
Journal of Computational Physics 303 (2015) 45–65
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Fast and stable explicit operator splitting methods for

phase-field models

Yuanzhen Cheng a, Alexander Kurganov a,∗, Zhuolin Qu a, Tao Tang b

a Mathematics Department, Tulane University, New Orleans, LA 70118, USA
b Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 April 2015
Received in revised form 27 August 2015
Accepted 3 September 2015
Available online 25 September 2015

Keywords:
Phase-field models
Molecular beam epitaxy equation
Cahn–Hilliard equation
Operator splitting methods
Semi-discrete finite-difference schemes
Large stability domain explicit Runge–Kutta
methods
Pseudo-spectral methods
Adaptive time-stepping

Numerical simulations of phase-field models require long time computations and therefore
it is necessary to develop efficient and highly accurate numerical methods. In this paper,
we propose fast and stable explicit operator splitting methods for both one- and two-
dimensional nonlinear diffusion equations for thin film epitaxy with slope selection and
the Cahn–Hilliard equation. The equations are split into nonlinear and linear parts. The
nonlinear part is solved using a method of lines together with an efficient large stability
domain explicit ODE solver. The linear part is solved by a pseudo-spectral method, which
is based on the exact solution and thus has no stability restriction on the time-step size.
We demonstrate the performance of the proposed methods on a number of one- and
two-dimensional numerical examples, where different stages of coarsening such as the
initial preparation, alternating rapid structural transition and slow motion can be clearly
observed.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Phase-field models have been recently introduced to describe interfacial phenomena. They were originally derived for
the microstructure evolution and phase transition, but have been recently extended to many other physical phenomena,
such as solid–solid transitions, growth of cancerous tumors, phase separation of block copolymers, dewetting and rupture
of thin liquid films and infiltration of water into porous medium.

Two of these phase-field models have attracted much attention: the molecular beam epitaxy (MBE) equation with slope
selection

ut = −δ�2u + ∇ · f (∇u), (x, y) ∈ � ⊂ R2, t ∈ (0, T], (1.1)

and the Cahn–Hilliard (CH) equation

ut = −δ�2u + � f (u), (x, y) ∈ � ⊂ R2, t ∈ (0, T]. (1.2)

In this paper, we consider

f (ϕ) = ϕ|ϕ|2 − ϕ,

* Corresponding author.
E-mail addresses: ycheng5@tulane.edu (Y. Cheng), kurganov@math.tulane.edu (A. Kurganov), zqu1@tulane.edu (Z. Qu), ttang@math.hkbu.edu.hk (T. Tang).
http://dx.doi.org/10.1016/j.jcp.2015.09.005
0021-9991/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2015.09.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:ycheng5@tulane.edu
mailto:kurganov@math.tulane.edu
mailto:zqu1@tulane.edu
mailto:ttang@math.hkbu.edu.hk
http://dx.doi.org/10.1016/j.jcp.2015.09.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2015.09.005&domain=pdf

46 Y. Cheng et al. / Journal of Computational Physics 303 (2015) 45–65
for which the two phase-field models (1.1) and (1.2) become

ut = −δ�2u + ∇ · (|∇u|2∇u − ∇u), (x, y) ∈ � ⊂ R2, t ∈ (0, T], (1.3)

and

ut = −δ�2u + �(u3 − u), (x, y) ∈ � ⊂ R2, t ∈ (0, T]. (1.4)

In (1.3), u is a scaled height function of epitaxial growth of thin films in a co-moving frame and the parameter δ is a
positive surface diffusion constant. In (1.4), u represents the concentration of one of the two metallic components of the
alloy, and the positive parameter δ represents the interfacial width, which is small compared to the characteristic length of
the laboratory scale. An important feature of these two equations is that they can be viewed as the gradient flow of the
following energy functionals:

E(u) =
∫
�

[
δ

2
|�u|2 + 1

4
(|∇u|2 − 1)2

]
dxdy (1.5)

for the MBE equation and

E(u) =
∫
�

[
δ

2
|∇u|2 + 1

4
(u2 − 1)2

]
dxdy (1.6)

for the CH one. As it has been shown in [4,15], both energy functionals decay in time:

E(u(t)) ≤ E(u(s)), ∀t ≥ s.

Development of highly accurate and efficient numerical methods for (1.3) and (1.4) is a challenging task. Since explicit
schemes usually suffer from severe stability restrictions caused by the presence of high-order derivative terms and do
not obey the energy decay property, semi-implicit schemes are widely used. In [30], a combined spectral and large time-
stepping method was studied for the MBE equation, in which an extra term was added to substantially improve the stability
condition. The same method was applied to the CH equation in [13]. However, this artificial stabilization term depends on
the unknown numerical solutions and if it is taken improperly, the resulting numerical scheme would be unstable. In [21],
unconditionally energy stable finite-difference schemes were introduced and an adaptive time-stepping strategy was pro-
posed to select time-steps adaptively based on the time variation of the energy. This technique was also successfully applied
in the simulations of the CH equation in [31]. In [10], a high-order and energy stable scheme was developed to simulate
some phase-field models by combining the semi-implicit spectral deferred correction method and the energy stable convex
splitting technique. In [23], a set of unconditionally stable, unconditionally uniquely solvable and second-order schemes for
general gradient flows of Ehrlich–Schwoebel energy type with a specific application to the MBE equation was presented.
In addition, a variety of finite-element based unconditionally energy-stable schemes for the CH equation were proposed
in [11,12], including first- and second-order in time linear schemes as well as an adaptive time-stepping algorithm. A de-
tailed review of the recent updates on numerical methods for the CH equation and its applicability to related energy-based
models, including phase-field models, can be found in [26].

In this paper, we develop accurate, efficient and robust explicit methods for both (1.3) and (1.4) subject to periodic
boundary conditions. Our methods, which are described in detail in Section 2 and Section 3, are based on the large stability
domain explicit Runge–Kutta methods [2,3,14,18] and the fast explicit operator splitting method proposed in [5,6,8,9] (see
also [7]) in the context of convection–diffusion equations.

Following the approach in [5,6,8,9], we split equation (1.3) into the nonlinear,

ut = ∇ · (|∇u|2∇u), (1.7)

and linear,

ut = −�u − δ�2u, (1.8)

parts. We denote by SN the exact solution operator associated with (1.7) and by SL the exact solution operator associated
with (1.8). Notice that the corresponding energy functionals,

EN (u) = 1

4

∫
�

|∇u|4 dxdy (1.9)

and

EL(u) =
∫
�

(
δ

2
|�u|2 − 1

2
|∇u|2 + 1

4

)
dxdy (1.10)

decay. Then, introducing a (small) splitting step �t , the solution of the original equation (1.3) (which is assumed to be
available at time t) is evolved using the Strang splitting method [16,17,25], one step of which can be written as

Y. Cheng et al. / Journal of Computational Physics 303 (2015) 45–65 47
u(x, y, t + �t) = SL(�t/2)SN (�t)SL(�t/2)u(x, y, t).

