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Abstract

Inviscid Boussinesq convection is a challenging problem both analytically and
numerically. Due to the complex dynamic development of small scales and the rapid
lose of solution regularity, Boussinesq convection pushes any numerical strategy to
the limit. In E & Shu [Phys. Fluids, 6 (1994), pp. 49-58], a detailed numerical study
of the Boussinesq convection in the absence of viscous effects is carried out using
filtered pseudospectral method and a high-order accurate ENO schemes. The goal of
this work is to capture a possible finite-time blow-up of the Boussinesq solutions. To
this end, we will employ two high resolution methods, namely moving mesh method
and Fourier collocation method with postprocessing, to compute inviscid Boussinesq
problem. The moving mesh method is found useful in resolving small structures
with reasonably small number of grid points. The spectral methods with Fourier-
Padé reconstruction is found powerful in obtaining large time solutions, which can
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remove small oscillations around the sharp fronts of the solutions. At ¢t = 4, a finite-
time blow-up is observed numerically. Although the possibility that the blow-up is
a numerical artifact can not be ruled out, the results do agree with some recent
computations using the adaptive mesh refinement techniques with extremely fine
meshes.

1 Introduction

There are several reasons for the study of two-dimensional Boussinesq convection. For
example, it is a simple model to address the open problem about whether finite time singu-
larity occurs for initially smooth flows in inviscid and incompressible 3-D Euler flows. The
governing equations of Boussinesq convection are analogous to those of 3D axis-symmetric
Euler flow with swirl, see, e.g., [25, 26]. The understanding of finite-time singularities
may be crucial to explain small scale structures in viscous turbulent flows. The Boussi-
nesq convection has also potential relevance to the study of atmospheric and oceanography
turbulence, as well as other astrophysical situations where rotation and stratification play
a dominant role. As previous numerical studies have shown [9, 14, 19, 20, 21], the com-
plex dynamics and the rapid formation of small scales make this problem an extremely
demanding test for any numerical techniques.

The question of whether there exists a finite-time blow-up of the vorticity and tem-
perature gradient has been numerically investigated by several authors. Pumir and Sigga
[25] predicted a finite-time blow-up using an adaptive mesh refinement (AMR) method.
However, the ENO and spectral computations of E & Shu [14] and the moving mesh com-
putations of Ceniceros & Hou [9] did not observe the blow-up phenomena. On the other
hand, a recent computation performed by Yamada et al. [32] uses 22! ~ 10° effective grid-
points in each direction, which suggests that the temperature gradient and vorticity blows
up at rates (fo —t)~2 and (o — t)~ !, respectively. The numerical method used in [32] is
the adaptive mesh refinement technique of Berger & Oliger [4].

The goal of this work is to capture some possible finite-time blow-up of the Boussi-
nesq problem with some careful numerical studies. To this end, we will employ two high
resolution numerical methods, namely the moving mesh method and the Fourier spectral
method. The moving mesh methods keep the total number of the grid points fixed. The
mesh grids are moved continuously in the whole solution domain to cluster grid points in
regions where the solution has the largest variations. In the past two decades this numer-
ical technique has been proven very powerful for solving time-dependent problems whose
solution has large gradients or discontinuities, see, e.g., [1, 8,9, 22]. In this work, a moving
mesh method developed in [33] will be employed. The adaptive mesh is obtained by solving
a set of nonlinear elliptic PDEs for the mesh map, and a conservative interpolation is used
to obtain the approximate solution on the resulting adaptive mesh. The given PDEs are
advanced in time using a second-order finite-volume approach. The main purpose is to



develop a simple yet efficient adaptive strategy for solving the incompressible flow that
may develop solution singularities.

The second numerical method used in this work is an adaptation of the standard Fourier
pseudospectral (collocation) method for compressible flow (see, e.g., [11]) to the incom-
pressible inviscid Boussinesq problem with possible existence of singularity. The Fourier
methods are powerful for approximating periodic analytic functions with spectral conver-
gence. However, for periodic piecewise analytic functions the well known difficulty of the
Fourier methods is the oscillations near singularity called Gibbs phenomenon [17, 18]. It
has been shown that the Gibbs effect can be essentially removed by using a Fourier-Padé
reconstruction, see, e.g., [16, 24]. This work will further develop the Fourier-Padé postpro-
cessing procedure to remove small oscillations around the sharp fronts in the solutions.

