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Numerical simulations of phase-field models require long time computations and therefore 
it is necessary to develop efficient and highly accurate numerical methods. In this paper, 
we propose fast and stable explicit operator splitting methods for both one- and two-
dimensional nonlinear diffusion equations for thin film epitaxy with slope selection and 
the Cahn–Hilliard equation. The equations are split into nonlinear and linear parts. The 
nonlinear part is solved using a method of lines together with an efficient large stability 
domain explicit ODE solver. The linear part is solved by a pseudo-spectral method, which 
is based on the exact solution and thus has no stability restriction on the time-step size. 
We demonstrate the performance of the proposed methods on a number of one- and 
two-dimensional numerical examples, where different stages of coarsening such as the 
initial preparation, alternating rapid structural transition and slow motion can be clearly 
observed.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Phase-field models have been recently introduced to describe interfacial phenomena. They were originally derived for 
the microstructure evolution and phase transition, but have been recently extended to many other physical phenomena, 
such as solid–solid transitions, growth of cancerous tumors, phase separation of block copolymers, dewetting and rupture 
of thin liquid films and infiltration of water into porous medium.

Two of these phase-field models have attracted much attention: the molecular beam epitaxy (MBE) equation with slope 
selection

ut = −δ�2u + ∇ · f (∇u), (x, y) ∈ � ⊂ R2, t ∈ (0, T ], (1.1)

and the Cahn–Hilliard (CH) equation

ut = −δ�2u + � f (u), (x, y) ∈ � ⊂ R2, t ∈ (0, T ]. (1.2)

In this paper, we consider

f (ϕ) = ϕ|ϕ|2 − ϕ,

* Corresponding author.
E-mail addresses: ycheng5@tulane.edu (Y. Cheng), kurganov@math.tulane.edu (A. Kurganov), zqu1@tulane.edu (Z. Qu), ttang@math.hkbu.edu.hk (T. Tang).
http://dx.doi.org/10.1016/j.jcp.2015.09.005
0021-9991/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2015.09.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:ycheng5@tulane.edu
mailto:kurganov@math.tulane.edu
mailto:zqu1@tulane.edu
mailto:ttang@math.hkbu.edu.hk
http://dx.doi.org/10.1016/j.jcp.2015.09.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2015.09.005&domain=pdf


46 Y. Cheng et al. / Journal of Computational Physics 303 (2015) 45–65
for which the two phase-field models (1.1) and (1.2) become

ut = −δ�2u + ∇ · (|∇u|2∇u − ∇u), (x, y) ∈ � ⊂ R2, t ∈ (0, T ], (1.3)

and

ut = −δ�2u + �(u3 − u), (x, y) ∈ � ⊂ R2, t ∈ (0, T ]. (1.4)

In (1.3), u is a scaled height function of epitaxial growth of thin films in a co-moving frame and the parameter δ is a 
positive surface diffusion constant. In (1.4), u represents the concentration of one of the two metallic components of the 
alloy, and the positive parameter δ represents the interfacial width, which is small compared to the characteristic length of 
the laboratory scale. An important feature of these two equations is that they can be viewed as the gradient flow of the 
following energy functionals:

E(u) =
∫
�

[
δ

2
|�u|2 + 1

4
(|∇u|2 − 1)2

]
dxdy (1.5)

for the MBE equation and

E(u) =
∫
�

[
δ

2
|∇u|2 + 1

4
(u2 − 1)2

]
dxdy (1.6)

for the CH one. As it has been shown in [4,15], both energy functionals decay in time:

E(u(t)) ≤ E(u(s)), ∀t ≥ s.

