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Abstract. In this paper we address the questions of the convergence rate for approximate
solutions to conservation laws with piecewise smooth solutions in a weighted W 1,1 space. Conver-
gence rate for the derivative of the approximate solutions is established under the assumption that a
weak pointwise-error estimate is given. In other words, we are able to convert weak pointwise-error
estimates to optimal error bounds in a weighted W 1,1 space.

For convex conservation laws, the assumption of a weak pointwise-error estimate is verified by
Tadmor [SIAM J. Numer. Anal., 28 (1991), pp. 891–906]. Therefore, one immediate application of
our W 1,1- convergence theory is that for convex conservation laws we indeed have W 1,1-error bounds
for the approximate solutions to conservation laws. Furthermore, the O(ε)-pointwise-error estimates
of Tadmor and Tang [SIAM J. Numer. Anal., 36 (1999), pp. 1739–1758] are recovered by the use of
the W 1,1-convergence result.
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1. Introduction. We study the convergence of vanishing viscosity solutions gov-
erned by the single conservation law

uεt + f(u
ε)x = εuεxx, x ∈ R, t > 0, ε > 0(1.1)

and subject to the initial condition prescribed at t = 0,

uε(x, 0) = u0(x).(1.2)

We are interested in the convergence rate of uεx towards the derivative of the inviscid
solution, ux, of the corresponding inviscid conservation law

ut + f(u)x = 0, x ∈ R, t > 0,(1.3)

which is subject to the same initial condition

u(x, 0) = u0(x).(1.4)

There has been an enormous amount of papers related to the error estimates for the
viscosity or more general approximations to scalar conservation laws. The methods of
analysis include matching method and traveling wave solutions (see, e.g., Goodman
and Xin [5]); matching the Green function of the linearized problem (see, e.g., Liu
[13]); weakW−1,1 convergence theory (see, e.g., Tadmor [21]); the Kruzkov-functional
method (see, e.g., Kuznetsov [9]); and energy-like methods (see, e.g., Tadmor and
Tang [22]). The results on error estimates include
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• for BV entropy solutions to (1.3), an O(
√
ε) convergence rate in L1 obtained

by Kuznetsov [9], Lucier [14], Sanders [18], Cockburn–Gremaud–Yang [3],
etc. (in the BV-solution space, it is shown by Sabac [17] and Tang and Teng
[27] that the L1-convergence rate of order O(

√
ε) is optimal);

• for BV entropy solutions, an O(ε) convergence rate in W−1,1 obtained by
Tadmor [21], Nessyahu and Tadmor [15], Nessyahu–Tadmor–Tassa [16], Liu
and Warnecke [11], Liu, Wang, and Warnecke [12] etc.;

• for piecewise smooth solutions for (1.3), an O(ε) convergence rate in L1 ob-
tained by Bakhvalov [1], Harabetian [6], Teng and Zhang [30], Fan [2], Tang
and Teng [28], Teng [29], etc.;

• for piecewise smooth solutions, an O(ε) convergence rate in the smooth region
of the entropy solution obtained by Goodman and Xin [5], Engquist and
Sjögreen [4], Tadmor and Tang [22], [25], etc.

The results listed above are concerned with the convergence of the approximate
solution itself; essentially nothing is obtained for its derivative. In this work, we will
investigate the convergence of the first derivative of the approximate solutions. We
will assume that the inviscid solution u has finitely many discontinuities, which is the
generic situation, [19], [26]. By properly choosing a weighted function, we will obtain
an O(ε)-bound for uε−u in a weighted W 1,1 space. More precisely, we will show that
the following estimate holds:∫

R

ρ(x, t)
(
|uεx − ux|+ |uε − u|

)
dx ≤ Cε ,

where ρ is a distance function to the singular support of u(x, t). In case that there is
only one shock discontinuity x = X(t), the above result implies that

‖uεx(·, t)− ux(·, t)‖L1(R\[X(t)−h,X(t)+h]) ≤ C(h)ε

for any given h > 0. If there are finitely many shock curves S(t) = {(x, t)|x =
Xk(t)}Kk=1, then we have