This paper is organized as follows. In Section 2, the system of the incompressible
Boussinesq equations will be given, together with the initial and boundary conditions. In
Section 3, a moving mesh strategy will be described, which will be applied to simulate the
Boussinesq convection problem. In Section 4, we briefly present the Fourier collocation
methods for discontinuous solutions together with the Fourier-Pade reconstruction tech-
nique. In Section 5, numerical results obtained by using the methods described in Sections
3 and 4 will be presented and discussed. Concluding remarks will be given in the final
section.

2 The Boussinesq problem

The two-dimensional Boussinesq convection in the absence of viscous effects have the form

(2.1) pr+u-Vp=0,
w, +u-Vu=-Vp+ pgj,
V-u=0,

where p is the pressure, p is the density (usually this should be the temperature and
denoted by T or #, but we are accustomed to call it density, and therefore denote it by p),
u = (u,v) is the velocity, g is the gravitational constant, and j is the unit vector in the
upward vertical direction. In 2-D, the above system of equations can be re-written using
the stream function-vorticity formulation. Let w = v, — u, be the vorticity, the velocity
u = (u,v) is determined by the stream function :

(24) u = ¢y7 v = _¢x

By normalizing the gravitational constant g to be 1, the Boussinesq system (2.1)-(2.3) can
be written as

(2.5) pr+u-Vp=0,



(2.6) wt+u-Vw=—p,,
(2.7) —Ap = w.

The above system can also be written in the conservative form which is more suitable for
the Fourier Pseudospectral (collocation) methods. In the absence of numerical dissipation,
the conservative form will guarantee the conservation of the conservative quantities even in
the presence of singularity [5, 6]. In the conservative form, the system (2.5)-(2.7) becomes

(2.8) pr+ V- (pu) =0,
(2.9 (p)e + V- (o) =~ (47)
(2.10) —AY = w.

Several existing studies show that this problem is extremely difficult both numerically and
analytically. Although short time existence can be shown for sufficiently smooth initial
conditions, it is unclear whether a solution will lose regularity and become singular in a
finite time. Following Beale et al. [3], E & Shu [14] proved that if a singularity develops
in the Boussinesq flow at a finite time T* satisfying |[u(-, T*)||m + ||p(:, T*)||m = +oc then

T* T* t
(2.11) / (-, 1) sodt = +00 / / 192+, 8) sodsdt = +00
0 0 0

where || f(+)||m is the standard m-norm in the Sobolev space and || is the maximum-norm
in R?. E & Shu also made a very comprehensive numerical study on small-scale structures
using two high resolution numerical methods, namely a filtered Fourier pseudospectral
method and a third-order ENO scheme. Their numerical results show that the sharp
fronts are developed in a later time from a smooth initial profile although a finite-time
blow-up is not seen in their computations.

In this work, we will use the same initial conditions as that in [14]:

(2.12) w(r,y,0) =0,  p(x,y,0) = 50p1(z,y)p2(x, y)[1 — p1(x,y)],
where
w2 ) , ,
ex L= e+ —m)ye <7
p(z,y) = p( wZ—xZ—(y_ﬂy) (y—m)?* <
0 otherwise
(1.957)?
1- — 9| < 1.95
pZ(xa y) = P ( (1957’(’)2 — (l‘ _ 271')2 |£U 7T| T,
0 otherwise

The initial density contour is plotted in Fig. 1. A double 27 periodic boundary condition
on both sides of the square domain is assumed. For the smooth initial data (2.12), the
numerical solution of the Boussinesq system remains smooth until £ &~ 2.0. As the bubble
rises, the front of the bubble steepen up into a sharp gradient. Large amount of vorticity are
generated and deposited around the sharp density edge due to the production of vorticity
in the source terms of the vorticity equation.
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Figure 1: Initial density contours.

3 Moving mesh method

In Zhang & Tang [34], an efficient moving mesh algorithm is developed for solving convection-
diffusion problems with small viscosity, which will be used to solve the 2D Boussinesq

problems. In principle, our adaptive grid algorithm is formed by two independent parts:

a mesh re-distribution part and a PDE evolution part, which is demonstrated in Table I.

The idea of the present approach is to solve both the mesh equation and the underlying

PDEs on the computational (i.e. logical) domain. This approach enables us to solve the

Poisson equation (2.7) with some faster solvers such as multigrid methods.