A similar splitting approach is applied to equation (1.4), for which the linear part is still (1.8) and the nonlinear one is

ut = �(u3). (1.11)

As in the case of the MBE equation, the corresponding energy functionals,

EN (u) = 1

4

∫
�

u4 dxdy (1.12)

and

EL(u) =
∫
�

(
δ

2
|∇u|2 − 1

2
u2 + 1

4

)
dxdy (1.13)

decay. We stress that even though the linear parts of equations (1.3) and (1.4) are the same, the functionals (1.10) and (1.13)
are different since they are associated with the corresponding parts of the energy functionals (1.5) and (1.6).

In order to implement the splitting method, the exact solution operators SN and SL have to be replaced by their
numerical approximations. Note that one of the main advantages of the operator splitting technique is the fact that the
nonlinear, (1.7) and (1.11), and linear, (1.8), subproblems, which are of different nature, can be solved numerically by differ-
ent methods. First, using the method of lines, (1.7) and (1.11) can be reduced to systems of ODEs, which can be efficiently
and accurately integrated by large stability domain explicit ODE solvers [2,3,14,18]. Second, since (1.8) is linear, one can
solve it (practically) exactly using, for example, the pseudo-spectral method. This way, no stability restrictions on solving
(1.8) are imposed. A detailed description of an efficient implementation of the proposed fast and stable explicit operator
splitting methods is given in Section 2 and Section 3.

The paper is organized as follows. In Section 2, we build 2mth-order semi-discrete finite-difference schemes for (1.7)
and (1.11). The resulting stiff system of ODE is then solved by an efficient large stability domain explicit ODE solver [1,19].
In Section 3, we develop a pseudo-spectral method for the linear equation (1.8). In Section 5, we demonstrate the perfor-
mance of the proposed fast and stable explicit operator splitting methods on a number of one- (1-D) and two-dimensional
(2-D) numerical examples, where different stages of coarsening such as the initial preparation, alternating rapid structural
transition and slow motion can be clearly observed.

2. Finite-difference methods for (1.7) and (1.11)

In this section, we propose efficient explicit finite-difference methods for the degenerate parabolic equations (1.7) and
(1.11). These methods are based on the semi-discretization of (1.7) and (1.11) followed by the use of an efficient and accurate
ODE solver. The ODE solver will be utilized to evolve the solutions of (1.7) and (1.11) from time t to t + �t . We note that
in a general case the time-steps of the ODE solver denoted by �tODE will be smaller than the splitting step �t so that the
approximation of SN (�t) will typically require several �tODE steps.

2.1. Finite-difference schemes for ut = (u3
x)x

In this section, we design 2mth-order centered-difference schemes for the 1-D version of (1.7):

ut = (u3
x)x, x ∈ [0, L], t ∈ (0, T]. (2.1)

We consider a uniform grid with nodes x j , such that x j+1 − x j = �x, ∀ j, and introduce the following 2mth-order discrete
approximation of the ∂

∂x operator:

(ψx) j :=
m∑

p=−m

αpψ j+p = ψx(x j) +O((�x)2m). (2.2)

For example, when m = 2, we obtain a fourth-order centered-difference approximation by taking

α1 = −α−1 = 2

3�x
, α2 = −α−2 = − 1

12�x
.

Equipped with the above approximation of spacial derivatives, we discretize equation (2.1) using the method of lines as
follows:

du j

dt
(t) =

m∑
p=−m

αp H j+p(t) =: F j(t), (2.3)

where u j(t) denotes the computed point value of the solution at (x j , t), and

48 Y. Cheng et al. / Journal of Computational Physics 303 (2015) 45–65
H j(t) := (ux)
3
j (t) with (ux) j(t) :=

m∑
p=−m

αpu j+p(t). (2.4)

Note that the above quantities depend on t , but for the sake of brevity we will suppress this dependence from now on.

Remark 2.1. One can show that the coefficients {αp} satisfy the following conditions:

α0 = 0 and αp + α−p = 0, p 	= 0. (2.5)

Theorem 2.1. The semi-discrete schemes (2.3), (2.4) satisfy the following energy decay property:

d

dt
E�
N ≤ 0,

where E�
N is a 1-D discrete version of the energy functional (1.9):

E�
N := 1

4

∑
j

(ux)
4
j �x.

Proof. Using (2.3)–(2.5) and the periodicity of computed solutions, one can obtain the following energy estimate:

d

dt

⎛⎝1

4

∑
j

(ux)
4
j

⎞⎠ =
∑

j

(ux)
3
j

d

dt
[(ux) j] (2.4)=

∑
j

H j
d

dt

⎡⎣ m∑
p=−m

αpu j+p

⎤⎦ (2.3)=
∑

j

H j

m∑
p=−m

αp F j+p

=
m∑

p=−m

αp

∑
j

H j F j+p =
m∑

p=−m

αp

∑
j

H j−p F j =
∑

j

F j

m∑
p=−m

αp H j−p

=
∑

j

F j

m∑
p=−m

α−p H j+p
(2.5)=

∑
j

F j

m∑
p=−m

(−αp)H j+p
(2.3)= −

∑
j

F 2
j ≤ 0. �

2.2. Finite-difference schemes for ut = ∇ · [|∇u|2∇u]

We now turn to the 2-D equation (1.7). We consider a uniform grid with nodes (x j, yk), such that x j+1 − x j =
�x, ∀ j, yk+1 − yk = �y, ∀k, and introduce the following 2mth-order discrete approximation of the ∂

∂x and ∂
∂ y operators:

(ψx) j,k :=
m∑

p=−m

αpψ j+p,k = ψx(x j, yk) +O((�x)2m),

(ψy) j,k :=
m∑

p=−m

βpψ j,k+p = ψy(x j, yk) +O((�y)2m). (2.6)

For example, when m = 2, we obtain a fourth-order centered-difference approximation by taking

α1 = −α−1 = 2

3�x
, α2 = −α−2 = − 1

12�x
, β1 = −β−1 = 2

3�y
, β2 = −β−2 = − 1

12�y
.

Equipped with the above approximation of spacial derivatives, 2mth-order semi-discrete finite-difference schemes for (1.7)
read:

du j,k

dt
=

m∑
p=−m

αp Hx
j+p,k +

m∑
p=−m

βp H y
j,k+p =: F j,k, (2.7)

where

Hx
j,k := (ux)

3
j,k + (u y)

2
j,k(ux) j,k and H y

j,k := (u y)
3
j,k + (ux)

2
j,k(u y) j,k (2.8)

with

(ux) j,k :=
m∑

p=−m

αpu j+p,k and (u y) j,k :=
m∑

p=−m

βpu j,k+p . (2.9)

Y. Cheng et al. / Journal of Computational Physics 303 (2015) 45–65 49
Remark 2.2. One can show that the coefficients {αp} and {βp} satisfy the following conditions:

α0 = 0, β0 = 0 and αp + α−p = 0, βp + β−p = 0, p 	= 0. (2.10)

Theorem 2.2. The semi-discrete schemes (2.7)–(2.9) satisfy the following energy decay property:

d

dt
E�
N ≤ 0,

where E�
N is a 2-D discrete version of the energy functional (1.9):

E�
N := 1

4

∑
j

|∇hu j,k|4�x�y

with ∇hu j,k := ((ux) j,k, (u y) j,k)
T .