‖uεx(·, t)− ux(·, t)‖L1(R\∪k[Xk(t)−h,Xk(t)+h]) ≤ C(h)ε.
In this work, the above estimates are established under the assumption that a

weak pointwise-error estimate holds away from the singular support of the entropy
solution u(x, t). In other words, we are able to convert weak pointwise-error esti-
mates to optimal error bounds in a weighted W 1,1 space. It is noticed that such a
weak pointwise-error estimate is verified for convex conservation laws by Tadmor [21].
Furthermore, our W 1,1-estimate recovers the O(ε)-pointwise error bound obtained by
Tadmor and Tang [22], i.e.,

|(uε − u)(x, t)| ≤ C(h)ε , dist(x, S(t)) ≥ h,

for any given h > 0, where S(t) = {(x, t)|x = Xk(t)}Kk=1. Since our result is obtained
in a completely different way, this work gives an independent check of the result in
[22].

There are also many studies on the convergence and stability of the viscosity
approximations to the system of conservation laws, see, e.g., [5], [7], [8], [13], [20],
[31]. Kreiss and Kreiss [7] and Kreiss, Kreiss, and Lorenz [8] provide an energy-
method approach (which is different from the ones used in this work and [22]) for
the question of interior regularity. In [13], Liu used a pointwise-error estimate to
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study the asymptotic stability of a viscous shock profile. The convergence of viscous
solutions to inviscid solutions with one shock is investigated by Goodman and Xin
[5] and Yu [31]. In the scalar case, we wish to obtain a clear picture about the
pointwise convergence rate, not only for one shock but also for finitely many shock
discontinuities. Moreover, we wish to provide some general methods which can be
applied to other types of approximate schemes; see [22], [23].

We close this section by emphasizing two important points of this work: (1) Unlike
most of previous work on error estimates, the present paper gives the error bounds
for the derivative of the approximate solutions. This result, together with previous
results by Tadmor, etc. for pointwise-error estimates, gives a clear picture about the
pointwise convergence rates of approximate solutions to scalar conservation laws. (2)
The present results suggest that if a weak pointwise-error estimate can be established
for the nonconvex conservation laws, then the optimal pointwise-error estimate can
be obtained for the nonconvex case. So far, almost no pointwise-error estimates for
numerical approximations have been obtained for nonconvex conservation laws.

2. Preliminaries. For ease of exposition we shall make the following assump-
tions in this section:

• (A1) the initial data u0 is piecewisely C3-smooth and is compactly supported;
• (A2) we assume that there exists a smooth curve, x = X(t), such that u(x, t)

is smooth at any point away from x = X(t);
• (A3) there exists a constant 0 < γ ≤ 1 and a constant CT > 0 such that

|uε(x, t)− u(x, t)| ≤ CT ε
γ for |x−X(t)| > CT ε

γ .(2.1)

Remark 1. We make the following remarks and observations:
• (a) assumption (A1) implies that uxxx(•, t) ∈ L1(R) which will be used in the
proofs of the next section (see the estimate (3.8)); also, if we are interested
in pointwise-error estimates in a finite domain (not too far from the shock
curve), then it is reasonable to assume that u0 is compactly supported;

• (b) although we consider only the case with one shock, the extension to
finitely many shocks/rarefaction waves can be carried out by following [22];
see section 4 for more detail discussion;

• (c) assumption (A3) is satisfied for convex conservation laws with Lip+-
bounded initial data, with γ = 1/3 (see Tadmor [21]); it can be improved
to γ = 1/2 as discussed in Tadmor and Tang [22]; however, it is still unclear
if (A3) holds for nonconvex conservation laws;

• (d) there is no convexity assumption for the flux function f in this sec-
tion.