3.1 Mesh redistribution

The solution-adaptive mesh is obtained through a bijective map from a logical or com-
putational domain to the physical domain. A fixed uniform mesh is used in the logical
domain. Denote by z(£,n) and y(&,n) the mesh map in two dimensions, where (§,7) are
the coordinates in the logical domain. In the variational approach, the adaptive mesh is
to find the minimizer of the following functional:

1
Elé.n] = 5 [ [V€"GLVE+ V' G, Vrldudy

where G4 and G5 are given symmetric positive definite matrices, and €2, is the solution
domain in the physical space. More terms can be added to the variational form to con-
trol the property of the adaptive mesh [7]. Minimizing the above functional leads to the



Table I: Outline of the numerical algorithm

0. Determine the initial mesh based on the initial function.
1. Determine At based on CFL-type condition so that t"™! = " + At,

2. Advance the solution one time step based on an appropriate numerical
scheme.

3. Grid Restructuring

a. Solve the mesh redistributing equation (a generalized Laplace equation)

by one Gauss-Seidel iteration, to get x*)»

b. Interpolating the approximate solutions on the new grid x*)»

c. A weighted average of the locally calculated monitor at each computa-
tional cell and the surrounding monitor values

d. The above iteration procedure (a.)-(c.) on grid-motion and solution-
interpolation is continued until there is no significant change in calculated
new grids from one iteration to the next.

Start new time step (go to 1 above).

following Euler-Lagrange equations:
(3.1) V- (GT'VE) =0, V- (Gy'Vn) = 0.

One of the simplest choices of the monitor functions is of scalar type: G| = Gy = QI,
where [ is the identity matrix and €2 > 0 is called a monitor function. One typical choice
of the monitor function is Q = /1 4+ |Vul|?, where u is a solution of the underlying PDEs.
This choice of the monitor function corresponds to Winslow’s variable diffusion method
[31]. The mesh generation equation (3.1) is defined in the physical domain €2,. In practice,
2, may be very complex and as a result it is difficult to solve the elliptic system (3.1)
directly. To overcome this difficulty, we follow Ceniceros & Hou [9] to consider a functional
defined in the computational domain:

_ 1 . . . .
(3.2) Bla,yl = 5 /Q (V2" GV + Vi GoVy)dedn,

where V = (¢, 9,)". The corresponding Euler-Lagrange equations are of the form
(3.3) (Grae)e + (Grag)y =0, (Gaye)e + (Gayy)y = 0.
If we choose Gy = Gy = QI, then the equation (3.3) is reduced to:

(3.4) V-(QVz) =0, V- (QVy)=0.



In practical computations, it suffices to obtain some approximate solutions for the above
equations at each time step. One possibility is to perform a few (about 3) Gauss-Seidel
(GS) iterations at each time level. The iteration is continued until there is no significant
change in calculating new grids from one iteration to the next. After each GS iteration
step, we need to pass the solution information from the old mesh (x4, y;x) to the newly
obtained mesh (Z;,7;x). This is done by using the conservative interpolation proposed
by Tang & Tang [29]:

(3.5) |Aj+§,k+§|aj+%,k+§ = |Aj+§,k+%|uj+§,k+%
- [(Cmu)j+1,k+% - (CIU)]‘,H%] - [(Cyu)j+§,k+1 - (Cyu)jJr%,k]

where ¢f, = 71 —Tjr, Cf x = Yjr— Jjk> |A| denotes the volume size of A. The derivation of
the formula (3.5) and some of its theoretical properties can be found in [29]. It is obvious
that (3.5) satisfies the mass-conservation property in the following sense:

Zk: At st |lpd s = Zk: At s a0 et
Js Js

3.2 Numerical solution to PDEs

The governing equations of the Boussinesq equations are of conservative form. To demon-
strate the principal ideas for the PDE evolution, let us consider the 2-D conservation
system:

(3.6) e+ f(u)y +g(u), =0 (z,y) € Q,.

To allow flexibility of handling complex geometry and of using fast solution solvers, we
first transform the underlying PDEs using the coordinate transformations z = z(&,n),y =
y(&,n) and then solve the resulting equations in the computational domain equipped with
a (fixed) uniform mesh. The cell-centered finite volume method will be employed to solve
the transformed PDEs. Note that
1 1
Uy = 7 [(ynwe — (Yeu)y] Uy = Wi [—(zgu)e + (zeu)y]

where J = x¢y, — x,y¢ is the Jacobian of the coordinate transformation. With the above
formulas, the underlying equation (3.6) becomes:

B w3l ) - mgw), + 5 (regw) — W), =0 (En) €N,

where 2. is the computational domain with a uniform grid (&;, 7). For convenience, we
write the above equation in a compact form:

(3.8) e + %F(u)g + %G(u)n ~0.



The above system will be solved by using a finite-volume approach. Denote the control
cell [§;,&41) % [k, Me+1] by Aj+%,k+§ and the cell average value by

=N 1 n
Tturt = Rgag Jy | UEmIdED.

+1 k4l

Note that

1 /§j+1 /nk+1 1 d§d
— —w
AfAn T S

_ / b / " wededn + O(AE?)