Development of highly accurate and efficient numerical methods for (1.3) and (1.4) is a challenging task. Since explicit 
schemes usually suffer from severe stability restrictions caused by the presence of high-order derivative terms and do 
not obey the energy decay property, semi-implicit schemes are widely used. In [30], a combined spectral and large time-
stepping method was studied for the MBE equation, in which an extra term was added to substantially improve the stability 
condition. The same method was applied to the CH equation in [13]. However, this artificial stabilization term depends on 
the unknown numerical solutions and if it is taken improperly, the resulting numerical scheme would be unstable. In [21], 
unconditionally energy stable finite-difference schemes were introduced and an adaptive time-stepping strategy was pro-
posed to select time-steps adaptively based on the time variation of the energy. This technique was also successfully applied 
in the simulations of the CH equation in [31]. In [10], a high-order and energy stable scheme was developed to simulate 
some phase-field models by combining the semi-implicit spectral deferred correction method and the energy stable convex 
splitting technique. In [23], a set of unconditionally stable, unconditionally uniquely solvable and second-order schemes for 
general gradient flows of Ehrlich–Schwoebel energy type with a specific application to the MBE equation was presented. 
In addition, a variety of finite-element based unconditionally energy-stable schemes for the CH equation were proposed 
in [11,12], including first- and second-order in time linear schemes as well as an adaptive time-stepping algorithm. A de-
tailed review of the recent updates on numerical methods for the CH equation and its applicability to related energy-based 
models, including phase-field models, can be found in [26].

In this paper, we develop accurate, efficient and robust explicit methods for both (1.3) and (1.4) subject to periodic 
boundary conditions. Our methods, which are described in detail in Section 2 and Section 3, are based on the large stability 
domain explicit Runge–Kutta methods [2,3,14,18] and the fast explicit operator splitting method proposed in [5,6,8,9] (see 
also [7]) in the context of convection–diffusion equations.

Following the approach in [5,6,8,9], we split equation (1.3) into the nonlinear,

ut = ∇ · (|∇u|2∇u), (1.7)

and linear,

ut = −�u − δ�2u, (1.8)

parts. We denote by SN the exact solution operator associated with (1.7) and by SL the exact solution operator associated 
with (1.8). Notice that the corresponding energy functionals,

EN (u) = 1

4

∫
�

|∇u|4 dxdy (1.9)

and

EL(u) =
∫
�

(
δ

2
|�u|2 − 1

2
|∇u|2 + 1

4

)
dxdy (1.10)

decay. Then, introducing a (small) splitting step �t , the solution of the original equation (1.3) (which is assumed to be 
available at time t) is evolved using the Strang splitting method [16,17,25], one step of which can be written as
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u(x, y, t + �t) = SL(�t/2)SN (�t)SL(�t/2)u(x, y, t).

A similar splitting approach is applied to equation (1.4), for which the linear part is still (1.8) and the nonlinear one is

ut = �(u3). (1.11)

As in the case of the MBE equation, the corresponding energy functionals,

EN (u) = 1

4

∫
�

u4 dxdy (1.12)

and

EL(u) =
∫
�

(
δ

2
|∇u|2 − 1

2
u2 + 1

4

)
dxdy (1.13)

decay. We stress that even though the linear parts of equations (1.3) and (1.4) are the same, the functionals (1.10) and (1.13)
are different since they are associated with the corresponding parts of the energy functionals (1.5) and (1.6).

In order to implement the splitting method, the exact solution operators SN and SL have to be replaced by their 
numerical approximations. Note that one of the main advantages of the operator splitting technique is the fact that the 
nonlinear, (1.7) and (1.11), and linear, (1.8), subproblems, which are of different nature, can be solved numerically by differ-
ent methods. First, using the method of lines, (1.7) and (1.11) can be reduced to systems of ODEs, which can be efficiently 
and accurately integrated by large stability domain explicit ODE solvers [2,3,14,18]. Second, since (1.8) is linear, one can 
solve it (practically) exactly using, for example, the pseudo-spectral method. This way, no stability restrictions on solving 
(1.8) are imposed. A detailed description of an efficient implementation of the proposed fast and stable explicit operator 
splitting methods is given in Section 2 and Section 3.

The paper is organized as follows. In Section 2, we build 2mth-order semi-discrete finite-difference schemes for (1.7)
and (1.11). The resulting stiff system of ODE is then solved by an efficient large stability domain explicit ODE solver [1,19]. 
In Section 3, we develop a pseudo-spectral method for the linear equation (1.8). In Section 5, we demonstrate the perfor-
mance of the proposed fast and stable explicit operator splitting methods on a number of one- (1-D) and two-dimensional 
(2-D) numerical examples, where different stages of coarsening such as the initial preparation, alternating rapid structural 
transition and slow motion can be clearly observed.