At a point on the shock curve x = X(t), we have the Rankine–Hugoniot condition

X ′(t) =
f(u(X(t)+, 0))− f(u(X(t)−, 0))
u(X(t)+, 0)− u(X(t)−, 0) .(2.2)

Also the Lax geometrical entropy condition is satisfied [10]:

f ′(u(X(t)−, t)) ≥ X ′(t) ≥ f ′(u(X(t)+, t)).(2.3)

The above properties will be used in the analysis in the following section. Following
[22], we introduce a function φ(x) ∈ C2(R) which satisfies

• (i) φ(x) ∼ |x|α , |x| � 1,
• (ii) xφ′(x) > 0, x �= 0,
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• (iii) φ(x) → 1, |x| → ∞ ,
where α ≥ 1 is a finite constant. The second requirement above implies that φ
is monotonely decreasing for x < 0 and increasing for x > 0. More precisely, the
distance function φ is required to satisfy


φ(0) = 0, 0 < xφ′(x) ≤ αφ(x) for x �= 0 ,

|φ(x)| ≤ |x|α, |φ(k)(x)| ≤ C, k = 0, 1, 2,
(2.4)

where the constants C are independent of x. The functions satisfying the above
requirement include φ(x) = (1− e−x2

)α/2.
Remark 2. Unlike in [22], the distance function φ is now extended to the whole

R. This enables us to make a uniform treatment to the (weighted) error func-
tion.

In this work, we choose α = γ−1 +1, where γ is the constant given in assumption
(A3). In other words,

φ(x) ∼


x1/γ+1 , |x| � 1 ,

1 , |x| � 1 .

As to be shown in section 4, we have γ = 1
2 for convex conservation laws.

3. Main results. We define the error function between the viscosity solution
and the entropy solution as e(x, t) := uε(x, t)−u(x, t). The main results of this paper
are given in the following theorem.

Theorem 3.1. Assume that assumptions (A1)–(A3) are satisfied. Then for a
weighted distance function φ, φ ∼ min(|x|1/γ+1, 1), there exists a positive constant
C(T ) independent of ε such that∫

R

φ(x−X(t))
(
|e(x, t)|+ |ex(x, t)|

)
dx ≤ C(T )ε(3.1)

for 0 ≤ t ≤ T . In particular, for any given h > 0, there exists a constant C(T, h)
independent of ε such that

‖uεx(·, t)− ux(·, t)‖L1(R\[X(t)−h,X(t)+h]) ≤ C(T, h)ε for 0 ≤ t ≤ T.(3.2)

An immediate application of the above theorem is to recover the (optimal) pointwise-
error estimate of Tadmor and Tang [22].

Corollary 3.2. Assume that assumptions (A1)–(A3) are satisfied. Then for a
weighted distance function φ, φ ∼ min(|x|1/γ+1, 1),

|(uε − u)(x, t)φ(x−X(t))| = O(ε).(3.3)

In particular, if (x, t) is away from the shock discontinuity S(t) = {(x, t)|x = X(t)},
then

|(uε − u)(x, t)| ≤ C(h)ε, dist(x, S(t)) ≥ h.(3.4)

3.1. Some lemmas. In order to establish the results in Theorem 3.1, we need
the following three lemmas which will lead to a Gronwall inequality for the left-hand
side function of (3.1). Moreover, in the remainder of this section, we always denote
φ = φ(x−X(t)), φ′ = φ′(x−X(t)).
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Lemma 3.3. For a weighted distance function φ, φ ∼ min(|x|1/γ+1, 1), and for
any F ∈ L1(R), we have

∫
R

(
f ′(uε)− Ẋ(t)

)
φ′|F |dx ≤ C

∫
R

φ|F |dx+ Cε .(3.5)

Proof. We split the left-hand side of (3.5) into two parts: I1 + I2, where

I1 =

∫
|x−X(t)|≥εγ

(
f ′(uε)− Ẋ(t)

)
φ′(x−X(t))|F |dx,

I2 =

∫
|x−X(t)|≤εγ

(
f ′(uε)− Ẋ(t)

)
φ′(x−X(t))|F |dx ,

where γ is the constant given in (A3). It follows from (2.4) that |φ′(x)| ≤ C|x|1/γ .
This result gives that

I2 ≤ Cε.(3.6)

Now for x − X(t) ≥ εγ , we use the facts that φ′ ≥ 0, Ẋ(t) > f ′(u+), where u+ =
u(X(t) + 0, t), to obtain

(
f ′(uε)− Ẋ(t)

)
φ′

≤
(
f ′(uε)− f ′(u)

)
φ′ +

(
f ′(u)− f ′(u+)

)
φ′

≤ Cf ′′(•)εγφ′ + f ′′(•)ux(•)(x−X(t))φ′ (using (A3))

≤ Cf ′′(•)(x−X(t))φ′ + f ′′(•)ux(•)(x−X(t))φ′

≤ C(x−X(t))φ′

≤ Cφ .