Proof. Using (2.7)–(2.10) and the periodicity of computed solutions, one can obtain the following energy estimate:

d

dt

⎛⎝1

4

∑
j,k

|∇hu j,k|4
⎞⎠ (2.8)=

∑
j,k

Hx
j,k

d

dt
[(ux) j,k] +

∑
j,k

H y
j,k

d

dt
[(u y) j,k]

(2.9)=
∑

j,k

Hx
j,k

d

dt

⎡⎣ m∑
p=−m

αpu j+p,k

⎤⎦ +
∑

j,k

H y
j,k

d

dt

⎡⎣ m∑
p=−m

βpu j,k+p

⎤⎦
(2.7)=

∑
j,k

Hx
j,k

m∑
p=−m

αp F j+p,k +
∑

j,k

H y
j,k

m∑
p=−m

βp F j,k+p

(2.10)= −
∑

j,k

F j,k

m∑
p=−m

αp Hx
j+p,k −

∑
j,k

F j,k

m∑
p=−m

βp H y
j,k+p

(2.7)= −
∑

j,k

F 2
j,k ≤ 0. �

2.3. Finite-difference schemes for ut = �(u3)

We now design semi-discrete finite-difference schemes for the 2-D CH equation (1.11). We use the same grids and the
same 2mth-order discrete approximation of the ∂

∂x and ∂
∂ y operators as in Section 2.2. Then, 2mth-order semi-discrete

finite-difference schemes for (1.11) read:

du j,k

dt
=

m∑
p=−m

αp Hx
j+p,k +

m∑
p=−m

βp H y
j,k+p =: F j,k, (2.11)

where

Hx
j,k :=

m∑
p=−m

αpu3
j+p,k and H y

j,k :=
m∑

p=−m

βpu3
j,k+p . (2.12)

Theorem 2.3. The semi-discrete schemes (2.11), (2.12) satisfy the following energy decay property:

d

dt
E�
N ≤ 0,

where E�
N is a 2-D discrete version of the energy functional (1.12):

E�
N := 1

4

∑
j

u4
j,k�x�y.

Proof. Using (2.10)–(2.12) and the periodicity of computed solutions, one can obtain the following energy estimate:

d

dt

⎛⎝1

4

∑
j,k

u4
j,k

⎞⎠ =
∑

j,k

u3
j,k

du j,k

dt
(2.11)=

∑
j,k

m∑
p=−m

αp Hx
j+p,ku3

j,k +
∑

j,k

m∑
p=−m

βp H y
j,k+pu3

j,k

(2.10)= −
∑

j,k

Hx
j,k

m∑
p=−m

αpu3
j+p,k −

∑
j,k

H y
j,k+p

m∑
p=−m

βpu3
j,k+p

(2.12)= −
∑

j,k

[
(Hx

j,k)
2 + (H y

j,k)
2
]

≤ 0. �

50 Y. Cheng et al. / Journal of Computational Physics 303 (2015) 45–65
2.4. Large stability domain explicit ODE solver

The ODE systems (2.3), (2.7) and (2.11) have to be solved numerically. Recall that explicit ODE solvers typically require
time-steps to be �tODE ∼ (�x)2, while implicit ODE solvers can be made unconditionally stable. However, the accuracy
requirements would limit time-step size and since a large nonlinear algebraic system of equations has to be solved at each
time-step, implicit methods may not be efficient. Here, we apply the explicit third-order large stability domain Runge–Kutta
method, developed in [18,19]. This method belongs to a class of Runge–Kutta–Chebyshev methods (see, e.g., [14,24,27–29]),
which allow one to use much larger time-steps compared with the standard explicit Runge–Kutta methods. In practice,
when the problem is not too stiff as in the case of ODEs arising in finite-difference approximation of parabolic PDEs, these
methods preserve all the advantages of explicit methods and are typically more efficient than implicit methods (see [2,3,18,
24,29] for details). We have implemented the code DUMKA3 [19], which incorporates the embedded formulas that permit
an efficient stepsize control. The efficiency of DUMKA3 is further improved when the user provides an upper bound on
the time-step stability restriction for the forward Euler method. We therefore establish such bounds in the following three
theorems.

Theorem 2.4. Assume that the system of ODEs (2.3), (2.4) is numerically integrated by the forward Euler method from time t to
t + �tFE and that the following CFL condition holds:

�tFE ≤ 1

am
· 1

max
j

(ux)
2
j

, a :=
m∑

p=−m

α2
p, (2.13)

where αp are the coefficients in (2.2) and (ux) j are given by (2.4). Then

‖u(t + �tFE)‖L2 ≤ ‖u(t)‖L2 , (2.14)

where ‖u(t)‖L2 :=
√∑

j u2
j (t)�x.

Theorem 2.5. Assume that the system of ODEs (2.7)–(2.9) is numerically integrated by the forward Euler method from time t to
t + �tFE and that the following CFL condition holds:

�tFE ≤ 1

4m · max(a,b)
· 1

max
j,k

{(ux)
2
j,k, (u y)

2
j,k}

, a :=
m∑

p=−m

α2
p, b :=

m∑
p=−m

β2
p, (2.15)

where αp and βp are the coefficients in (2.6) and (ux) j,k and (u y) j,k are given by (2.9). Then

‖u(t + �tFE)‖L2 ≤ ‖u(t)‖L2 , (2.16)

where ‖u(t)‖L2 :=
√∑

j,k u2
j,k(t)�x�y.

Theorem 2.6. Assume that the system of ODEs (2.11), (2.12) is numerically integrated by the forward Euler method from time t to
t + �tFE and that the following CFL condition holds:

�tFE ≤ 1

6m · max(a,b)
· 1

max
j,k

u2
j,k

. (2.17)

Then,

‖u(t + �tFE)‖L2 ≤ ‖u(t)‖L2 , (2.18)

with the same a and b as in Theorem 2.5.

Proofs of Theorem 2.4, Theorem 2.5 and Theorem 2.6 are provided in Appendix A.

Remark 2.3. We would like to emphasize that the code DUMKA3 automatically selects time-steps so that in average the
selected time-steps �tODE are much larger than �tFE.

3. Pseudo-spectral methods for (1.8)

In this section, we describe the (exact) pseudo-spectral solver for equation (1.8) and its 1-D version.

Y. Cheng et al. / Journal of Computational Physics 303 (2015) 45–65 51
3.1. One-dimensional pseudo-spectral method

We consider the 1-D equation,

ut = −uxx − δuxxxx, x ∈ [0, L], t ∈ (0, T], (3.1)

subject to the L-periodic boundary conditions.
We first use the FFT algorithm to compute the discrete Fourier coefficients {̂um(t)} from the available point values {u j(t)}.