2. Finite-difference methods for (1.7) and (1.11)

In this section, we propose efficient explicit finite-difference methods for the degenerate parabolic equations (1.7) and 
(1.11). These methods are based on the semi-discretization of (1.7) and (1.11) followed by the use of an efficient and accurate 
ODE solver. The ODE solver will be utilized to evolve the solutions of (1.7) and (1.11) from time t to t + �t . We note that 
in a general case the time-steps of the ODE solver denoted by �tODE will be smaller than the splitting step �t so that the 
approximation of SN (�t) will typically require several �tODE steps.

2.1. Finite-difference schemes for ut = (u3
x)x

In this section, we design 2mth-order centered-difference schemes for the 1-D version of (1.7):

ut = (u3
x)x, x ∈ [0, L], t ∈ (0, T ]. (2.1)

We consider a uniform grid with nodes x j , such that x j+1 − x j = �x, ∀ j, and introduce the following 2mth-order discrete 
approximation of the ∂

∂x operator:

(ψx) j :=
m∑

p=−m

αpψ j+p = ψx(x j) +O((�x)2m). (2.2)

For example, when m = 2, we obtain a fourth-order centered-difference approximation by taking

α1 = −α−1 = 2

3�x
, α2 = −α−2 = − 1

12�x
.

Equipped with the above approximation of spacial derivatives, we discretize equation (2.1) using the method of lines as 
follows:

du j

dt
(t) =

m∑
p=−m

αp H j+p(t) =: F j(t), (2.3)

where u j(t) denotes the computed point value of the solution at (x j , t), and
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H j(t) := (ux)
3
j (t) with (ux) j(t) :=

m∑
p=−m

αpu j+p(t). (2.4)

Note that the above quantities depend on t , but for the sake of brevity we will suppress this dependence from now on.

Remark 2.1. One can show that the coefficients {αp} satisfy the following conditions:

α0 = 0 and αp + α−p = 0, p 	= 0. (2.5)

Theorem 2.1. The semi-discrete schemes (2.3), (2.4) satisfy the following energy decay property:

d

dt
E�
N ≤ 0,

where E�
N is a 1-D discrete version of the energy functional (1.9):

E�
N := 1

4

∑
j

(ux)
4
j �x.

Proof. Using (2.3)–(2.5) and the periodicity of computed solutions, one can obtain the following energy estimate:

d

dt

⎛⎝1

4

∑
j

(ux)
4
j

⎞⎠ =
∑

j

(ux)
3
j

d

dt
[(ux) j] (2.4)=

∑
j

H j
d

dt

⎡⎣ m∑
p=−m

αpu j+p

⎤⎦ (2.3)=
∑

j

H j

m∑
p=−m

αp F j+p

=
m∑

p=−m

αp

∑
j

H j F j+p =
m∑

p=−m

αp

∑
j

H j−p F j =
∑

j

F j

m∑
p=−m

αp H j−p

=
∑

j

F j

m∑
p=−m

α−p H j+p
(2.5)=

∑
j

F j

m∑
p=−m

(−αp)H j+p
(2.3)= −

∑
j

F 2
j ≤ 0. �

2.2. Finite-difference schemes for ut = ∇ · [|∇u|2∇u]

We now turn to the 2-D equation (1.7). We consider a uniform grid with nodes (x j, yk), such that x j+1 − x j =
�x, ∀ j, yk+1 − yk = �y, ∀k, and introduce the following 2mth-order discrete approximation of the ∂

∂x and ∂
∂ y operators:

(ψx) j,k :=
m∑

p=−m

αpψ j+p,k = ψx(x j, yk) +O((�x)2m),

(ψy) j,k :=
m∑

p=−m

βpψ j,k+p = ψy(x j, yk) +O((�y)2m). (2.6)

For example, when m = 2, we obtain a fourth-order centered-difference approximation by taking

α1 = −α−1 = 2

3�x
, α2 = −α−2 = − 1

12�x
, β1 = −β−1 = 2

3�y
, β2 = −β−2 = − 1

12�y
.

