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Estimation of variances and covariances is required for many statistical methods
such as t-test, principal component analysis and linear discriminant analysis.
High-dimensional data such as gene expression microarray data and financial data
pose challenges to traditional statistical and computational methods. In this paper,
we review some recent developments in the estimation of variances, covariance
matrix, and precision matrix, with emphasis on the applications to microarray data
analysis. © 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Variances and covariances are involved in the con-
struction of many statistical methods including

t-test, Hotelling’s T2-test, principal component anal-
ysis, and linear discriminant analysis. Therefore, the
estimation of these quantities is of critical impor-
tance and has been well studied over the years. The
recent flood of high-dimensional data, however, poses
new challenges to traditional statistical and compu-
tational methods. For example, the microarray tech-
nology allows simultaneous monitoring of the whole
genome. Due to the cost and other experimental dif-
ficulties such as the availabilities of biological mate-
rials, microarray data are usually collected in a lim-
ited number of samples. These kinds of data are often
referred to as high-dimensional small sample size data,
or ‘large p small n’ data, where p is the number of
genes and n is the number of samples. Due to the small
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sample size, there is a large amount of uncertainty
associated with standard estimates of parameters such
as the sample mean and covariance. As a consequence,
statistical analyses based on such estimates are usually
unreliable.

Let Yi = (Yi1, … , Yip)T be independent random
samples from a multivariate normal distribution,1,2

Yi = Σ1∕2Xi + 𝜇, i = 1, … ,n, (1)

where 𝜇= (𝜇1, … ,𝜇p)T is a p-dimensional mean vec-
tor, Σ is a p×p positive definite covariance matrix,
Xi = (Xi1, … , Xip)T, and Xij are independent and iden-
tically distributed (i.i.d.) random variables from the
standard normal distribution. For microarray data,
Yij represents the normalized gene expression level of
gene j in the ith sample. In two-sample cDNA arrays,
Yij may also represent the normalized log ratio of
two-channel intensities.

In multivariate statistical analysis, one often
needs to estimate the covariance matrix Σ or the
inverse covariance matrix Σ− 1. The inverse covariance
matrix is also called the precision matrix Ω=Σ−1. The
estimation of the covariance matrix or its inverse has
applications in many statistical problems including
linear discriminant analysis,3 Hotelling’s T2-test,4 and
Markowitz mean-variance analysis.5 We write the
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sample covariance matrix as

Sn = 1
n − 1

n∑
i=1

(
Y i − Y

)(
Y i − Y

)T
,

where Y =
∑n

i=1 Y i∕n is the sample mean. When p<n,
(n− 1)Sn follows a Wishart distribution and S−1

n ∕
(n − 1) follows an inverse Wishart distribution. In
addition, E

(
S−1

n

)
= (n − 1) Ω∕ (n − p − 2). A common

practice is to estimate Σ by the sample covariance
matrix Sn and estimate Ω by the scaled inverse covari-
ance matrix (n − p − 2) S−1

n ∕ (n − 1). These two esti-
mators are consistent estimators of Σ and Ω when p
is fixed and n goes to infinity.

For high-dimensional data such as microarray
data, however, p can be as large as or even larger than
n. As a consequence, the sample covariance matrix Sn
is close to or is a singular matrix. This brings new
challenges to the estimation of the covariance matrix
and the precision matrix. In this paper, we review some
recent developments in the estimation of variances and
covariances. Specifically, we review (1) the estimation
of variances, i.e., the diagonal matrix of 𝚺, (2) the
estimation of the covariance matrix 𝚺, and (3) the
estimation of the precision matrix Ω.

ESTIMATION OF VARIANCES

As reviewed in Cui and Churchill6 and Ayroles and
Gibson,7 one commonly used method to identify dif-
ferentially expressed genes is the analysis of variance
(ANOVA). ANOVA is a very flexible approach for
microarray experiments to compare more than two
conditions. When there are only two conditions, the
t-test may be used for detecting differential expression.
Throughout the paper, for simplicity of illustration we
consider only the two-color arrays with one factor at
two levels, in which a paired t-test may be employed.
Let D = diag

(
𝜎2

1 , … , 𝜎2
p

)
, where 𝜎2

j are gene-specific
variances for j=1, … , p, respectively. When the factor
has more than two levels or the experiment involves
more than one factor, the variances 𝜎2

j correspond to
residual variances in ANOVA or regression models.

