gene in the OOB cases, and the cases
with permuted values are dropped down their in-bag
survival tree. The cumulative hazard function is then
calculated for each tree and aggregated across the trees.
The randomly permuted values of the gene in the OOB
individuals and the outcome of interest are independent of
each other. The variable importance for a predictor x is equal
to PEo-PEn, where PEo is the prediction error of the original
ensemble and PEn is the prediction error of the new
ensemble. Variable importance is based on the concordance
index described above and measures the extent of mis-
classification when the variable of interest becomes inde-
pendent of outcome for the random survival forests.

2.3 Split Criteria

We will describe two split criteria that performed well in
our study. Let iði ¼ 1; . . . ; nÞ denotes a single individual;

and x denotes one of the genes. The proposed split is of

form x � c and x > c, where c is the cutoff value.
Log-rank. The log-rank split criterion (2) [19], which

measures the node separation, is based on the log-rank test

statistic defined as

LRðX; cÞ ¼
PE

i¼1 dti;child1
� EðDiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPE

i¼1 varðDiÞ
h ir ; ð2Þ

where E is the number of distinct event times in the
parent node, dti;childj is the number of events at time ti in
the child nodes j ¼ 1; 2, and Rti;childj is the number of
individuals at risk at time ti in the child nodes j ¼ 1; 2,
and Rti ¼

P2
j¼1 Rti;childj , dti ¼

P2
j¼1 dti;childj , Di, is the ran-

dom variable corresponding to the number of events in
child node j ¼ 1 for the ith distinct event time, EðDiÞ ¼
Rti;child1

ðdti=RtiÞ is the expectation, V arðDiÞ ¼ dtiðRti � dtiÞ=
ðRti � 1Þ �Rti;child1

=Rti � ð1�Rti;child1
=RtiÞ is the variance.

The best split is defined as the one that maximizes the
absolute value of the equation above.

Log-rank score. Let n1 ¼
Pn

i¼1 IðXi � cÞ, where Ið:Þ is an

indicator function. The log-rank score split criterion (3),
which measures the node separation, uses the following

equation:
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LRSðX; cÞ ¼
P

Xi�c ai � n1 �affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 1� n1

n

� �
s2
a

q ; ð3Þ

where for individual i, ai ¼ Ii �
P�i

l¼1
Il

n��lþ1, as defined in
[22], where Ii ¼ 1 if an event is observed for individual i and
0 otherwise; �l ¼

Pn
i IðSi � SlÞ is the number of observed

events or censored, occurring at survival time Sl or before;
and �a and sa

2 are the sample mean and sample variance of
ai, respectively. The best split is defined as the one that
maximizes the absolute value of the LRS equation above.

Conserve split criterion. Another type of splitting rule is
the conservation of events [23]. Denote the Nelson-Aalen
cumulative hazard estimator (4) for child j as

^_jðtÞ ¼
X
t1;j�t

dt1;childj
Rt1;childj

; ð4Þ

where ti;j are the ordered event times for child j.
The conservation of events asserts that the total number

of events is conserved in each child (5), i.e.,

Xnj
i¼1

�ðTi; childjÞ ¼
Xnj
i¼1

1i;childjðcensoringÞ; ð5Þ

where 1i;childjðcensoringÞ is the censoring indicator.
Let Tð1Þ;childj � Tð2Þ;childj � � � � � TðnÞ;childj be the ordered

time points for child j, and 1ðiÞ;childjðcensoringÞ be the
corresponding censoring indicator for TðiÞ;childj , for k ¼
1; . . . ; nj

ConðX; cÞ ¼ 1

Rti;child1
þRt1;child2

X2

j¼1

Rt1;childj

Xnj�1

k¼1

jMk;jj; ð6Þ

where

Mk; childj ¼
Xk
i¼1

�
_�
TðiÞ; childj

�
�
Xk
i¼1

1ðiÞ; childjðcensoringÞ:

The Con(X,c) (6) measures whether the two groups are well
separated and ð1þ ConðX; cÞÞ�1 is used in the program. It
finds the best split by finding children closest to the
conservation of events principle.