This gives us the following spectral approximation of u on [0, L]:
u(x, t) ≈

∑
m

ûm(t)ei 2πmx
L . (3.2)

We then substitute (3.2) into (3.1) and obtain very simple linear ODEs for the discrete Fourier coefficients of u,

d

dt
ûm(t) = (s − δs2)̂um(t), s =

(2πm

L

)2
,

which can be solved exactly:

ûm(t + �t) = e(s−δs2)�t ûm(t).

Finally, we use the inverse FFT algorithm to obtain the point values of the solution at the new time level, {u j(t + �t)}, out
of the set of the discrete Fourier coefficients {̂um(t + �t)}.

3.2. Two-dimensional pseudo-spectral method

We now solve the 2-D equation (1.8),

ut = −(uxx + u yy) − δ(uxxxx + 2uxxyy + u yyyy),

on a rectangular domain � = [0, Lx] × [0, L y] with the Lx- and L y -periodic boundary conditions in the x- and y-directions,
respectively.

Similar to the 1-D case, we apply the FFT algorithm and obtain very simple linear ODEs for the discrete Fourier coeffi-
cients of u,

d

dt
ûm,�(t) = (s − δs2)̂um,�(t), s =

(2πm

Lx

)2 +
(2π�

L y

)2
. (3.3)

The exact solution of (3.3) is

ûm,�(t + �t) = e(s−δs2)�t ûm,�(t).

Finally, we apply the inverse FFT algorithm to obtain the point values of the solution at the new time level, {u j,k(t + �t)},
out of the set of the discrete Fourier coefficients {̂um,�(t + �t)}.

Remark 3.1. Using Parseval’s theorem and the fact that e(s−δs2)�t ≤ e
�t
4δ , we obtain the following result on stability of the

pseudo-spectral methods:

‖u(t + �t)‖L2 ≤ e
�t
4δ ‖u(t)‖L2 ,

which is true in both the 1-D and 2-D cases.

4. Adaptive splitting time-stepping strategy

For practical applications, the efficiency of splitting methods hinges on its ability to use (relatively) large time-steps (see,
e.g., [5–9]). Our numerical experiments indicate that taking �t = δ/100 for the MBE equations and �t = δ/10 for the CH
equation leads to accurate results. However, one expects such a small �t is only required when the phase transition occurs
and the solution changes quite rapidly. At other times and especially the solution is close to its steady state, it might be
safe to use much larger �t . We therefore explore an adaptive splitting time-stepping strategy: We would like to use small
�t only whenever necessary.

To design an adaptive approach, we need to measure the solution variation. This can be done using either the energy or
solution roughness at time t , which is defined by

w(t) =
√√√√ 1

|�|
∫
�

[u(x, y, t) − ū(t)]2 dxdy, (4.1)

52 Y. Cheng et al. / Journal of Computational Physics 303 (2015) 45–65
Table 4.1
CPU times for Examples 1–4 in Section 5.

Example Number of grid points Final time Splitting step CPU time

1 256 240 constant 3.2805
adaptive 0.9659

2 256 × 256 30 constant 4601.9
adaptive 838.9

3 512 × 512 80,000 constant 223,370
adaptive 38,775

4 128 × 128 20 constant 504.09
adaptive 125.86

where

ū(t) = 1

|�|
∫
�

u(x, y, t)dxdy (4.2)

is the mean height at time t .
We adjust the size of splitting steps using the following roughness-dependent monitor function introduced in [21]

�t = max

(
�tmin,

�tmax√
1 + α|w ′(t)|2

)
, α = Const. (4.3)

Here, �tmin is the smallest splitting step, which is taken to be either �tmin = δ/100 (for the MBE equations) or �tmin = δ/10
(for the CH equation), �tmax is the largest allowed splitting step, and α is a positive adaption constant.

Notice that large |w ′(t)| will lead to small splitting step, which corresponds to the case of rapid change of roughness or
quick motion of the structural transition from one stage to the next one. Similarly, small |w ′(t)| yields large splitting step,
which corresponds to the slow MBE growth or slow phase interface motion.

Remark 4.1. A similar adaptive strategy can be designed by replacing w(t) with E(t). However, our numerical experiments
indicate the roughness-based strategy is more robust than the energy-based one.

Our numerical experiments reported in Section 5 suggest that the adaptive splitting time-stepping strategy can lead to a
substantial reduction of the CPU time without significantly affecting the accuracy of the computed solution. The data on the
CPU time reduction achieved in different numerical examples are presented in Table 4.1: In average, the adaptive method is
about 3–6 times more efficient.

5. Numerical examples

In this section, we illustrate the performance of our fast and stable explicit operator splitting methods on several 1-D
and 2-D examples. When solving equation (1.7) and (1.11), we use the fourth-order finite-difference schemes developed in
Section 2 (in Example 5, we also use the sixth-order scheme). Both constant and adaptive splitting steps are employed to
obtain numerical solutions. The adaptive splitting step is determined by (4.3) with the values �tmin, �tmax and α being
specified in each example.

To verify the rates of convergence of the proposed methods, we measure the difference between the solutions computed
at the same time level on two consecutive grids using the L1- and L∞-errors, which are defined as follows:

||uN,�t1 − uN/2,�t2 ||1 := LxL y

N2

N∑
j=1

N∑
k=1

|uN,�t1
j,k − uN/2,�t2

j,k |,

and

||uN,�t1 − uN/2,�t2 ||∞ := max
1≤ j,k≤N

|uN,�t1
j,k − uN/2,�t2

j,k |,

where uN,�t := {uN
j,k} is a numerical solution obtained with a uniform N × N grid and a constant splitting step �t at some

time level. Then, to measure the experimental convergence rates, we use the ratio of errors:

r = log2

(||uN/2,�t2 − uN/4,�t3 ||
||uN,�t1 − uN/2,�t2 ||

)
,

where we either take �t1 = �t , �t2 = 2�t and �t3 = 4�t or fix the splitting step and set �t1 = �t2 = �t3 = �t .

Y. Cheng et al. / Journal of Computational Physics 303 (2015) 45–65 53
Fig. 5.1. Example 1: u computed with �t = 10−1.

In the 1-D case, the rates are computed similarly.

Example 1 (One-dimensional morphological instability). We first consider the 1-D MBE equation

ut = (u3
x)x − uxx − uxxxx,

subject to the initial condition

54 Y. Cheng et al. / Journal of Computational Physics 303 (2015) 45–65
Fig. 5.2. Example 1: u computed with �t = 10−2 (solid line) and adaptive splitting time-stepping with �tmin = 10−2, �tmax = 10−1 and α = 103 (dashed
line).

u(x,0) = 0.1
(

sin
πx

2
+ sin

2πx

3
+ sinπx

)
, x ∈ [0,12].

This example was studied in [15] to observe the morphological instability due to the nonlinear interaction.
We compute the solution until the final time t = 240 with a constant splitting step �t = 10−1 on the uniform grid with

N = 256. Fig. 5.1 shows a sequence of snapshots of the surface height at different times. As one can observe, the initial
oscillation is damped by t = 1. After a relatively long period of “buffering” time, a new larger scale structure emerges, then
it increases and finally the steady state is reached by t = 240.