Similarly, by noting that φ′ ≤ 0 for x ≤ X(t) we can also prove that

(
f ′(uε)− Ẋ(t)

)
φ′ ≤ Cφ for x−X(t) ≤ −εγ .

The above results lead to I1 ≤ C‖φF‖L1(R). This, together with (3.6), yields the
inequality (3.5). The proof of this lemma is complete.

Lemma 3.4. For a weighted distance function φ, φ ∼ min(|x|1/γ+1, 1), there
exists a constant C independent of ε such that

∫
R

φsgn(ex)∂texdx ≤
∫
R

φ′f ′(uε)|ex|dx+ C
∫
R

φ|ex|dx+ C
∫
R

φ|e|dx + Cε .(3.7)

Proof. Direct calculation from the viscosity equation (1.1) gives

∂tex + (f(uε)− f(u))xx = ε(ex)xx + εuxxx .

Applying the above result gives

∫
R

φsgn(ex)∂texdx = J1 + J2 + J3,
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where

J1 = −
∫
R

φsgn(ex)(f(u
ε)− f(u))xxdx ,

J2 = ε

∫
R

φsgn(ex)(ex)xxdx ,

J3 = ε

∫
R

φsgn(ex)uxxxdx .

It is easy to verify that

J3 = O(ε).(3.8)

We now estimate J2 by integration by parts. It is noted that ex(·, t) ∈ C((X(t),∞)).
As in Lax [10], we divide the interval [X(t),∞) into intervals, [X(t),∞) = ∪mIm(t),
Im(t) = [pm(t), pm+1(t)), with p0(t) = X(t) and ex changing signs across points pm,
m ≥ 1. Assuming that

(−1)s = sgn(ex)
∣∣∣
x∈I0(t)

,

we have

φsgn(ex)exx

∣∣∣
x=p0(t)

= 0 ,

(−1)s+mexx

∣∣∣
x=pm+1(t)

≤ 0 , (−1)s+mexx

∣∣∣
x=pm(t)

≥ 0 for m ≥ 1 .(3.9)

It follows from the above results that

∫ ∞

X(t)

φsgn(ex)(ex)xxdx =

∞∑
m=0

(−1)s+m

∫ pm+1(t)

pm(t)

φ(ex)xxdx

=
∑
m

(−1)m+sφexx

∣∣∣pm+1(t)

pm(t)
−
∑
m

(−1)m+s

∫ pm+1(t)

pm(t)

φ′exxdx

≤ 0−
∑
m

(−1)m+s

∫ pm+1(t)

pm(t)

φ′exxdx ,(3.10)

where in the last step we have used (3.9). Note that φ′ = 0 when x = p0(t) = X(t)
and ex = 0 when x = pm(t),m ≥ 1. Using integration by parts for (3.10) leads to

∫ ∞

X(t)

φsgn(ex)(ex)xxdx ≤
∑
m

(−1)m+s

∫ pm+1(t)

pm(t)

φ′′exdx

=

∫ ∞

X(t)

φ′′|ex|dx ≤ C‖u0‖BV (R) = O(1),

where in the second to last step we have used the facts that uε and u are BV -bounded
by ||u0||BV (R). Similarly, we can show that

∫ X(t)

−∞
φsgn(ex)(ex)xxdx ≤ O(1).
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The above two results yield

J2 ≤ O(ε).(3.11)

Finally, we need to estimate J1. Observe

−
∫ ∞

X(t)

φ sgn(ex)
(
f(uε)− f(u)

)
xx
dx

= −
∑
m

(−1)m+sφ
(
f(uε)− f(u)

)
x

∣∣∣pm+1(t)

pm(t)

+
∑
m

(−1)m+s

∫ pm+1(t)

pm(t)

(
f(uε)− f(u)