Random split criterion. The last splitting rule is
“random” which implements a purely random uniform
splitting [24]. For each node, a variable is randomly selected
from a random set of

p
p variables. For a chosen split

variable X, a random split point is chosen among all
possible split points on that variable.

2.4 Gene Selection with Random Survival Forests

The schema for the random survival forests gene selection
algorithm is presented in Section A of the supplementary
materials, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TCBB.2012.63. A description is as follows:

1. Gene expression and survival data are fed as input to
the random survival forests algorithm. For each gene,
v1; v2; v3; . . . ; vp, the variable importance is calculated.

2. For iteration i, order the genes by variable im-
portance in descending order and remove the
bottom 20 percent (default). 20 percent is also the

default chosen by [1] Dı́az-Uriarte and Alvarez de
Andrés and real data analysis also suggests that this
is a good choice, see Section 5.1. Call this removed
set gsi.

3. Calculate the OOB error rate (1-C as defined above)
associated with the set gsi using the expected
number of ensemble events from random survival
forests and the observed survival outcome.

4. Repeat Step 2 until gsi contains only two genes. This
is the limit for inclusion if we consider a multivariate
gene selection.

5. Find the set of genes with the minimum number of
genes such that the OOB error rate is within 1
standard error (s.e.), default, of the minimum OOB
error rate, mOOB, of all iterations. That is argmini

f#gsig : mOOB� s:e: � OOBi � mOOBþ s:e. Th i s
one s.e. rule is commonly used in the classification
tree literature [1], [23], [24]. The sampling error is
determined by OOBi and the total number of
subjects.

2.5 Estimation of Error Rates

Given the iterative nature of the approach, the OOB error
underestimates the true error rate and cannot be used to
assess the overall error rate. This is analogous to the reasons
that lead to selection bias [25], [26]. Therefore, we will use
the 10 times 10-fold cross-validation, in which the gene
selection procedure is applied to each training sample. The
selected genes will then be used to predict the expected
number of ensemble events in the testing set to assess
prediction error rates. However, from the perspective of
selecting the final optimal number of genes, incorporating
OOB error rates to perform gene selection is not necessarily
a bad procedure [1], [27].

3 OTHER MACHINE LEARNING METHODS

3.1 Random Conditional Inference Forests

Conditional inference forests [28] (R package party [29])
involves building many conditional inference trees under a
binary recursive partitioning algorithm. The first step
involves variable selection by testing a global null hypoth-
esis of independence between any of the predictors and the
survival outcome of interest. The algorithm terminates if the
hypothesis cannot be rejected, otherwise, the predictor with
the strongest association to the survival outcome will be
selected. A binary split on the log-rank score split criterion
is implemented using the selected predictor. The steps
above are then recursively repeated.

3.2 Survival Neural Network

The neural network for survival analysis [30] (R package
survnnet [31]) utilizes the commonly used structure of a
feed-forward network. A neural network consists of an
input layer, hidden layers, and an output layer. Each layer
is composed of several neurons which receive output from
neurons in the previous layer. The output is generated
based on a specific transformation. Weights are applied to
the input values between the layers. The goal of a neural
network procedure is to seek values for the weights to fit
the training data well. In the training procedure, the
weights are iteratively updated to minimize the differences
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of the observed output and the generated output. This is
usually done using a back propagation algorithm. We use
parametric survival net, fitting a Weibull distribution to the
data. The log hazard is modeled as a function of covariates,
input, with a single linear output. Other settings include
three hidden layers, Weibull shape parameter p ¼ expð0:1Þ,
and skip-layer units set to true.

3.3 Survival Cox Boosting

Given a set of outcome and predictors, the goal is to
approximate the outcome with a function. Cox boosting (R
package mboost [32]) proceeds as follows to optimize a loss
function. First, initialize the function to a constant offset.
Second, compute the residuals defined as the negative
partial log-likelihood for Cox models. Third, fit the negative
gradient vector by a base procedure, in this case, a
component-wise univariate linear model as described in
[33]. Fourth, update the function by taking a step of size 0 to
1 of the base learner. The second to fourth steps are
repeated until a predetermined number of iterations are
completed. The boosting algorithm is based on functional
gradient descent. For more details see [34], [35].