In microarray data analysis, rather than the
whole covariance matrix 𝚺, there are many situations
where only the estimation of gene-specific variances is
required. We now provide several examples of these
situations. The first example is a multiple testing
problem in microarray data analysis. To identify
differentially expressed genes, we test the hypotheses
Hj0 :𝜇j = 0 against Hj1 :𝜇j ≠0 for each gene j. Con-
sider the test statistic Tj =

√
n Yj∕sj, where Yj is the

gene-specific sample mean and s2
j is the gene-specific

sample variance. Then, only an estimate of D is
needed rather than the whole covariance matrix
Σ. The second example is the class prediction (or
classification) problem. If we use Diagonal Linear
Discriminant Analysis (DLDA) for class prediction,8

then again we need to estimate D rather than Σ. For
more details about DLDA and its variants, see Bickel
and Levina,9 Lee et al.,10 Pang et al.,11 and Huang
et al.12 The third example is the multivariate test-
ing problem. To overcome the singularity problem,
several researchers proposed diagonal Hotelling’s
T2-tests where only an estimate of D is required. For
more details, see, for example, Wu et al.,13 Srivas-
tava and Du,14 Srivastava,15 Park and Ayyala,16 and
Srivastava et al.17

Due to the small sample size n, however, the
standard gene-specific sample variance s2

j is usually
unstable. Consequently, the standard t-tests in the
first example, the diagonal discriminant rules in the
second example, and the diagonal Hotelling tests in
the third example may not be reliable in practice. Var-
ious methods have been proposed for improving the
estimation of gene-specific variances. Some of these
methods are reviewed in the remainder of this section.

Shrinkage Estimators
A key to improving the variance estimation is to bor-
row information across genes, implicitly or explicitly,
locally or globally. One of the earliest methods to
stabilize the variance estimation was proposed by
Tusher et al.18 in 2001. In order to avoid the undue
influence of the small variance estimates, Tusher
et al.18 proposed to estimate the standard deviation
𝜎j by (sj + c)/2 in their SAM test, where c is a con-
stant acting as a shrinkage factor. For the choice of
the constant c, Efron et al.19 suggested to use the
90th percentile of all estimated standard deviations,
whereas Cui and Churchill6 suggested to use the
pooled sample variance.

In 2005, Cui et al.20 proposed a James–Stein
shrinkage estimator for the variances. For microar-
ray data with Yij

i.i.d.~ N
(
𝜇j, 𝜎

2
j

)
, we have s2

j = 𝜎2
j 𝜒

2
j,𝜈∕𝜈,

where for ease of notation, 𝜒2
j,𝜈 denote i.i.d. random

variables which have a chi-squared distribution with
𝜈 = n−1 degrees of freedom. Taking the log transfor-
mation leads to

Zj = ln 𝜎2
j + 𝜀j, (2)

where Zj = ln
(

s2
j

)
− m, 𝜀j = ln

(
𝜒2

j,𝜈∕𝜈
)
− m, and m =

E
{

ln
(
𝜒2

j,𝜈∕𝜈
)}

. Treating Zj in Eq. (2) as normal ran-

dom variables, the James–Stein shrinkage method21
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can be applied to derive a shrinkage estimate for ln 𝜎2
j .

Transforming back to the original scale, the final esti-
mates of the variances are as follows:

𝜎2
j = B

(
p∏

j=1

(
s2
j

)1∕p
)

exp

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝1 −

(p − 3)V∑(
ln s2

j − ln s2
j

)2

⎞⎟⎟⎟⎠+
×
(

ln s2
j − ln s2

j

)]
, (3)

where V = var(𝜀j), ln s2
j =

∑p
j=1 ln

(
s2
j

)
∕p, and B= exp

(−m) is the bias correction factor such that B
∏p

j=1(
s2
j

)1∕p
gives an unbiased estimator of 𝜎2 when 𝜎2

j =
𝜎2 for all j.