Compared to the results reported in [15], our steady state is in a good agreement with the one obtained there, while
the “buffering” time evolution is very different. We therefore reduce the splitting step by a factor of 10 and repeat the
computation with �t = 10−2. The obtained solution, plotted in Fig. 5.2 (solid line), now matches the results in [15]: The
structure emerges earlier and the steady state is reached by t = 60.

The time evolution process can be monitored by plotting the energy (1.5) and roughness (4.1), see Fig. 5.3. One can
observe that initially both energy and roughness decay rapidly. However, after a relatively long period of time, roughness
starts to grow, which is exactly the morphological instability in the rough–smooth–rough pattern. Notice that the flat tail in
Fig. 5.3(b) and (d) indicates that the steady state is reached much later when �t = 10−1 is used.

To improve the efficiency of the proposed fast and stable explicit operator splitting methods, we implement the adaptive
strategy described in Section 4. Here, we use �tmin = 10−2, �tmax = 10−1 and α = 103. The obtained solution is shown in
Fig. 5.2 (dashed line), and the corresponding energy and roughness are plotted in Fig. 5.3 (dashed line). As one can see, the
adaptive solution practically coincides with the solution computed with �t = 10−2. It is instructive to check what splitting
steps are used by the adaptive algorithm. To this end, we plot the splitting steps as a function of time in Fig. 5.4. As one
can see, the splitting steps are smaller than 10−1 only initially and then at the intermediate times. We also compare the
CPU times of the adaptive and constant (with �t = 10−2) splitting step computations. The results, shown in the first row
of Table 4.1, indicate that the CPU time for the adaptive method is about four times smaller than the one for the constant
splitting step.

Finally, we test the accuracy of the proposed fast and stable explicit splitting methods. To this end, we perform the
mesh-refinement study and measure the L1- and L∞-errors. The results reported in Table 5.1 indicate that the experimental
convergence rate is close to the expected second-order one. We next fix the splitting step to be very small (�t = 10−3)
so that the splitting errors do not dominate and perform another mesh-refinement study. The results reported in Table 5.2
show that in this regime, the experimental convergence rate is four, which is the order of finite-difference scheme from
Section 2.1.

Y. Cheng et al. / Journal of Computational Physics 303 (2015) 45–65 55
Fig. 5.3. Example 1: (a) Energy evolution in a short time period; (b) Energy evolution in a long time period; (c) Roughness development in a time period
t ∈ [0, 40]; (d) Roughness development in a long time period. �t = 10−1 (dashed dotted line), �t = 10−2 (solid line) and adaptive splitting time-stepping
with �tmin = 10−2, �tmax = 10−1 and α = 103 (dashed line).

Fig. 5.4. Example 1: Splitting step evolution. �t = 10−2 (solid line) and adaptive splitting time-stepping with �tmin = 10−2, �tmax = 10−1 and α = 103

(dashed line).

Table 5.1
Example 1: L1- and L∞-errors and experimental convergence rates at t = 240.

N �t ||uN,�t − uN/2,2�t ||1 Rate ||uN,�t − uN/2,2�t ||∞ Rate

128 2e−2 3.95e−03 – 7.58e−04 –
256 1e−2 1.07e−03 1.89 2.45e−04 1.63
512 5e−3 2.73e−04 1.97 7.17e−05 1.78

1024 2.5e−3 6.84e−05 1.99 1.93e−05 1.89

Table 5.2
Example 1: L1- and L∞-errors and experimental convergence rates obtained with the fixed small splitting step �t = 10−3 at t = 240.

N �t ||uN,�t − uN/2,�t ||1 Rate ||uN,�t − uN/2,�t ||∞ Rate

128 1e−3 8.06e−05 – 2.25e−05 –
256 1e−3 5.18e−06 3.96 1.44e−06 3.96
512 1e−3 3.27e−07 3.99 9.10e−08 3.99

1024 1e−3 2.02e−08 4.02 5.62e−09 4.02

Example 2 (Two-dimensional morphological instability). Next, we consider the 2-D MBE equation (1.3) with δ = 0.1 subject to
the following initial condition:

u(x, y,0) = 0.1(sin 3x sin 2y + sin 5x sin 5y), (x, y) ∈ [0,2π] × [0,2π].
This example was studied in [15,30] to observe the morphological instability due to the nonlinear interaction.

56 Y. Cheng et al. / Journal of Computational Physics 303 (2015) 45–65
Fig. 5.5. Example 2: u computed with �t = 10−3.

We first compute the solution on a 256 ×256 uniform grid with the constant splitting step �t = 10−3. Fig. 5.5 shows the
height profiles at times t = 0, 0.5, 2.5, 5.5, 8 and 30. The corresponding gradients |∇u| are plotted in Fig. 5.6. In Fig. 5.7, we
demonstrate the experimental energy decay and roughness development, which indicate that the solution reaches a steady
state at around t = 12. The obtained results are in good agreement with those reported in [15].

We then carry out the adaptive strategy to increase the efficiency of the proposed methods. Here, we choose �tmin =
10−3, �tmax = 10−2 and α = 103. The corresponding energy and roughness curves in Fig. 5.7 are practically indistinguishable
from those obtained using the small constant splitting step �t = 10−3. Splitting steps evolution, plotted in Fig. 5.8, shows
that �t ≈ �tmax when the solution approaches its steady state. This leads to a substantial decrease in CPU time, see the
second row in Table 4.1.

Finally, we perform the mesh-refinement study and verify that the experimental convergence rates for the proposed fast
and stable explicit operator splitting methods are close to the expected second-order one, see Table 5.3.

Example 3 (Coarsening dynamics). In this example, we study the 2-D MBE equation (1.3) with δ = 1 subject to initial data,
obtained by assigning a uniformly distributed random number in the range [−0.001, 0.001] to each grid point value of
u(x, y, 0). We use a 512 × 512 uniform grid on the computational domain � = [0, 1000] × [0, 1000].

Fig. 5.9 shows the contour lines of the free energy function

Ffree := 1
(|∇u| − 1)2 + δ |�u|2
4 2

Y. Cheng et al. / Journal of Computational Physics 303 (2015) 45–65 57
Fig. 5.6. Example 2: |∇u| computed with �t = 10−3.

at t = 40,000 and 80,000 computed using the constant splitting step �t = 10−1. As one can see, the free energy is con-
centrated on and thus could be used to identify the edges of the pyramidal structures; the pyramid edges form a random
network over the surface, which results from the isotropic nature of the surface symmetry; the cells of the network grow
in time via a coarsening process.

The energy (1.5), normalized by the domain size, and the roughness (4.1) are plotted in Fig. 5.10. To further demonstrate
the robustness of the proposed methods, we experimentally verify several important properties of the computed solution.
In Fig. 5.11(a), the energy (1.5), normalized by the domain size, is plotted in the log–log scale and it is nearly parallel to
the dashed line representing the t−1/3 curve. This suggests that the energy decays in time as a power law Ctn with the
exponent n = −1/3. In Fig. 5.11(b), the interface height, defined by

ũ(t) =
(

1

|�|
∫
�

u2(x, y, t)dxdy

) 1
2

,

and the roughness (4.1) are demonstrated to evolve in time according to a power law Ctn with the exponent n = 1/3. Finally,
Fig. 5.11(c) suggests that the difference ū(t) − ū(0), where the mean height ū(t) is defined in (4.2), remains practically zero
at all times, which implies the mass conservation. The obtained results match the experimental and numerical results
reported in [15,20,30].