)
x
φ′dx .(3.12)

Using the following observation

(
f(uε)− f(u)

)
x
=

(
f ′(uε)− f ′(u)

)
ux , when x = pm(t),m ≥ 1 ,

we obtain from (3.12) that

−
∫ ∞

X(t)

φ sgn(ex)
(
f(uε)− f(u)

)
xx
dx

= −
∑
m

(−1)m+sφ
(
f ′(uε)− f ′(u)

)
ux

∣∣∣pm+1

pm

+
∑
m

(−1)m+s

∫ pm+1

pm

φ′
[
f ′(uε)ex + (f ′(uε)− f ′(u))ux

]
dx

= −
∑
m

(−1)m+s

∫ pm+1

pm

(
φ(f ′(uε)− f ′(u))ux

)
x
dx

︸ ︷︷ ︸
K1

+

∫ ∞

X(t)

φ′f ′(uε)|ex|dx

+
∑
m

(−1)m+s

∫ pm+1

pm

φ′(f ′(uε)− f ′(u))uxdx
︸ ︷︷ ︸

K2

.(3.13)

Using product rule for the integrand of K1 gives

K1 = −K2 −
∑
m

(−1)m+s

∫ pm+1

pm

φ(f ′(uε)− f ′(u))xuxdx

−
∑
m

(−1)m+s

∫ pm+1

pm

φ(f ′(uε)− f ′(u))uxxdx

= −K2 −
∫ ∞

X(t)

φ sgn(ex)
[
f ′′(uε)ex + (f ′′(uε)− f ′′(u))ux

]
uxdx

−
∫ ∞

X(t)

φsgn(ex)(f
′(uε)− f ′(u))uxxdx

≤ −K2 + C

∫ ∞

X(t)

φ|ex|dx+ C
∫ ∞

X(t)

φ|e|dx .(3.14)
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Combining the above results, (3.13) and (3.14), gives

−
∫ ∞

X(t)

φ sgn(ex)
(
f(uε)− f(u)

)
xx
dx

≤
∫ ∞

X(t)

φ′f ′(uε)|ex|dx+ C
∫ ∞

X(t)

φ|ex|dx+ C
∫ ∞

X(t)

φ|e|dx .

Similarly, we can show that

−
∫ X(t)

−∞
φ sgn(ex)

(
f(uε)− f(u)

)
xx
dx

≤
∫ X(t)

−∞
φ′f ′(uε)|ex|dx+ C

∫ X(t)

−∞
φ|ex|dx+ C

∫ X(t)

−∞
φ|e|dx .

The above two results lead to an estimate for J1:

J1 ≤
∫
R

φ′f ′(uε)|ex|dx+ C
∫
R

φ|ex|dx+ C
∫
R

φ|e|dx .(3.15)

The desired inequality (3.7) follows from the above estimates for J1, J2, and J3.
Lemma 3.5. For a weighted distance function φ, φ ∼ min(|x|1/γ+1, 1), there

exists a constant C independent of ε such that

d

dt

∫
R

φ|e|dx ≤ C
∫
R

φ|ex|dx+ C
∫
R

φ|e|dx + Cε .(3.16)

Proof. It follows from the viscous equation (1.1) and the conservation law (1.3)
that

et = −
(
f(uε)− f(u)

)
x
+ εexx + εuxx .

Using the above equation gives∫
R

φsgn(e)etdx = −
∫
R

φsgn(e)
(
f(uε)− f(u)

)
x
dx

+ ε

∫
R

φsgn(e)exxdx+ ε

∫
R

φsgn(e)uxxdx .(3.17)

It can be verified that the last term above is of order O(ε), and the second to last
term is bounded by

ε

∫
R

φsgn(e)exxdx ≤ −ε
∫
R

φ′sgn(e)exdx = O(ε) ,

where in the last step we have used the fact that u and uε are BV -bounded. Using
the following observation(

f(uε)− f(u)
)
x
= f ′(uε)ex +

(
f ′(uε)− f ′(u)

)
ux

= f ′(uε)ex + f ′′(•) e ux ,
and the fact that ux = O(1) for (x, t) away from the shock curve, we can bound the
first term on the right-hand side of (3.17):