Note that Zj in Eq. (2) can be far from normal
when 𝜈 is small. Therefore, the shrinkage variance
estimates (Eq. (3)) can be suboptimal. Note also that
the variance estimates appear in the denominator of
the t-tests. Tong and Wang22 showed that using direct
estimates of 1/𝜎j leads to a more powerful and robust
test than using the reciprocal of the estimates of 𝜎j.
Consequently, they considered the general estimation

of
(
𝜎2

j

)t
for any power t≠ 0. Note that 𝜎j and 1/𝜎j are

special cases with t=1/2 and t=−1/2. Let s2t
j =

(
s2
j

)t
,

s2t
pool

=
∏p

j=1

(
s2
j

)t∕p
, and

hn (t) =
(
𝜈

2

)t
⎛⎜⎜⎜⎝

Γ
(

𝜈

2

)
Γ
(

𝜈

2
+ t

n

)⎞⎟⎟⎟⎠
n

, (4)

where Γ(·) is the Gamma function. Tong and Wang22

proposed the following family of shrinkage estimators

for
(
𝜎2

j

)t
:

𝜎2t
j =

(
hp (t) s2t

pool

)𝛼 (
h1 (t) s2t

j

)1−𝛼
, 0 ≤ 𝛼 ≤ 1, (5)

where h1 (t) s2t
j is an unbiased estimator of 𝜎2t

j , and
hp (t) s2t

pool
is an unbiased estimator of 𝜎2t when 𝜎2

j = 𝜎2

for all j. When t=1, 𝜎2
j is a simple modification of the

estimator in Cui et al.20 The shrinkage parameter 𝛼
controls the degree of shrinkage from the gene-specific
variance estimate h1 (t) S2t

j toward the bias-corrected
geometric mean hp (t) s2t

pool
. There is no shrinkage

when 𝛼 =0, and all variance estimates are shrunken
to the pooled variance when 𝛼 = 1. More recently,
Tong et al.23 proposed another James–Stein shrinkage

estimator for the variances that shrunk the individual
sample variance toward the arithmetic mean. For both
shrinkage to the geometric mean and shrinkage to
the arithmetic mean estimators, optimal shrinkage
parameters were derived under both the Stein and
squared loss functions. Asymptotic properties were
investigated under the two schemes when either the
number of degrees of freedom of each individual
estimate or the number of individuals approaches
infinity.

Bayesian Estimators
Baldi and Long24 applied a Bayesian method to
improve the estimation of variances. Specifically, they
assumed the following conjugate prior for

(
𝜇j, 𝜎

2
j

)
,

p
(
𝜇j, 𝜎

2
j |𝛼) = N

(
𝜇j;𝜇0, 𝜎

2
j ∕𝜆0

)


(
𝜎2

j ; 𝜈0, 𝜎
2
0

)
,

where 𝜶 =
(
𝜇0, 𝜆0, 𝜈0, 𝜎

2
0

)
are unknown hyperparame-

ters, N(x; a, b) represents the normal density function
with mean a and variance b, and (x; a, b) represents
the scaled inverse gamma density with degrees of free-
dom a and scale b. The posterior density for

(
𝜇j, 𝜎

2
j

)
has the same functional form as the prior density.

p
(
𝜇j, 𝜎

2
j |Y1j, … ,Ynj

)
= N

(
𝜇j;𝜇n, 𝜎

2
j ∕𝜆n

)


(
𝜎2

j ; 𝜈n, 𝜎
2
n

)
,

where 𝜆n = 𝜆0 + n, 𝜈n = 𝜈0 + n, and

𝜇n =
𝜆0

𝜆0 + n
𝜇0 +

n
𝜆0 + n

Yj,

𝜈n𝜎
2
n = 𝜈0𝜎

2
0 + (n − 1) s2

j +
𝜆0n

𝜆0 + n

(
Yj − 𝜇0

)2
.