When the adaptive technique with �tmin = 10−1, �tmax = 5 and α = 1 is implemented, the obtained results are very
similar. As one can see in Fig. 5.10, the splitting step increases to �tmax very soon and then is always selected close to

58 Y. Cheng et al. / Journal of Computational Physics 303 (2015) 45–65
Fig. 5.7. Example 2: (a) Energy evolution in a short time period; (b) Energy evolution in a long time period; (c) Roughness development in a short time
period; (d) Roughness development in a long time period. �t = 10−3 (solid line) and adaptive splitting time-stepping with �tmin = 10−3, �tmax = 10−2

and α = 103 (dashed line).

Fig. 5.8. Example 2: Splitting step evolution. �t = 10−3 (solid line) and adaptive splitting time-stepping with �tmin = 10−3, �tmax = 10−2 and α = 103

(dashed line).

Table 5.3
Example 2: L1- and L∞-errors and experimental convergence rates at t = 30.

N �t ||uN,�t − uN/2,2�t ||1 Rate ||uN,�t − uN/2,2�t ||∞ Rate

64 4e−3 3.36e−03 – 6.01e−04 –
128 2e−3 9.09e−04 1.88 1.55e−04 1.96
256 1e−3 2.48e−04 1.87 4.96e−05 1.64
512 5e−4 6.52e−05 1.93 1.55e−05 1.68

�tmax due to the slow variation of the roughness. This leads to substantial CPU time usage saving, see the third row in
Table 4.1.

Remark 5.1. We would like to point out that in this example, the curves for the interface height growth and the roughness
development in Fig. 5.11(b) almost overlap since ū(t) = ū(0) ≈ 0.

Remark 5.2. We would like to stress that in this example, the energy transition does not occur, and the solution has a
smooth variation. It is therefore safe to take a relatively small value α = 1 and �tmin = 10−1, which is much larger than
δ/100 = 10−2.

Y. Cheng et al. / Journal of Computational Physics 303 (2015) 45–65 59
Fig. 5.9. Example 3: Contour plots of Ffree computed with �t = 10−1.

Fig. 5.10. Example 3: (a) Energy evolution; (b) Roughness development; (c) Splitting step evolution. �t = 10−1 (solid line) and adaptive splitting time-
stepping with �tmin = 10−1, �tmax = 5 and α = 1 (dashed line).

Fig. 5.11. Example 3: (a) The log–log scale plot of the energy evolution; (b) The log–log scale plot of the interface height and roughness development;
(c) Mean height evolution. In (a)–(c), �t = 10−1.

Example 4 (Non-mean-zero initial data). In this example, taken from [10], we consider the 2-D CH equation (1.4) with δ =
0.01 subject to the following non-mean-zero initial condition:

u(x, y,0) = 0.05 sin x sin y + 0.001, (x, y) ∈ [0,2π] × [0,2π].
We first compute the solution on a 128 × 128 uniform grid with the constant splitting step �t = 10−3. The solution

computed at times t = 1, 2, 5 and 20 is shown in Fig. 5.12 (left). The experimental energy decay and roughness development
curves, shown in Fig. 5.13, indicate that the solution reaches a steady state at about t = 9. These results are in good
agreement with those reported in [10].

We then compute the solution using the adaptive strategy with �tmin = 10−3, �tmax = 10−2 and α = 102. The results
are plotted in Fig. 5.12 (right). As one can see, the solution dynamics can be captured correctly when the adaptive strategy

60 Y. Cheng et al. / Journal of Computational Physics 303 (2015) 45–65
Fig. 5.12. Example 4: u computed with �t = 10−3 (left column) and adaptive splitting time-stepping with �tmin = 10−3, �tmax = 10−2 and α = 102 (right
column).

is employed. The corresponding energy and roughness curves shown in Fig. 5.13 have some discrepancy with those obtained
using the small constant splitting step �t−3, though the adaptive and non-adaptive solutions are quite close and the result-
ing steady states seem to be the same. Splitting steps evolution, also plotted in Fig. 5.13, shows that �t ≈ �tmax when the
solution approaches its steady state, which leads to a substantial saving in CPU time, see the fourth row in Table 4.1.

Finally, we perform the mesh-refinement study and verify that the experimental convergence rates for the proposed fast
and stable explicit operator splitting methods are close to the expected second-order one, see Table 5.4.

Y. Cheng et al. / Journal of Computational Physics 303 (2015) 45–65 61
Fig. 5.13. Example 4: (a) Energy evolution; (b) Roughness development; (c) Splitting step evolution. �t = 10−3 (solid line) and adaptive splitting time-
stepping with �tmin = 10−3, �tmax = 10−2 and α = 102 (dashed line).

Table 5.4
Example 4: L1- and L∞-errors and experimental convergence rates at t = 20.

N �t ||uN,�t − uN/2,2�t ||1 Rate ||uN,�t − uN/2,2�t ||∞ Rate

64 2e−3 1.61e−00 – 3.01e−01 –
128 1e−3 1.37e−01 3.55 2.64e−02 3.51
256 5e−4 3.44e−02 2.00 5.79e−03 2.19
512 2.5e−4 1.12e−02 1.62 1.72e−03 1.75

Example 5 (Mean-zero initial data). In this example, also taken from [10], we consider the 2-D CH equation with δ = 0.01
subject to the following mean-zero initial condition:

u(x, y,0) = 0.05 sin x sin y, (x, y) ∈ [0,2π] × [0,2π].
We first use a uniform 128 × 128 grid with a constant splitting step �t = 10−3 and compute the solution until a large

final time t = 100. The obtained results are shown in Fig. 5.14 (left column). Even though the solution at a small time t = 2
is similar to the corresponding solution reported in [31], later on our solution bifurcates and seems to converge to a different
steady state. We therefore perform a thorough comparative study by taking a smaller �t = 10−4 and finer 256 × 256 grid.
The results, plotted in Fig. 5.14, clearly indicate that different numerical solutions may converge to different steady states.
We then use the sixth-order semi-discrete finite-difference scheme for equation (1.11) instead of the fourth-order one and
discover even more different steady-state patterns, see Fig. 5.15.

Our results suggest that the mean-zero solutions of the 2-D CH equation (1.4) may be unstable. Our conjecture is sup-
ported by recent analytical results on unstable equilibria in the 1-D CH equation, see [22].

Acknowledgements

The work of Y. Cheng, A. Kurganov and Z. Qu was supported in part by the NSF Grant # DMS-1115718. The research of
T. Tang was supported in part by Hong Kong Research Grants Council CERG grants, the National Natural Science Foundation
of China, and Hong Kong Baptist University FRG grants.