3.4 Survival Support Vector Machine

The goal of the support vector machine for survival (R
package survpack [36]) is to find a nonlinear hyperplane that
separates the individuals who had events before time t and
those without an event at that point. The nonlinear relation-
ship is obtained from a reproducing kernel Hilbert space
with a Gaussian kernel of width 1. This procedure is repeated
at every event time. As in soft-margin support vector
machines, the survival counterpart allows for cases when
the hyperplanes do not exist by penalizing observations that
lie on the other side of the margin. The minimization problem
involves a sum that is based on the concordance index [37].
The penalty term is set to 1. The optimization problem is a
positive-definite quadratic problem and is solved by using
sequential minimal optimization algorithm.

3.5 Gene Selection with Random Conditional
Inference Forests or Survival Neural Network

To compare with our approach described Section 2.4,
Random Conditional Inference Forests is incorporated with
Cox regression gene selection following a similar scheme
for the iterative feature elimination algorithm. Similarly,
this is done for Survival Neural Network. A description is
as follows:

1. For each gene, univariate Cox regression is run.
2. For iteration i, order the genes by p-values in

ascending order and remove the bottom 20 percent.
3. Calculate the concordance index associated with the

set gsi using the predicted survival time from
Random Conditional Inference Forests or Survival
Neural Network.

4. Repeat Step 2 until gsi contains only two genes.
5. Find the set of genes with the minimum number of

genes such that the error rate is within 2 s.e. Two is
used because error rate tends to be the lowest with the
largest number of genes chosen based on p-values
from univariate Cox regression with either condi-
tional inference forest or survival neural network.

4 DATA SETS

4.1 Real Data Sets

The data sets used are given in Table 1. To improve the
efficiency of the procedure, genes were filtered to contain
only those that are mapped to known genes in cancer
pathways [http://www.broad.mit.edu].

4.2 Simulation Data Sets

Our simulation design is to investigate the performance of
our algorithm both under the null of no signal and under
the alternative with different settings. This setup is similar
to [1]. We simulated data under various settings with
different numbers of independent dimensions, d ¼ 1; 2; 3,
and 10, b ¼ 100, and different number of genes per
dimension, g ¼ 5; 20; 100. The sample size n is 50. The
genes in each dimension are simulated from a multivariate
normal distribution MVNð0;�Þ.

All genes have a variance of 1 from the multivariate
normal distribution, and the correlation between genes
within a dimension is 0.9, whereas the correlation between
genes among dimensions is 0. In other words, the covariance
matrix � is a block-diagonal matrix of size d � b by d � b with
each of the b by b diagonal blocks ��, and the rest of the
matrix is zero. After the genes that belong to the dimensions
are generated, we add another 1,000 U[�1; 1] variables to
the original matrix of genes. The variance-covariance matrix
is a block-diagonal matrix

X
¼

P
� 0 � � � � � � ..

.

0
P

� 0 . .
. ..

.

..

.
0

P
� 0 ..

.

..

. . .
.

0
P

� 0

..

.
� � � � � � 0

P
�

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
ðd�bÞ�ðd�bÞ

;

X
�

¼

1 0:9 0:9 0:9 0:9

0:9 1 0:9 0:9 0:9

0:9 0:9 1 0:9 0:9

0:9 0:9 0:9 1 0:9

0:9 0:9 0:9 0:9 1

0
BBBBBB@

1
CCCCCCA
b�b

:
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The survival time S, is defined as S ¼ expð�X� þ "Þ, where
X is the simulated gene expression matrix and � represents
the coefficient parameter. For the null case, � equals 0 for all
the predictors, " � Nð0; 2Þ, and the generated survival time
is permuted for each run. Under the alternative case, �
equals 1/2d for different numbers of informative genes,
ig ¼ 2; 4; 5; 6, and 10, the " term disappears, and � ¼ 0
otherwise. The censoring time was generated from
N(max(S),20), which yields 20-40 percent censoring for
each simulated data set. We have also investigated when
� ¼ 1=3d and 1=d; " � Nð0; 1Þ and N(0,3).