A§A77 j+ik+d
- ) o)
Jj+%,k+% Ag

where a mid-point rule is used in the first step. Similar approach can be used to treat the
term involving J~'w,. Integrating equation (3.8) over the cell [t",t"*1] x Aji1gqy in the
computational domain yields

3.9) @'t =a" —
(B9 Wihy = Gpwry ~ 7
27 2

A" an+1 k+d F;?kJr% n G;L+2,k+1 G;Z+2,k
A An '

The one-dimensional Lax-Friedrich numerical flux

Fla,) = 31(@) + ) ~ max |6~ o),

where the maximum is taken between a and b, will be applied to F, G respectively:

G],k-i—% - G(u_

. +
(3.10) Fikt it Wigga)-

n +
F( ],]H_la j,k—l—%)’

To compute (3.10), a piecewise linear approximation will be used:

u. =U; 1 1 +—é§§8 1 1 u’ =U;, 1 1 ——é§§8 1 1
j,k-l—% — Vi g.kts 2 J=5k+3 j,k-l—% = Yitgkts 2 Jts.k+35
s/ 1|
_ . — . + ]+2ak+2 ]+27k+
Si1 l—(s1ns.1 1) +sign(s’ 1)
Jtzk+s & ( ]+5J€+5) 8 ( ]+5,k+§) | 1| + |3 1|
+ Skt ]+ ket
- _ Yitshkts — Yimgkts oF _ Ujy 2l = Uil gyl
J+3k+3 A€ j+3kts AE '

A system of semi-discretized equations can be obtained from the fully discretized scheme
(3.9), which will be solved by an 3-stage Runge-Kutta method proposed by Shu & Osher
[28]. This ODE solver satisfies the total variation non-increasing property.



4 Fourier collocation methods with postprocessing

As an independent check, we will also solve the Boussinesq problem by using the Fourier
collocation methods. This approach is particularly suitable since the physical setup of
the proposed problem is periodic in both directions. The proposed spectral algorithm is
stabilized by using a high order exponential filter. An essentially non-oscillatory solution
at the desirable time step and locations can be reconstructed by the newly developed
Fourier-Padé postprocessing procedure proposed by Min et al. [24].

4.1 The Fourier collocation methods

For the Boussinesq equations, the dependent variables p,w, u,v and v are discretized uni-
formly in space at the Fourier-Gauss-Lobatto collocation points,
i mj

ﬁ, y]:ﬁ, Z,]ZO,,QN—l

(4.1) T; =
and for simplicity we will use the same number of collocation points in both z and y
directions. Furthermore, we assume that the variables can be expressed in the tensor
product form. Hence, the evaluation of the variables and the fluxes can be treated along
each dimension separately and independently. The dependent variables, say f(x) = p(z, -, -,
for are interpolated at the collocation points, i.e.,

2N—-1

(4.2) fu(z) = 2_% f(;)g5(z)

where g;(x) is the trigonometric interpolation polynomial of degree N,

(4.3) g;(x) = % sin N(z — 2;) cot &%)

It can be verified that g;(zx) = d;4. It follows from (4.2) that

d 2N—1
(4.4) %fN(xk) = Z f(xj)g;-(xk), 0<k<2N —1.
=0

The elements of the resulting 2N x 2N differentiation matrix D, D, = g;-(xk), are given
by

0 k=7,
4.5 Djx=14 1 : vy

2 2
Since the physical flow is (anti-)symmetric along the mid-plane (z = ) in the x-direction,
we have p(m + z,y,t) = p(m — x,y,t),w(r + x,y,t) = —w(m — x,y,t). It follows that the
computation time can be halved in the spectral algorithm. The data length along the
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a-direction will be halved (0 < i < N) and the 2N x 2N differentiation matrix D can be
decomposed into even one Dy and odd one Dy with size (N 4+ 1) x (N +1) each. The odd
and even sub-matrices will be operated on anti-symmetric and symmetric data structures,
respectively. An efficient and accurate formula for computing the first and higher order
differentiation matrices can be found in [10, 17].

In above we have presented differentiation matrix formulation for computing the deriva-
tive of a periodical (anti-)symmetric function. It should be noted that in this case the Fast
Sine (Cosine) Transforms can also be employed to accomplish the same task and will result
in a more efficient algorithm for large number of collocation points, say N > 64. For an
even (odd) function, the real (imaginary) part of the Fourier coefficients are computed first
by the Fast Cosine (Sine) Transform, then multiplied by —k (k) and finally transformed
back to the physical space by the Fast Sine (Cosine) Transform.