Note that the posterior mean 𝜇n is a weighted
average of the prior mean 𝜇0 and the sample mean Yj.
Baldi and Long24 suggested to use 𝜇0 = Yj. This leads
to the posterior means of 𝜇i and 𝜎2

i as

𝜇j = Yj and 𝜎2
j =

𝜈0𝜎
2
0 + (n − 2) s2

j

𝜈0 + n − 2
.

The posterior modes have the same form as
above with n−2 replaced by n− 1. It is clear that
both posterior mean and mode of 𝜎2

i are shrinkage
estimators. The background variance 𝜎2

0 is estimated
by pooling together all the neighboring genes con-
tained in a window of a certain size. The parameter

Volume 6, Ju ly/August 2014 © 2014 Wiley Per iodica ls, Inc. 257



Advanced Review wires.wiley.com/compstats

𝜈0 represents the degree of confidence in the back-
ground variance 𝜎2

0 versus the gene-specific sample
variance.

Other methods under the Bayesian framework
are summarized as follows. Lonnstedt and Speed25

proposed a posterior odds of differential expression
in a replicated two-color experiment using an empiri-
cal Bayes approach that combines information across
genes. Kendziorski et al.26 extended the empirical
Bayes method using the hierarchical gamma–gamma
and lognormal–normal models. Smyth27 developed
hierarchical models in the context of general lin-
ear models, see also Wright and Simon.28 Hwang
and Liu29 and Zhao30 applied some empirical Bayes
approaches that shrunk both means and variances. Ji
et al.31 developed an empirical Bayes estimator for the
variances by borrowing information across both genes
and experiments.

Regression Estimators
It has been observed for microarray data that the
variance increases proportionally with the intensity
level.32–35 One possible remedy to this problem is to
transform the data and eliminate the dependence of
the variance on the mean. See, for example, Durbin
et al.,36 Huber et al.,37 Rocke,38 Rocke and Durbin,39

and Durbin and Rocke.40

Another remedy is to apply the regression
method. Specifically, we assume a functional relation-
ship between the mean and the variance: 𝜎2

i = g
(
𝜇i

)
.

The goal of the regression approach is then to esti-
mate the variance–mean function g. Depending on
prior knowledge, the function g may be modeled
parametrically or non-parametrically. When modeled
parametrically, we denote g(𝜇, 𝜃) as the variance
function with parameter 𝜃. Parametric models for
microarray data include the constant coefficient of
variation model,32 g(𝜇)= 𝜃𝜇2, and the quadratic
model,33,41 g(𝜇)= 𝜃1 + 𝜃2𝜇

2. Often it is difficult, if
not impossible, to specify a parametric model for g.
A non-parametric regression approach may be used
in these situations. Any one of the non-parametric
regression approaches such as smoothing splines
and local polynomials could be used to model g
non-parametrically.

Estimation of the parameter 𝜃 or the non-
parametric function g needs to take several subtle
issues into account. Note that the means 𝜇j repre-
sent a large number of unknown nuisance parameters
in the estimation of the variance function. This is a
Neyman–Scott type problem where care needs to be
taken to derive consistent estimates. It is usually not
difficult to construct consistent estimators for 𝜃 or g if

𝜇j is known. Denote 𝜃 (𝝁) and ĝ (𝝁) as consistent esti-
mators for 𝜃 and g, respectively, where the dependence
on 𝝁= (𝜇1, … ,𝜇p)T is expressed explicitly. In practice

𝝁 is unknown. The sample mean Y =
(

Y1, … ,Yp

)T

is a natural estimate of 𝝁. Then, a direct approach is
to replace 𝝁 by Y which leads to the estimates 𝜃(Y)
and ĝ(Y) for 𝜃 and g. Unfortunately, these naive esti-
mates 𝜃(Y) and ĝ(Y) are in general inconsistent as the
sampling error in Y is ignored.42,43