To calculate the error rate under the null and alternative
cases, we first obtain the selected genes, gs, and calculate the
10-fold cross validation error rate and then repeat the 10-fold
cross validation using a randomly selected set of genes of #gs.

5 RESULTS AND DISCUSSIONS

5.1 Application to Data Sets

MCL is a data set that consists of microarray and survival
data for patients with mantle cell lymphoma [38]. DCL is a

data set that contains microarrays and survival information
for patients with diffuse large B-cell lymphoma after
chemotherapy [39]. NKI is a data set that includes
microarray and survival data for patients with primary
breast cancers [40].

Table 2 shows a comparison of different machine learning
algorithms for survival prediction and random survival
forests with gene selection (top half) or without gene
selection, i.e., using all genes (bottom half). The average 10
times 10-fold cross validation error rates from the algorithms
with gene selection is comparable to those using all genes.
This finding is consistent with Dı́az-Uriarte and Alvarez de
Andrés, who investigated gene selection in random forests
classification [1]. The numbers of genes selected by the
different algorithms are displayed in Table 3. Table 3 also
shows the number of genes selected in the different training
sets, pairwise correlation among the selected genes (origi-
nal), and the proportion of genes selected in the original set
that appears in the training set. Unlike the cforestþ selection
and neural networkþ selection, our iterative feature elimina-
tion algorithm with random survival forests has lower
correlation among genes as it is a multivariate-based gene
selection algorithm. In terms of proportions of genes in
training that are in the original data, cforestþ selection and
our iterative feature elimination algorithm performed
similarly. Even though both cforestþ selection and neural
networkþ selection uses univariate Cox model as the method
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TABLE 2
Gene Selection Results

Comparison of different methods with selected genes and all genes—
average over 10 times (10-fold) cross validation error rates. “NA” is
reported for Cox Boosting for NKI data because an R error message
occurred while running this algorithm for this data set.

TABLE 3
Summary Statistics of Gene Selection

Summary statistics of gene selection over the 10 times 10-fold cross
validation run. Gene selected (training)—median (first quartile, third
quartile). Proportions of genes—median (first quartile, third quartile).



for ranking genes, the iterative feature elimination algorithm
for the former outperforms the latter in all three data sets.
Integrated Brier Score, which measures how well the
survival function is estimated, was also used, see
Section B, available in the online supplemental material.

Table 2 shows the comparison of different split methods.
Overall, none of the split criteria from random survival
forests is superior to others. Given the variation in
performance, unless there is a special preference, we
recommend log-rank for the iterative elimination algorithm
as it is the default chosen for random survival forests [16].
Table 4 shows how the gene selection algorithm performs
under an alternative choice of 0 and 0.5 s.e. In terms of
average CV error, the default 1 s.e. and the alternative choices
of standard errors results are very similar. However, the
number of genes selected are 168, 58, and 77 for MCL, DCL,
and NKI, respectively, for 0 s.e. The high number of genes is
much less desirable than what we found in the case of 1 s.e.,
with 3, 15, and 14 genes, respectively. The one standard error
rule is consistent with what has been used in the machine
learning literature [23], [24]. 0.5 s.e. which produces higher
proportion of genes selected in the original for DCL and NKI
may be considered if higher number of genes is desired.
Figure of Section C, available in the online supplemental
material, is a plot of the average 10 times 10-fold cross
validation error rates against the number of trees used to
perform the gene selection.

For all three data sets, the average cross validation error
rates are consistent for 1,000 trees or more. Therefore,
1,000 trees are used in all other analyses. For the MCL data
set, the error rate converges with around 500 trees. Figure of
Section D, available in the online supplemental material,
investigates the tradeoff between increasing correlation or
strength of the trees among a forest. Overall, it shows for
the three data sets that the default number of genes used for
splitting performs quite well. Table 5 illustrates the impact
of the percentage of features dropped on the average cross
validation error rates. If we increase the percentage of
features dropped from the 20 to 50 percent, the average
cross validation error rates are slightly worse with 5, 21, and

11 genes chosen for MCL, DCL, and NKI, respectively. And
for 80 percent dropped, it essentially removes the flexibility
of the iterative feature elimination algorithm because the
number of genes is fixed for all runs at 10, 11, and 22 for
MCL, DCL, and NKI, respectively. Therefore, we recom-
mend dropping 20 percent of the features at each iteration
with 1,000 trees.