4.2 Filter

As we have mentioned earlier, the initially smooth flow will eventually develop into a sharp
front in a later time. This leads to two major consequences for the spectral approaches.
The first one is the appearance of small persistence oscillations around the sharp front,
which is known as the Gibbs phenomenon. The second one is related to the stability of the
numerical scheme. The energy contained in the high frequencies regime will grow quickly
and the scheme will eventually becomes unstable. The reason is that the Fourier methods
are conservative and do not possess any numerical dissipation. All resolvable modes are
captured exactly in the absence of aliasing error. It is a great advantage when the flow
is well-resolved by the spectral methods. For highly non-linear problems, it could become
a great disadvantage as the non-linear interaction of modes generates modes that spread
over the whole solution spectrum. This leads to the well known non-linear instability as
the high frequencies (usually associated with noise and error) grow unbounded in time.
To address the second problem, a small amount of filtering will be applied to remove the
excess growth of the high frequencies as proposed by Vandeven [30]. Given the Fourier

approximation
N A~ .
fe(@) =3 fre™,

k=—N
we construct a filtered sum

N A~ .
(4.6) @)= 3 olk)fue™

k=—N

where (k) is a low pass filter. The favorite one we preferred to use is the exponential filter
which is of the form

(4.7) o(k) = exp (~a |k/N|")
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where |k| =0,..., N, a = —Ing, € is the machine zero and £ is the order of the filter. We
used # = 16 in this study. The exponential filter offers the flexibility of changing the order
of the filter by simply specifying a different value of 5 [30].

In addition to apply filtering on the dependent variables, filtering is also applied to
the fluxes to enhance the stability of the spectral scheme. Though an explicit formula
cannot be written down for the addition of the filter into the differentiation matrix, the
filtered differentiation matrix can be directly computed in a fairly straightforward manner
by performing the differentiation on the direct sum of (4.6) and making use of the fact that
the filter o (k) is symmetric about k = 0.

4.3 Time Marching and Poisson Solver

For time marching, we use the low storage third order TVD Runge-Kutta scheme of Shu
& Osher [28], which is stable for At ~ O(N~!). The time step At = 0.001 is used in the
simulations. At the end of each Runge-Kutta stage, the Poisson equation (2.7) is solved to
update the new velocity field (u,v). After the discretization with the Fourier collocation
methods, the Poisson equation (2.7) in the physical space can be expressed in a matrix
equation form

(4.8) AYp+9YyB =—-w

where the matrices A and B” are the second order Fourier differentiation matrix in the
z and y directions respectively. Given a vorticity field w(z;,y;), the matrix equation
solver ABSLV is used to solve the above linear system. The matrices A and B are casted
in the lower and upper Schur form and the transformed system is solved by backward
substitution as described in [2]. This may not be the most efficient way to solve the
Poisson equations with periodic boundary conditions, but it is also applicable to problems
with non-periodic solutions. The original code ABSLV can be obtained from the software
depository at NETLIB. The code is slightly modified to enhance the precision and the error
tolerance in our computations.

To facilitate an efficient and accurate computation of the Boussinesq equations with
the Fourier collocation methods, we employed the PseudoPack Library developed by Costa
and Don [10]. All necessary optimized routines for computing the derivatives of the flux,
smoothing the dependent variables, Runge-Kutta time marching, second order differen-
tiation matrices and the matrix equation solver are provided in the library. The detail
information of the package can be found in

http://www.cfm.brown.edu/people/wsdon/home.html

4.4 Fourier-Padé postprocessing

It is known that the sharp front of the density is developed from a smooth initial profile
in a later time. As a consequence, if the Fourier collocation method described above is
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N=512

Figure 2: Evolution of density p along the symmetry axis = m by the filtered Fourier collocation
method on a 5122 grid. No postprocessing is made.

applied directly then the non-physical Gibbs oscillations will be developed. This is indeed
observed in Fig. 2 where the one-dimensional cut of the density p at the symmetry axis
x = from 0 < ¢ < 3 is shown. It is observed that the initially smooth density profile (the
left most curve) is increasingly steepen up into a high gradient and eventually becomes
under-resolved (the right most curve) when evolved using the Fourier collocation methods.
Due to the overshoot and undershoot of the Gibbs phenomenon, the minimum (=0) and
the maximum (= 5.3084) values of the density are poorly represented, see also Fig. 4.