Regarding Y as an error-prone unbiased measure
of 𝝁, the problem can be cast in a general framework
of heteroscedastic measurement error. Therefore, the
SIMEX (simulation extrapolation) method in Carroll
et al.44 may be applied to derive estimates of 𝜃 and
g. However, due to correlation between the measure-
ment error and the response, the naive application
of the SIMEX method still does not lead to consis-
tent estimates.42,43 To overcome this problem, Carroll
and Wang42 and Wang et al.43 proposed permutation
SIMEX methods that lead to consistent estimates of 𝜃
and g. Other regression methods include Fan et al.45

and Fang and Zhu.46

ESTIMATION OF THE COVARIANCE
MATRIX

When p is fixed and n is large, the sample covari-
ance matrix Sn is an unbiased and consistent esti-
mator of the covariance matrix 𝚺. However, for
high-dimensional data in which p is close to or even
larger than n, Sn may no longer be a good estimator
of 𝚺. In particular, Sn will be a singular matrix, or close
to it, in such settings.

Many methods have been proposed in the lit-
erature to improve the estimation of 𝚺. In essence,
these methods can be classified into three categories
corresponding to (1) p< n, (2) p≥n, and (3) p≫n,
respectively. For category (1), as Sn is invertible
with the eigenvalues being non-zero, attempts are
often made to stabilize the estimation of eigenval-
ues. This was first proposed by Stein47 and will
be referred to as Stein-type estimators. For cat-
egory (2), Sn is a singular matrix. To overcome
this problem, one may consider an estimator like
𝜆Sn + (1− 𝜆)Ip, where Ip is an identity matrix of size
p× p and 𝜆∈ [0, 1) is a shrinkage parameter. Note
that this type of method can be derived under the
Bayes or empirical Bayes framework. We refer to
the estimators of this type as the ridge-type esti-
mators. Note that the covariance matrix associated
with high-dimensional data such as microarrays can
be sparse. In such settings, the above-mentioned
shrinkage estimators for non-sparse 𝚺 may no longer
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be applicable or the improvement may be negli-
gible. This motivates researchers to consider new
estimation methods that are specifically for sparse
covariance matrices. We classify these estimators into
category (3) and refer to them as the sparse estima-
tors.

Stein-Type Estimators
When p< n, Sn is an unbiased estimator of 𝚺. How-
ever, it is known that the eigenvalues of Sn tend to be
more spread out than the eigenvalues of 𝚺, especially
when p is close to n. As a consequence, Sn may be
unstable with the smallest estimated eigenvalues being
too small and the largest too large.48 For ease of expo-
sition, we write

Sn = Un𝚲nUT
n ,

where Un is an orthogonal matrix, 𝚲n = diag{𝜆1, … ,
𝜆p} and 𝜆1 ≥ … ≥ 𝜆p are the eigenvalues of Sn. Stein47

proposed to shrink the eigenvalues of the sample
covariance matrix to avoid the extreme eigenvalues.
Specifically, he suggested to estimate the eigenvalues
by

𝜆j =
n

n − p + 1 + 2
∑
i≠j

𝜆j

𝜆j−𝜆i

𝜆j, j = 1, … ,p.

Letting �̂�n = diag
{
𝜆1, … , 𝜆p

}
, the resulting

estimator of 𝚺 is

�̂� = Un�̂�nUT
n . (6)

The estimator 6 was derived by minimizing an
unbiased estimate of the Stein loss function.48 We
refer to this estimator as the Stein estimator. Note
that the Stein estimator does not preserve the order
of the eigenvalues and the resulting eigenvalues can
even be negative. Much research has been devoted
to improve the Stein estimator. In particular, Haff49

derived an estimator of 𝚺 under the constraint that the
order of the sample eigenvalues is maintained. Other
Stein-type estimators can be found, for example, in
Efron and Morris,50 Dey and Srinivasan,51 Yang and
Berger,52 Daniels and Kass,53 Daniels and Kass,48 and
references therein.