The selected genes for MCL were PRIM1, PCNA, and
ASPM. PCNA has been shown to be associated with
proliferation and survival of mantle cell lymphoma [41],
[42]. The selected genes for DCL were PHKB, FLJ20703,
BMP6 (2x), PTGES, TKT, PLAU, SPARC, CCL2, CXCR6,
ITGAL, DAXX, CTSF, NFKBIL1, and SH3BGRL. BMP6,
which was selected twice, has been identified as a potential
risk predictor for diffuse large B-cell lymphoma (DLBCL)
and is hypermethylated in aggressive forms of lymphoma
[43]. SPARC is one of the genes in a CD5 DLBCL signature
[44]. CCL2, also known as MCP-1, is produced in primary
central nervous system lymphomas which consist mostly of
DLBCL [45], and it is involved in the migration and
localization of follicular lymphoma cells [46]. CXCR6 is
one of the four chemokine receptors identified as a good
classifier between MALT lymphoma and extranodal
DLBCL [47]. ITGAL, also known as CD11a, is detected on
some B-cell clones and is hypothesized to be related to
tissue localization of B-Chronic Lymphocytic Leukemia
[48]. Two research groups have discovered that DAXX is
closely tied with the disease mechanism of B-cell lympho-
mas [49], [50]. A common NFKBIL1 variant is found to be
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TABLE 4
Impact of Standard Error

Impact on the average CV error rate under different standard error
values for determining the mOOB.

TABLE 5
Impact of Percent of Features Dropped

Impact on the average CV error rate with different percentage of
features dropped.



associated with non-Hodgkin lymphoma risk [51]. The
selected genes for NKI are DNMT3B, FAF1, RFC4, ADFP,
CIZ1, PIR, ABCF1, CANX, AP3S2, SERPINA5, CTSL2,
TMEPAI, CCNB1, and HMOX1. CIZ1 is an estrogen
receptor coactivator, and plays a regulatory role in the cell
cycle progression of breast cancer [52], [53]. Researchers
using derived PIR, PARP-inhibitor-resistant, clones were
able to show that resistance to PARP inhibition can be
acquired by deletion of a mutation in BRCA2 which is a
well-known breast cancer gene [54]. Other researchers have
found SERPINA5 to be a potential positive prognostic factor
for breast cancer [55]. CCNB1 has been identified as a
prognostic marker in lymph node negative breast cancer
[56]. Further discussions of these genes can be found in
Section E, available in the online supplemental material.

We also compared our proposed algorithm with that of
univariate gene selection (single-gene-based) using Cox
regression and correcting for multiple comparison using
FDR [57], [58]. Under this method, the numbers of genes
found to be significant at 0.05 q-value levels were 497, 7, and
897 for MCL, DCL and NKI, respectively. For the NKI data
set, there were 897 found by Cox model with 5 percent FDR,
and only two of the 14 found by our method did not overlap
with Cox model. For the DCL data set, there were seven
found by Cox model with 5 percent FDR, only two
overlapping with our method. For MCL, there were 497
found by the Cox model with 5 percent FDR, and only one of
the three found by our method did not overlap with the Cox
model. We performed DAVID analysis to look at enriched
pathways, and the DCL and NKI data sets did not result in
any significantly enriched pathways after multiple testing
adjustments [59]. For the MCL data set, 15 KEGG pathways
were found to be significant. When we use (SE ¼ 0), it
identified more genes, as it chooses the iteration that has the
lowest error rate. For NKI, 24 of the 77 were not found in the
897 from the univariate Cox regression model with 5 percent
FDR. For DCL, 2 of the 58 were not found in the 7 from the
univariate Cox regression model with 5 percent FDR. And
for MCL, 107 of the 168 were not found in the 497 from the
univariate Cox regression model with 5 percent FDR. With
the exception of DCL, the set of genes found by using our
approach is much more manageable and picks out a realistic
set of genes for further testing and validation. In addition,
our approach uses random forests which implicitly takes
into account the way the genes interact.