It is now necessary to remove the Gibbs oscillations using some appropriate postpro-
cessing procedures. It is known that the Fourier-Padé approximant offers an alternative
choice of basis functions in which a periodical function can be expanded into, see , e.g.,
[16]. In [12], Driscoll & Fornberg recovers spectral convergence up to the discontinuity with
a Fourier-Padé approach by subtracting the jumps from the Fourier data, which however
requires the priori knowledge of the singularity. Below we will describe a reconstruction
technique based on a Fourier-Padé approach, which does not require a priori knowledge
of the jump locations. Let Z,, be the space of the trigonometric polynomial of degree N,
defined as

(4.9) Iy = span{e™| - N <n <N -1}

at the Fourier-Gauss-Lobatto collocation points {z;} given by (4.1). We define the Fourier-
Padé collocation approximation of u, Rk = Pr/Qum, where Px € Tx and Qu € Ty
(K +2M = N), such that

(410) (QMU — PK,'U)N =0 Yve ZK+M-

12



In the above equation, the discrete inner product is defined by

1 2N-1
(4.11) (w,0)v = == > ulzj)v(zy).
IN = J J
Denote
E-1 M .
(4.12) Pr= Y be™ and Qu= Y &ne™.
k=K m=—M

Substituting Pg, Qy and v = ™ —(K +2M) < n < (K +2M) — 1, to (4.10) gives the
following system of equations:

M
(4.13)  by= > Cnlpm, K <k<K-1
m=—M

M
(4.14) 0= > Gnip-m - K-M<n<-K and K-1<n<K-1+M,
m=—M

where the Fourier coefficients w,, are given by
1 2N—-1

(4.15) Uy = IN 2 u(x;)e™"m,

Equations (4.13) and (4.14) yield a linear system AE = 0 to be solved for &, where & =
[Cary -y ¢ ar]” and

U_K—o2M U_K—M U_K
'LNL—K—2M+1 cee 'LNL—K—M—H cee 'LNL—K—i—l
(416) A = a,N,M,1 e ﬂ,,K,l e ﬁ,K+M71
Ug-M+1  --- UKyl -e. UK4M41
UK -1 cer UK4M-1 --- UK42M-1

This linear system can be solved numerically using MATLAB subroutine Null(A) which
gives the basis for the kernel of the 2M x (2M + 1) matrix A. Once a set, of the coefficients
{¢m}M__ |, is obtained, the coefficients {b;}=!; can be computed from Eq. (4.13). The
discrete Fourier coefficients involved in computing by, are {p, - N+M <n< N-M-1}.

In the Fourier-Padé reconstruction procedure, the Fourier modes from the top spectrum
are discarded due to the fact that the lower spectrum of the Fourier modes are accurately
resolved and the numerical errors are usually associated with the high modes. Thus fre-
quencies in the upper most spectrum must be removed in order to obtain satisfactory
reconstruction. To this end, we will introduce a new parameter N, which determines the

13



Figure 3: One dimensional cut of the density p along the symmetry axis y = 7 at ¢ = 3 using
the Fourier-Padé reconstruction on a 5122 grids.

number of low Fourier modes to be used in the reconstruction procedure. Based on the
order of the exponential filter (3 = 16) used in the numerical simulations, N, is chosen to
be slightly smaller than N/3 where N is the total number of the Fourier modes.

In Fig. 3, the Fourier-Padé reconstruction is applied to the density p along the
symmetry axis x = 7 at time ¢ = 3. The reconstruction parameters are chosen as
(N, M) = (137,46). The small oscillations around the sharp front is effectively removed,
which is also demonstrated in Fig. 4 where the time history for the maximum values of
the density p in plotted. The reconstruction parameters (N., M) used in the reconstruc-
tion procedure are (64,14) for the 256%-grid, (72,24) for the 512%-grid, and (148, 34) for
the 10242-grid. One can observe that, for all practical purposes, the Gibbs overshoot and
undershoot are effectively removed.

Fig. 5 shows the one dimensional cut of the density p along the symmetry axis x = 7 at
t = 3 obtained by using the Fourier collocation method with the Fourier-Padé reconstruc-
tion. The parameters used for the reconstruction are (N., M) = (148,49). At this time,
the flow becomes very complicated with many small structures. It is clearly seen that the
numerical results using Fourier-Padé reconstruction are satisfactory. It must be empha-
sized that the locations of the singularities do not need to be known in our Fourier-Padé
reconstruction procedure as opposed to some other reconstruction algorithms.
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Figure 4: Time history of the maximum density p along the symmetry axis z = 7 with the
filtered Fourier collocation methods (left) and after the Fourier-Padé reconstructions (right) with
a 2562 grid (dot line), a 5122 grid (dash-dot line), and a 1024? grid (solid line).
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Figure 5: One dimensional cut of the density p at z = 7 at ¢t = 3.0 using filtered Fourier
collocation method (left) and after the Fourier-Padé reconstruction (right), on a 5122 grid.
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Figure 6: Moving mesh solutions at ¢ = 1.6. Left: density contour; Right: vorticity contour.
Top: N, = N, = 300; Bottom: N, = N, = 400.