Ridge-Type Estimators
When p≥ n, Sn is a singular matrix with the smallest
eigenvalues being zero. In such settings, the Stein-type
estimators are no longer applicable. To achieve an
invertible estimate for the covariance matrix, Ledoit

and Wolf54 proposed to estimate 𝚺 by the following
ridge-type estimator,

�̃� = 𝜆1Sn + 𝜆2Ip, (7)

where Ip is the identity matrix of size p and 𝜆1
and 𝜆2 are shrinkage parameters. Under the squared
loss function, they derived the optimal coefficients
𝜆1 and 𝜆2 and also proposed data-driven estimators
for these coefficients. More recently, Fisher and Sun55

considered a general convex combination of Sn and
some target matrix T,

⌣

𝚺 = 𝜆Sn + (1 − 𝜆)T, (8)

where 𝜆∈ (0, 1) is the shrinkage parameter. The target
matrix T is often chosen to be positive definite (and
therefore non-singular) and well-conditioned. Conse-
quently, the final estimator is also positive definite
and well-conditioned for any dimensionality. Similar
approaches can be found, for example, in Schäfer and
Strimmer,56 Warton,57 Chen et al.,58 Warton,59 and
references therein.

Sparse Estimators
For high-dimensional data with p≫ n, to have a
good estimate of 𝚺 one may have to rely on some
sparsity assumptions about the covariance matrix. In
such settings, the above-mentioned Stein-type and the
ridge-type estimators are either no longer applicable
or the improvement is nearly negligible. This suggests
that new estimation methods are required for very
large p. Let the covariance matrix be 𝚺= {𝜎ij}p× p and
the sample covariance matrix be Sn = {sij}p× p. Under
the sparsity conditions that most of the 𝜎ij are zero
or close to zero, Bickel and Levina60 proposed to
estimate 𝚺 by a thresholding method. Specifically, their
estimator is

Ts

(
Sn

)
= {sijI(|sij| ≥ s)}p×p, (9)

where s is a tuning parameter serving as a threshold.
The asymptotic properties of the proposed threshold
estimator were established under some regularity con-
ditions. Note that the threshold estimator in Bickel
and Levina60 can be regarded as a hard-thresholding
estimator. Rothman et al.61 considered a generalized
thresholding rule that include hard and soft thresh-
olding as in Donoho and Johnstone,62 the Smoothly
Clipped Absolute Deviation (SCAD) method in Fan
and Li,63 and the adaptive Least Absolute Shrinkage
and Selection Operator (LASSO) method in Zou.64 We
note that a single threshold level was used for all the
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entries of the sample covariance matrix in the above
approaches. More recently, Cai and Liu65 proposed
an adaptive thresholding method where the thresh-
old level is entry-based and so the resulting estimator
is more flexible. Other thresholding methods in the
literature include, for example, Bickel and Levina,66

Karoui,67 Lam and Fan,68 Cai and Zhou,69 Cai and
Yuan,70 and references therein.

ESTIMATION OF THE PRECISION
MATRIX

In many statistical analyses, we need an estimate
of the precision matrix 𝛀=𝚺−1 rather than an esti-
mate of the covariance matrix. Examples include lin-
ear discriminant analysis,3 Hotelling’s T2 test,4 and
Markowitz mean-variance analysis.5

In the special case when 𝚺 = diag
(
𝜎2

1 , … , 𝜎2
p

)
,

we have the diagonal precision matrix as Ω =
diag

(
𝜎−2

1 , … , 𝜎−2
p

)
. Some methods for estimating the

diagonal precision matrix have been proposed in the
literature, e.g., the shrinkage estimators in Tong and
Wang22 and Tong et al.23 For a general non-diagonal
Ω, we can accordingly classify the existing estimators
into three categories: (1) the Stein-type estimators,
(2) the ridge-type estimators, and (3) the sparse esti-
mators. The Stein-type estimators can be found, for
example, in Dey71 and Tsukuma and Konno,72 and
references therein. Due to space limitations, we will
only provide a brief review of the ridge-type and
sparse estimators.

Ridge-Type Estimators
Recall that an unbiased estimator of Ω is given by Ω̂ =
(n − p − 2) S−1

n ∕ (n − 1). Efron and Morris50 proposed
an empirical Bayesian estimator as

Ω̂EM =
n − p − 2

n − 1
S−1

n +
p2 + p − 2

(n − 1) tr
(
Sn

) Ip. (10)

Similar methods can be found, for example, in
Haff,73 Haff,74 Krishnamoorthy and Gupta,75 Bodnar
et al.,76 and references therein. Note that all these
estimators involve the term S−1

n and so they apply to
the situation when p< n only.