Appendix A. Proofs of Theorems 2.4–2.6

Here, we provide proofs of Theorems 2.4–2.6. We denote tnew := t + �tFE. We also use the following notations: unew
j :=

u(x j, t + �tFE) (in Theorem 2.4) and unew
j,k := u(x j, yk, t + �tFE) (in Theorems 2.5 and 2.6).

A.1. Proof of Theorem 2.4 (1-D MBE equation)

Applying the forward Euler method to discretize (2.3) results in

unew
j − u j

�t
= F j. (A.1)

We first multiply both sides of equation (A.1) by (unew
j + u j)/2, replace unew

j on the right using (A.1) and sum over the
entire domain to obtain∑ (unew

j)2 − u2
j

2�t
=

∑
F ju j + �t

2

∑
F 2

j . (A.2)

j j j

62 Y. Cheng et al. / Journal of Computational Physics 303 (2015) 45–65
Fig. 5.14. Example 5: u computed with a 128 × 128 grid, �t = 10−3 (first column); 128 × 128 grid, �t = 10−4 (second column); 256 × 256 grid, �t = 10−3

(third column); 256 × 256 grid, �t = 10−4 (fourth column).

Y. Cheng et al. / Journal of Computational Physics 303 (2015) 45–65 63
Fig. 5.15. Example 5: Same as in Fig. 5.14, but using the sixth-order scheme for (1.11).

64 Y. Cheng et al. / Journal of Computational Physics 303 (2015) 45–65
We then rewrite the first term on the right-hand side (RHS) of (A.2) as follows:∑
j

F ju j
(2.3)=

∑
j

m∑
p=−m

αp H j+pu j =
m∑

p=−m

αp

∑
j

H j+pu j =
m∑

p=−m

αp

∑
j

H ju j−p

=
∑

j

H j

m∑
p=−m

αpu j−p =
∑

j

H j

m∑
p=−m

α−pu j+p
(2.5)=

∑
j

H j

m∑
p=−m

(−αp)u j+p
(2.4)= −

∑
j

(ux)
4
j ,

and estimate the second term on the RHS of (A.2) using the Cauchy–Schwarz inequality:

∑
j

F 2
j

(2.3)=
∑

j

⎛⎝ m∑
p=−m

αp H j+p

⎞⎠2

≤ 2m
∑

j

m∑
p=−m

α2
p H2

j+p

= 2m
m∑

p=−m

α2
p

∑
j

H2
j+p = 2am

∑
j

H2
j

(2.4)= 2am
∑

j

(ux)
6
j .

Therefore, the left-hand side (LHS) of equation (A.2) can be bounded by∑
j

(unew
j)2 − u2

j

2�t
≤ −

∑
j

(ux)
4
j + am�t

∑
j

(ux)
6
j ≤

[
am�t max

j
(ux)

2
j − 1

]∑
j

(ux)
4
j ,

which is nonpositive provided the time-step is bounded by (2.13). �
A.2. Proof of Theorem 2.5 (2-D MBE equation)

Applying the forward Euler method to discretize (2.7) results in

unew
j,k − u j,k

�t
= F j,k. (A.3)

We first multiply both sides of equation (A.3) by (unew
j,k + u j,k)/2, replace unew

j,k on the right using (A.3) and sum over the
entire domain to obtain∑

j,k

(unew
j,k)2 − u2

j,k

2�t
=

∑
j,k

F j,ku j,k + �t

2

∑
j,k

F 2
j,k. (A.4)

We then use (2.7)–(2.9) to rewrite the first term on the RHS of (A.4) as follows:∑
j,k

F j,ku j,k = −
∑

j,k

[
(ux)

4
j,k + (ux)

2
j,k(u y)

2
j,k

]
−

∑
j,k

[
(u y)

4
j,k + (u y)

2
j,k(ux)

2
j,k

]
,

and use (2.7), (2.8) and the Cauchy–Schwarz inequality to estimate the second term on the RHS of (A.4):∑
j,k

F 2
j,k ≤ 8am

∑
j,k

[
(ux)

6
j,k + (ux)

2
j,k(u y)

4
j,k

]
+ 8bm

∑
j,k

[
(u y)

6
j,k + (u y)

2
j,k(ux)

4
j,k

]
.

Therefore, the LHS of equation (A.4) can be bounded by∑
j,k

(unew
j,k)2 − u2

j,k

2�t
≤

[
4am�t max

j,k
(ux)

2
j,k − 1

]∑
j,k

(ux)
4
j,k +

[
4bm�t max

j,k
(u y)

2
j,k − 1

]∑
j,k

(u y)
4
j,k

+
[

4am�t max
j,k

(u y)
2
j,k − 1

]∑
j,k

(ux)
2
j,k(u y)

2
j,k +

[
4bm�t max

j,k
(ux)

2
j,k − 1

]∑
j,k

(u y)
2
j,k(ux)

2
j,k,

which is nonpositive provided the time-step is bounded by (2.15). �
A.3. Proof of Theorem 2.6 (2-D CH equation)

Applying the forward Euler method to discretize (2.11) results in

unew
j,k − u j,k = F j,k. (A.5)
�t

Y. Cheng et al. / Journal of Computational Physics 303 (2015) 45–65 65
Once again, we multiply both sides of equation (A.5) by (unew
j,k + u j,k)/2, replace unew

j,k on the right using (A.5) and sum over
the entire domain to obtain∑

j,k

(unew
j,k)2 − u2

j,k

2�t
=

∑
j,k

F j,ku j,k + �t

2

∑
j,k

F 2
j,k. (A.6)

We now notice that within the accuracy of the scheme

Hx
j,k = 3u2

j,k(ux) j,k and H y
j,k = 3u2

j,k(u y) j,k. (A.7)

We then use (A.7), (2.10) and (2.11) to rewrite the first term on the RHS of (A.6) as follows:∑
j,k

F j,ku j,k = −3
∑

j,k

u2
j,k(ux)

2
j,k − 3

∑
j,k

u2
j,k(u y)

2
j,k,

and use (A.7), (2.11) and the Cauchy–Schwarz inequality to estimate the second term on the RHS of (A.6):∑
j,k

F 2
j,k ≤ 36am

∑
j,k

u4
j,k(ux)

2
j,k + 36bm

∑
j,k

u4
j,k(u y)

2
j,k.