5 Numerical Results

We will first present some moving mesh results. The monitor function used for (3.4) is
Q = 4/140.2|Vp|%. Fig. 6 shows the density and vorticity contours at ¢ = 1.6 using
300? and 4002 mesh points. At this time, the flow looks like a rising bubble. Graphically,
there is almost no difference between the numerical solutions obtained using 300? and 4002
grids, indicating that it is sufficient to resolve the flow with the 3002 grid at this time level.
The solution contours at ¢ = 3 is plotted in Fig. 7. By now the outer boundary of the
bubble becomes a sharp front and many small scale structures are formed. It is observed
by E & Shu [14] that as the bubble rises it leaves behind a long and thin filament of light
fluid. They claimed that the thin filament is a check on the amount of numerical diffusion
presented in a numerical scheme: a low-order method with large numerical viscosity makes

16



1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 0 1 2 3 4 5 6

Figure 7: Moving mesh solutions at ¢ = 3. Left: density contour; Right: vorticity contour. Top:
N, = N, = 300; Bottom: N, = N,, = 400.

the thin filament disappeared. With our moving mesh methods the thin filament is clearly
observed with 3002 and 400% grids. In fact, the numerical results with the finer grids are
graphically indistinguishable with those presented in [14] which were computed on a 15002
grid.

To see the result of the mesh adaptation, we plot in Fig. 8 an adaptive mesh at ¢t = 3. Tt
is observed that the mesh represents more or less the same as the solution structure, with
more grid points in the regions of the sharp front and the thin filaments. Fig. 9 displays
the evolution of the density along the symmetry axis x = 7 at times ¢t = 0.5,1,1.5,2 and
2.5. The formation of a front is clearly observed, which is similar to the formation of shock
fronts in the solutions of the Burgers equation. Moreover, it is observed in Fig. 9 that the
moving mesh solutions are oscillation-free with a 500? grid, which is in contrast with the
spectral solutions with a 5122 grid [14].
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Figure 8: A moving mesh at ¢t = 3 with a 3002 grid.

The largest time calculated by E & Shu [14] is t = 3.16, at that time they found a
secondary front from the tail vortices. This is also confirmed by our adaptive computations.
Fig. 10 shows a cut of vorticity and density profile through the rolls at ¢ = 3.16, which is
found in good agreement with the fine-mesh solutions given in [14].

Up to the time ¢ = 3.16, the results obtained using the Fourier collocation method
with Fourier-Padé postprocessing are basically in good agreement with the adaptive mesh
computations. However, the spectral simulation can evolve further to the range 3.5 <t <4
while our moving mesh computations are too slow to obtain finer mesh results in this
time range. Below we will report some numerical results obtained by using the spectral
algorithm. Fig. 11 shows the density and vorticity contours at ¢ = 3.5 on a 10242 grid. At
this time level, the bubble has risen to the upper periodic box so we draw the pictures in the
range of 2 < y < 8 rather than 0 < y < 27. The vortical structures at the bottom of the
bubble evolves into two tightly packed rolls. We also plot in Fig. 12 a cut of vorticity and
density profile through the rolls at ¢ = 3.5, which are found very similar to the coarser mesh
results for ¢ = 3.16 given in Fig. 10. Due to the high resolution and minimal dissipation of
the spectral methods, the tightly packed vortical structures are successfully resolved in a

18



Figure 9: Evolution of density along the symmetry axis z = 7 at ¢t = 0.5, 1, 1.5, 2, 2.5.
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Figure 10: A cut of vorticity profile (left) and the density profile (right) through the roll at
t = 3.16, on a 5002 grid.

long time integration even in the presence of the large gradients. The problem at this time
level is computed using two grids, namely 768% and 10242, and the convergence with the
mesh refinement seems satisfactory. To see this, we plot in Fig. 13 a cut of density profile
through y = 0.5867 at t = 3.5, which is obtained by using the two grids. The agreement
of the two curves is very good.