−
∫
R

φsgn(e)
(
f(uε)− f(u)

)
x
dx ≤ C

∫
R

φ|ex|dx+ C
∫
R

φ|e|dx .
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Therefore, we have proved that∫
R

φsgn(e)etdx ≤ C
∫
R

φ|ex|dx+ C
∫
R

φ|e|dx+ Cε .(3.18)

Using integration by parts we obtain∫
R

−Ẋ(t)φ′|e|dx = Ẋ(t)

∫
R

φsgn(e)exdx

≤ C
∫
R

φ|ex|dx .(3.19)

Combining (3.18) and (3.19) we obtain the desired estimate (3.16).

3.2. Proof of Theorem 3.1. Having the above three lemmas, we are ready to
prove Theorem 3.1. Observe that

d

dt

∫
R

φ|ex|dx =

∫
R

−Ẋ(t)φ′|ex|dx+
∫
R

φ∂t|ex|dx .

The above result, together with Lemma 3.4, yields

d

dt

∫
R

φ|ex|dx ≤
∫
R

φ′
(
f ′(uε)− Ẋ(t)

)
|ex|dx+ C

∫
R

φ|ex|dx+ C
∫
R

φ|e|dx+ Cε .

Since ex ∈ L1(R), we apply Lemma 3.3 to obtain

d

dt

∫
R

φ|ex|dx ≤ C
∫
R

φ|ex|dx+ C
∫
R

φ|e|dx+ Cε .

The above result, together with Lemma 3.5, leads to

d

dt

∫
R

φ
(
|e|+ |ex|

)
dx ≤ C

∫
R

φ
(
|e|+ |ex|

)
dx+ Cε .(3.20)

The estimate (3.1) in Theorem 3.1 follows immediately from the above Gronwall
inequality. It follows from (2.4) that for any h > 0 there exists a constant c(h) > 0
such that

|φ(x)| ≥ c(h) as |x| ≥ h.

The estimate (3.2) follows from the above observation and (3.1). The proof of Theorem
3.1 is complete.

3.3. Proof of Corollary 3.2. Consider the weighted error function φ(x −
X(t))e(x, t) with (x, t) on the right-hand side of the shock curve, i.e., x > X(t).
In this case,

φ(x−X(t)) e(x, t) = −
∫ ∞

x

φexdx−
∫ ∞

x

φ′edx ,

which leads to

|φ(x−X(t))e(x, t)| ≤
∫ ∞

X(t)

φ|ex|dx+
∫ ∞

X(t)

φ′|e|dx .
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Using integration by parts gives∫ ∞

X(t)

φ′|e|dx = −
∫ ∞

X(t)

φsgn(e) exdx ≤
∫ ∞

X(t)

φ|ex|dx.

Combining the above two results we obtain

|φ(x−X(t))e(x, t)| ≤ 2

∫ ∞

X(t)

φ|ex|dx ≤ 2

∫
R

φ|ex|dx .

This, together with Theorem 3.1, yields

|φ(x−X(t))e(x, t)| ≤ Cε , x > X(t) .

A similar result holds for (x, t) on the left-hand side of the shock curve. This completes
the proof of Corollary 3.2.

4. Application to convex conservation laws. Assume that the flux function
f in (1.3) is convex and that there exists only one shock discontinuity for the entropy
solution of (1.3)–(1.4). As in [21], we let ‖ • ‖Lip+ denote the Lip+-seminorm

‖w‖Lip+ := ess sup
x�=y

[
w(x)− w(y)
x− y

]+

,

where [w]+ = H(w)w, with H(•) the Heaviside function. Owing to the convexity of
the flux f , the viscosity solutions of (1.1) satisfy a Lip+-stability condition, similar
to the familiar Oleinik’s E-condition, which asserts an a priori upper bound for the
Lip+-seminorm of the viscosity solution

uε(x, t)− uε(y, t)
x− y ≤ ‖uε(·, t)‖Lip+ ≤ 1

‖u0‖−1
Lip+ + βt

,(4.1)

where uε is the solution of (1.1)–(1.2), β is the convexity constant of the flux f ,
f ′′ ≥ β; consult, e.g., [21]. The above result suggests that if the initial data do not
contain nonLipschitz increasing discontinuities, then the viscosity solution of (1.1)
will keep the same property. The same is true for entropy solution of (1.3)–(1.4).