Therefore, the LHS of equation (A.6) can be bounded by∑
j,k

(unew
j,k)2 − u2

j,k

2�t
≤ 3

[
6am�t max

j,k
(u2

j,k) − 1

]∑
j,k

u2
j,k(ux)

2
j,k + 3

[
6bm�t max

j,k
(u2

j,k) − 1

]∑
j,k

u2
j,k(u y)

2
j,k,

which is nonnegative provided the time-step is bounded by (2.17). �
References

[1] A. Abdulle, ROCK4 code, available at http://www.unige.ch/~hairer/software.html.
[2] A. Abdulle, Fourth order Chebyshev methods with recurrence relation, SIAM J. Sci. Comput. 23 (2002) 2041–2054 (electronic).
[3] A. Abdulle, A.A. Medovikov, Second order Chebyshev methods based on orthogonal polynomials, Numer. Math. 90 (2001) 1–18.
[4] J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28 (1958) 258–267.
[5] A. Chertock, C. Doering, E. Kashdan, A. Kurganov, A fast explicit operator splitting method for passive scalar advection, J. Sci. Comput. 45 (2010)

200–214.
[6] A. Chertock, E. Kashdan, A. Kurganov, Propagation of diffusing pollutant by a hybrid Eulerian–Lagrangian method, in: S. Benzoni-Gavage, D. Serre (Eds.),

Hyperbolic Problems: Theory, Numerics, Applications, Lyon, 2006, Springer, 2008, pp. 371–380.
[7] A. Chertock, A. Kurganov, On splitting-based numerical methods for convection–diffusion equations, in: G. Puppo, G. Russo (Eds.), Numerical Methods

for Balance Laws, in: Quad. Mat., vol. 24, Dept. Math., Seconda Univ. Napoli, Caserta, 2009, pp. 303–343.
[8] A. Chertock, A. Kurganov, G. Petrova, Fast explicit operator splitting method. Application to the polymer system, in: F. Benkhaldoun, D. Ouazar, S. Raghay

(Eds.), Finite Volumes for Complex Applications IV, Hermes Science Publishing, 2005, pp. 63–72.
[9] A. Chertock, A. Kurganov, G. Petrova, Fast explicit operator splitting method for convection–diffusion equations, Int. J. Numer. Methods Fluids 59 (2009)

309–332.
[10] X. Feng, T. Tang, J. Yang, Long time numerical simulations for phase-field problems using p-adaptive spectral deferred correction methods, SIAM J. Sci.

Comput. 37 (2015) A271–A294.
[11] F. Guillén-González, G. Tierra, On linear schemes for a Cahn–Hilliard diffuse interface model, J. Comput. Phys. 234 (2013) 140–171.
[12] F. Guillén-González, G. Tierra, Second order schemes and time-step adaptivity for Allen–Cahn and Cahn–Hilliard models, Comput. Math. Appl. 68 (2014)

821–846.
[13] Y. He, Y. Liu, T. Tang, On large time-stepping methods for the Cahn–Hilliard equation, Appl. Numer. Math. 57 (2007) 616–628.
[14] W. Hundsdorfer, J. Verwer, Numerical Solution of Time-Dependent Advection–Diffusion–Reaction Equations, Springer Ser. Comput. Math., vol. 33,

Springer-Verlag, Berlin, 2003.
[15] B. Li, J.-G. Liu, Thin film epitaxy with or without slope selection, Eur. J. Appl. Math. 14 (2003) 713–743.
[16] G.I. Marchuk, Metody Rasshchepleniya (Splitting Methods), Nauka, Moscow, 1988 (in Russian).
[17] G.I. Marchuk, Splitting and alternating direction methods, in: Handbook of Numerical Analysis, vol. I, North-Holland, Amsterdam, 1990, pp. 197–462.
[18] A. Medovikov, High order explicit methods for parabolic equations, BIT Numer. Math. 38 (1998) 372–390.
[19] A.A. Medovikov, DUMKA3 code, available at http://dumkaland.org/.
[20] D. Moldovan, L. Golubovic, Interfacial coarsening dynamics in epitaxial growth with slope selection, Phys. Rev. E 61 (2000) 6190–6214.
[21] Z. Qiao, Z. Zhang, T. Tang, An adaptive time-stepping strategy for the molecular beam epitaxy models, SIAM J. Sci. Comput. 33 (2011) 1395–1414.
[22] A. Scheel, Spinodal decomposition and coarsening fronts in the Cahn–Hilliard equation, preprint, 2014.
[23] J. Shen, C. Wang, X. Wang, S.M. Wise, Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to

thin film epitaxy, SIAM J. Numer. Anal. 50 (2012) 105–125.
[24] B.P. Sommeijer, L.F. Shampine, J.G. Verwer, RKC: an explicit solver for parabolic PDEs, J. Comput. Appl. Math. 88 (1998) 315–326.
[25] G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5 (1968) 506–517.
[26] G. Tierra, F. Guillén-González, Numerical methods for solving the Cahn–Hilliard equation and its applicability to related energy-based models, Arch.

Comput. Methods Eng. 22 (2015) 269–289.
[27] P.J. van der Houwen, B.P. Sommeijer, On the internal stability of explicit, m-stage Runge–Kutta methods for large m-values, Z. Angew. Math. Mech. 60

(1980) 479–485.
[28] J.G. Verwer, W.H. Hundsdorfer, B.P. Sommeijer, Convergence properties of the Runge–Kutta–Chebyshev method, Numer. Math. 57 (1990) 157–178.
[29] J.G. Verwer, B.P. Sommeijer, W. Hundsdorfer, RKC time-stepping for advection–diffusion–reaction problems, J. Comput. Phys. 201 (2004) 61–79.
[30] C. Xu, T. Tang, Stability analysis of large time-stepping methods for epitaxial growth models, SIAM J. Numer. Anal. 44 (2006) 1759–1779.
[31] Z. Zhang, Z. Qiao, An adaptive time-stepping strategy for the Cahn–Hilliard equation, Commun. Comput. Phys. 1 (2012) 1261–1278.

http://www.unige.ch/~hairer/software.html
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib4162643032s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib414Ds1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib4348s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib43444B4Bs1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib43444B4Bs1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib434B61734Bs1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib434B61734Bs1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib434B6364726576696577s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib434B6364726576696577s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib434B5073706C69742D70726F63s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib434B5073706C69742D70726F63s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib434B5073706C6974s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib434B5073706C6974s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib465459s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib465459s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib47543133s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib47543134s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib47543134s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib484C54s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib48756E566572s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib48756E566572s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib4C4Cs1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib4D617231s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib4D617232s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib4D6564s1
http://dumkaland.org/
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib4D473030s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib515A54s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib53575757s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib53575757s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib535356s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib537472s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib54473135s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib54473135s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib76644853s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib76644853s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib564853s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib565348s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib5854s1
http://refhub.elsevier.com/S0021-9991(15)00585-9/bib5A51s1

	Fast and stable explicit operator splitting methods for phase-ﬁeld models
	1 Introduction
	2 Finite-difference methods for (1.7) and (1.11)
	2.1 Finite-difference schemes for ut=(ux3)x
	2.2 Finite-difference schemes for ut=∇·[|∇u|2∇u]
	2.3 Finite-difference schemes for ut=Δ(u3)
	2.4 Large stability domain explicit ODE solver

	3 Pseudo-spectral methods for (1.8)
	3.1 One-dimensional pseudo-spectral method
	3.2 Two-dimensional pseudo-spectral method

	4 Adaptive splitting time-stepping strategy
	5 Numerical examples
	Acknowledgements
	Appendix A Proofs of Theorems 2.4-2.6
	A.1 Proof of Theorem 2.4 (1-D MBE equation)
	A.2 Proof of Theorem 2.5 (2-D MBE equation)
	A.3 Proof of Theorem 2.6 (2-D CH equation)

	References