Unlike univariate gene selection, our approach does not
require the user to set a threshold cutoff for p-values or q-
values. Our algorithm contains tuning parameters such as
the s.e. that can be modified to vary the number of genes
selected. We recommend using 1 s.e. as it is commonly used
in the classification tree setting. Additionally, a reasonable
number of genes were obtained from the three real data sets
analyzed. These genes can be tested for further validation.

5.2 Simulation Results

To assess the cross validation error rate under the null of no
signal and the alternative, we performed simulations as
described above. For every simulated data set, we first
performed the gene selection procedure and then obtained
the error rates from the 10-fold cross-validation using the
selected genes. For both type I error and power, we
calculated the average of the 10-fold cross-validation error
over 100 simulations.

From Table 6, under the case of no signal, we see that the
average cross-validation error rate ranges from 0.43 to 0.45,
slightly better than random. The median and average
number of genes chosen is approximately two to three for
various settings, including genes per dimension of 5, 20, 50,
and 100 and dimensions of 1, 2, 3, and 10. For the case with
informative genes, Table 7, we see that the median and
average number of genes selected across the simulations is
very close to the true value under different settings. The
error rates are close to 0.05 for the one-dimension cases with
various numbers of genes per dimension. As the number of
dimensions increases to two and three, the error rates hover
around 0.11 to 0.15. The above simulation demonstrates that
our method is performing well under the null and alter-
native cases. Additional results can be found in Sections F
and G, available in the online supplemental material.

5.3 Computational Time

For a comparison of the computational time of the single
processor and the parallelized versions, please see Table 8.
Parallelization takes place after the importance measure
was calculated for the data set as a whole, therefore, only
the error rate calculations were parallelized. Performance
can be further improved if the parallelization can take place
within the C code called within R.
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TABLE 6
Under the Null—No Signal

Simulation results: Average CV error rate under the null of no signal.

TABLE 7
Under the Alternative—With Informative Genes

Simulation results: Average CV error rate under the alternative with
informative genes.



6 CONCLUSIONS

High-throughput genomics data can help predict the

prognosis of patients in complex diseases like cancer. We

developed a method to identify a set of prognostic genes

that predicts the survival of patients, compared several

machine learning methods and various node split criteria

using several existing data sets, and evaluated our method

via simulation. Our method performed well under the null

and alternative cases. We applied our method to data sets

on breast cancer, B-cell lymphoma, and mantle cell

lymphoma. Using these data sets, we demonstrated the

disadvantages of using a univariate gene selection method.

Our approach has the advantage of being able to identify a

small set of genes while preserving the predictive accuracy

for survival. Univariate methods which do not take

correlation into account can often pick out too many genes,

making further validation difficult. However, they can be

coupled with iterative feature elimination algorithms like

cforest+selection developed in this paper. We also investi-

gated the performance of our gene selection algorithm

under various settings, including the percentage of features

dropped, the standard error for choosing mOOB, and the

number of trees used. To the best of our knowledge, our

gene selection method is the first proposed to incorporate

multivariate correlations in microarray data for survival

outcome using machine learning methods. It will be

interesting to compare the proposed method with other

approaches based on gene pairs [60]. We emphasize that the

goal of this procedure is not to identify signature, but to

pick out genes for further validation. The algorithm

proposed in this paper is for gene selection for a particular

training set in high dimensional data, such as microarrays.

In the future, incorporating pathways into gene selection

should help enhance the predictive ability and interpret-

ability of the findings [61].

7 SOFTWARE

Three R packages geneSelRSF, pgeneSelRSF (parallelized
version of geneSelRSF), and geneSelCIF are available for
download at [62]: (http://www.duke.edu/~hp44/gene-
SelRSF.html).
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