When p≥ n, to overcome the singularity prob-
lem, Kubokawa and Srivastava77 considered the fol-
lowing ridge-type estimator for the precision matrix,

Ω̂ridge = 𝛼
(
Sn + 𝛽Ip

)−1
, (11)

where 𝛼 and 𝛽 are two shrinkage coefficients. In their
paper, an empirical Bayes approach was applied to

estimate 𝛼 and 𝛽. More recently, Wang et al.78 pro-
posed a data-driven estimator for the shrinkage coef-
ficients using random matrix theory. Note that their
proposed method is distribution-free. They further
demonstrated in numerical studies that the proposed
estimator performs better than the existing competi-
tors in a wide range of settings.

Sparse Estimators
Let a= (a1, … , ap)T be a vector and A= {aij}p× q be
a matrix. We define the element-wise l1 norms as
|a|1 =

∑
j |aj| and |A|1 =

∑
ij |aij|, and the l∞ norms as

|a|∞ =maxj |aj| and |A|∞ =maxij |aij|. Various sparse
estimators for Ω have been proposed in the recent
literature. Most of them are based on a regularization
approach. Banerjee et al.79 proposed an l1 penalized
likelihood method:

Ω̂ = argminΩ>0

{
tr
(
SnΩ

)
− log |Ω| + 𝜆n|Ω|1} . (12)

Fan et al.80 replaced the l1 penalty in Eq. 12
by the SCAD penalty.63 More recently, Cai et al.81

considered another regularization method:

Minimize |Ω|1 subject to |SnΩ − Ip| ≤ 𝜆n, (13)

where 𝜆n is a tuning parameter. Other regulariza-
tion methods include, for example, Yuan and Lin,82

d’Aspremont et al.,83 Friedman et al.,84 Ravikumar
et al.,85 and references therein.

CONCLUSION

With the advent of high-throughput data such as
microarrays, we are in an era of biotechnology inno-
vation. Instead of working on a gene-by-gene basis,
the microarray technology allows simultaneous mon-
itoring of the whole genome. These data have moti-
vated the development of reliable biomarkers for dis-
ease subtype classification and diagnosis, and for the
identification of novel targets for drug treatment. Due
to the cost and other experimental difficulties such
as the availabilities of biological materials, microar-
ray data are usually collected on a limited number of
samples.

High-dimensional data such as microarray gene
expression pose great challenges to traditional statis-
tical and computational methods. In particular, the
standard estimates of variances and covariances are
usually unreliable. In this paper, we review some
recent developments in the estimation of variances and
covariances for high-dimensional data. The estima-
tion of variances and covariances plays an important
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role in statistical analysis including t-test, Hotelling’s
T2-test, principal component analysis, and discrimi-
nant analysis. For instance, to test whether two gene
sets are equal, Chen et al.86 proposed a regularized
Hotelling’s test for both scenarios of p< n and p≥n;
and Cai et al.87 proposed another test statistic based
on a linear transformation of the data by the precision
matrix. In discriminant analysis, Friedman88 proposed
to use the ridge-type estimators of the covariance
matrix. More recent works in this area include Guo
et al.,89 Shao et al.,90 Fan et al.,91 and among oth-
ers. We have emphasized the applications to microar-
ray data analysis. Nevertheless, the methods reviewed
this paper have a wide variety of applications. For
example, the estimation of precision matrix may be
applied to graphical models.45,65,81 We note that the

review in this paper is selective and many other
important approaches are not included due to space
limitations.

There are many remaining challenges in the
estimation of variances and covariances for high-
dimensional data. For instance, the estimation
usually involves unknown tuning parameters.
Cross-validation and bootstrap methods have been
proposed to select the tuning parameters. Most
guidelines are based on simulation studies without
theoretical justification.92 Assumptions and evalu-
ation criteria used in the estimation are somewhat
arbitrary in the existing literature. This makes it
difficult to have a fair comparison among estimation
methods.
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