At t = 4, the numerical solutions are also obtained by using both the 7682 and 10242
grids. At this time, the flow becomes increasingly complex due to the growth of the small
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Figure 11: Density (left) and vorticity (right) contour plot at ¢ = 3.5. The grid size is 10242.

scale structures generated along the side front of the main bubble. By comparing the
overall flow structures of the density and vorticity with the two resolutions in Figs. 14
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Figure 12: A cut of vorticity profile (left) and the density profile (right) through the roll at
t = 3.5, on a 10242 grid.
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Figure 13: Resolution comparison: a cut of density profile through y = 0.5867 at ¢ = 3.5, using
a 10242 grid (solid line) and a 7682 grid (circle).

and 15, we find that the integrity of the complicated large and medium scale structures
are captured reasonably well by the spectral simulations. Fig. 16 shows the streamlines
and velocity vector over the vorticity contour along the rising bubble front just below the
cap. It is observed from these three figures that the shear flow generates the characteristic
vortices shedding due to the Kelvin-Helmholtz instability. The velocities across the bubble
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Figure 14: Density (left) and vorticity (right) contour plot at t = 4. The grid size is 768°.
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Figure 15: Density (left) and vorticity (right) contour plot at ¢ = 4. The grid size is 10242.

front have opposite sign. Moreover, the structures along the outer edge of the bubble at
t = 4 are quite different from the one for £ = 3.5. One possibility of this phenomena
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Figure 16: Streamline and velocity vector overlay on top of the vorticity at time ¢ = 4, obtained
on a 10242 grid.

is the interaction between the numerical artifacts (under-resolved front) and the Kelvin-
Helmholtz instability due to the velocity shear layer across the front. Conceptual-wise,
the front should be stretched infinitely thin with increasing number of roll ups inside the
vortical structures if the flow is inviscid and has no external perturbation (noise). However,
the thin front is very unstable and subjects to exponential growth of perturbation due to the
Kelvin-Helmholtz instability over the shear layer. The numerical noise (Gibbs or otherwise)

acts like perturbation in the simulation.

Fig. 17 shows a cut of density profile through y = 0.5867 at t = 4 using the 7682
and 10242 grids. It is observed that in most parts of the domain the agreement is good
except near the bubble front, which implies that the mesh resolution is not satisfactory
with the 7682 grid. Unfortunately, our current computer power prevent us from obtaining
finer mesh results. It will be interesting to further improve our moving mesh methods
and the spectral methods so that finer mesh results can be obtained and being used for
comparisons.

It is our conjecture that no matter how well the flow is resolved numerically initially, the
flow will eventually exhibit similar features as shown in Fig. 15 unless sufficient numerical
viscosity existed to smear out the shear layer and the front. This is also in agreement with
the recent computations of Yamada et al. [32] where extremely fine meshes are used in
their AMR algorithms. In [23], Matsumoto et al. solves the 2D Boussinesq problem with

24



IN

35F

3F

25F

P

2F

15F

i 8
B 06
N 09

05F o
5 o

07 5 g m
| 1 ! ! 1 ! ! ! 1
0 1 2 3

Figure 17: Resolution comparison: a cut of density profile through y = 0.5867 at ¢t = 4, using a
7682 (circle) and a 10242 (solid line) grid.

an adaptive mesh refinement (AMR) technique based on a second-order MUSCLE scheme.
The smallest adapted-mesh size in the adaptive computations is about 27 /2" ~ 2 % 107,
Their results, with a different (smooth) initial data, also suggest that a finite-time blow-up
may occur around ¢ > 4 and the density gradient and the vorticity diverge at rates

(5.1) ploo ~ (to =8)7%,  |w|~ (to—1)7"

respectively, where t5 & 6.

6 Concluding Remarks

In this work, we have employed two high-resolution numerical methods, namely the moving
mesh method and the Fourier spectral method, to numerically solve the two-dimensional
equations for Boussinesq convection. The initial conditions for our computations were taken
from E & Shu [14], which consist of a smooth bubble of density. This problem has generated
many theoretical interests in the past. The rapid formation of small scales and the possible
finite-time blow-up make this problem very challenging for numerical simulations. The aim
of this project is to obtain reliable numerical solutions for larger time, and to see whether
finite-time blow-up occurs for initially smooth flows. This study has confirmed the earlier
findings of E & Shu [14], and also extended their numerical computations beyond ¢ = 3.16.
At t = 4, our numerical result with an 10242 grid suggests a finite-time blow-up for the
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Boussinesq convection problem. This is in good agreement with the recent computations
of Yamada et al. [32] and of Matsumoto et al. [23] who have used extremely fine meshes
in the computations.

It will be interesting to further improve our numerical methods so that more reliable

numerical solutions can be obtained on fine meshes. A website related to the numerical

results of this work and some other incompressible flow simulations can be found in the

following website:

1]
2]

http://www.math.hkbu.edu.hk/~ttang/MMmovie/NS
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