It is shown in [21] that with the Lip+ initial data, the following pointwise-error
bound holds:

|uε(x, t)− u(x, t)| ≤ C 3
√
ε for dist(x, S(t)) ≥ 3

√
ε ,(4.2)

where S(t) = {(x, t)|x = X(t)}. This result can be further improved by using the
results in [22] and [28]:

|uε(x, t)− u(x, t)| ≤ C√
ε for dist(x, S(t)) ≥ √

ε .(4.3)

In other words, assumption (A3) holds with γ = 0.5 for convex conservation laws with
Lip+ initial data.

4.1. One shock. It is noted that assumption (A2), i.e., the entropy solution has
only one shock discontinuity, implies that u0 must be Lip+-stable. Therefore, the
theories developed in the last section can be applied to convex conservation laws with
one shock discontinuity. We summarize what we have shown by stating the following.

Assertion 1. Let uε(x, t) be the viscosity solutions of (1.1)–(1.2) and u(x, t) be
the entropy solution of (1.3)–(1.4). If the flux function f in (1.3) is convex and the
entropy solution has only one shock discontinuity S(t) = {(x, t)|x = X(t)}, then the
following error estimates hold:
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• For a weighted distance function φ, φ(x) ∼ min(|x|3, 1),

(a)

∫
R

φ(x−X(t))
(
|(uε − u)(x, t)|+ |(uεx − ux)(x, t)|

)
dx ≤ Cε ,

(b) |(uε − u)(x, t)|φ(x−X(t)) = O(ε) .

• In particular, if (x, t) is away from the singular support, then for any given
h > 0

(c) ‖uεx(·, t)− ux(·, t)‖L1(R\[X(t)−h,X(t)+h]) ≤ C(h)ε ,
(d) |(uε − u)(x, t)| ≤ C(h)ε , |x−X(t)| ≥ h.

4.2. Finitely many shocks. In this general case, we define the weighted dis-
tance function as

ρ(x, t) =
K∏

k=1

φ (x−Xk(t)) .(4.4)

We can apply the same techniques as used in section 3 for the weighted error functions
(uε(x, t) − u(x, t))ρ(x, t) and (uεx(x, t) − ux(x, t))ρ(x, t). The results in Theorem 3.1
and Corollary 3.2 can be extended to these error functions. Following [22], we can
extend Assertion 1 and conclude the following.

Assertion 2. Let uε(x, t) be the viscosity solutions of (1.1)–(1.2) and u(x, t) be
the entropy solution of (1.3)–(1.4). If the flux function f in (1.3) is convex and the
entropy solution has finitely many shock discontinuities S(t) = {(x, t)|x = Xk(t)}Kk=1,
then the following error estimates hold:

• For a weighted distance function φ, φ(x) ∼ min(|x|3, 1),

(a)

∫
R

K∏
k=1

φ (x−Xk(t))
(
|(uε − u)(x, t)|+ |(uεx − ux)(x, t)|

)
dx ≤ Cε ,

(b) |(uε − u)(x, t)|
K∏

k=1

φ (x−Xk(t)) = O(ε) .

• In particular, if (x, t) is away from the singular support, then for any h > 0

(c) ‖uεx(·, t)− ux(·, t)‖L1(R\∪k[Xk(t)−h,Xk(t)+h]) ≤ C(h)ε ,
(d) |(uε − u)(x, t)| ≤ C(h)ε , dist(x, S(t)) ≥ h.

Finally, we point out that unlike previous work for studying the viscous conser-
vation laws the approach used in Tadmor and Tang [22] does not follow the char-
acteristics but instead makes use of the energy method. Therefore, their results for
the viscosity approximations can be extended to finite difference methods [23], [24].
It is seen that the present work also makes use of the same energy method and it is
expected that the results in this paper can be extended to other types of approximate
solutions (such as the monotone difference methods with smooth numerical fluxs).
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