Equipped with the above approximation of spacial derivatives, 2mth-order semi-discrete finite-difference schemes for (1.7)
read:

du j,k

dt
=

m∑
p=−m

αp Hx
j+p,k +

m∑
p=−m

βp H y
j,k+p =: F j,k, (2.7)

where

Hx
j,k := (ux)

3
j,k + (u y)

2
j,k(ux) j,k and H y

j,k := (u y)
3
j,k + (ux)

2
j,k(u y) j,k (2.8)

with

(ux) j,k :=
m∑

p=−m

αpu j+p,k and (u y) j,k :=
m∑

p=−m

βpu j,k+p . (2.9)
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Remark 2.2. One can show that the coefficients {αp} and {βp} satisfy the following conditions:

α0 = 0, β0 = 0 and αp + α−p = 0, βp + β−p = 0, p 	= 0. (2.10)

Theorem 2.2. The semi-discrete schemes (2.7)–(2.9) satisfy the following energy decay property:

d

dt
E�
N ≤ 0,

where E�
N is a 2-D discrete version of the energy functional (1.9):

E�
N := 1

4

∑
j

|∇hu j,k|4�x�y

with ∇hu j,k := ((ux) j,k, (u y) j,k)
T .

Proof. Using (2.7)–(2.10) and the periodicity of computed solutions, one can obtain the following energy estimate:

d

dt

⎛⎝1

4

∑
j,k

|∇hu j,k|4
⎞⎠ (2.8)=

∑
j,k

Hx
j,k

d

dt
[(ux) j,k] +

∑
j,k

H y
j,k

d

dt
[(u y) j,k]

(2.9)=
∑

j,k

Hx
j,k

d

dt

⎡⎣ m∑
p=−m

αpu j+p,k

⎤⎦ +
∑

j,k

H y
j,k

d

dt

⎡⎣ m∑
p=−m

βpu j,k+p

⎤⎦
(2.7)=

∑
j,k

Hx
j,k

m∑
p=−m

αp F j+p,k +
∑

j,k

H y
j,k

m∑
p=−m

βp F j,k+p

(2.10)= −
∑

j,k

F j,k

m∑
p=−m

αp Hx
j+p,k −

∑
j,k

F j,k

m∑
p=−m

βp H y
j,k+p

(2.7)= −
∑

j,k

F 2
j,k ≤ 0. �

2.3. Finite-difference schemes for ut = �(u3)

We now design semi-discrete finite-difference schemes for the 2-D CH equation (1.11). We use the same grids and the 
same 2mth-order discrete approximation of the ∂

∂x and ∂
∂ y operators as in Section 2.2. Then, 2mth-order semi-discrete 

finite-difference schemes for (1.11) read:

du j,k

dt
=

m∑
p=−m

αp Hx
j+p,k +

m∑
p=−m

βp H y
j,k+p =: F j,k, (2.11)

where

Hx
j,k :=

m∑
p=−m

αpu3
j+p,k and H y

j,k :=
m∑

p=−m

βpu3
j,k+p . (2.12)

Theorem 2.3. The semi-discrete schemes (2.11), (2.12) satisfy the following energy decay property:

d

dt
E�
N ≤ 0,

where E�
N is a 2-D discrete version of the energy functional (1.12):

E�
N := 1

4

∑
j

u4
j,k�x�y.

Proof. Using (2.10)–(2.12) and the periodicity of computed solutions, one can obtain the following energy estimate:

d

dt

⎛⎝1

4

∑
j,k

u4
j,k

⎞⎠ =
∑

j,k

u3
j,k

du j,k

dt
(2.11)=

∑
j,k

m∑
p=−m

αp Hx
j+p,ku3

j,k +
∑

j,k

m∑
p=−m

βp H y
j,k+pu3

j,k

(2.10)= −
∑

j,k

Hx
j,k

m∑
p=−m

αpu3
j+p,k −

∑
j,k

H y
j,k+p

m∑
p=−m

βpu3
j,k+p

(2.12)= −
∑

j,k

[
(Hx

j,k)
2 + (H y

j,k)
2
]

≤ 0. �
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2.4. Large stability domain explicit ODE solver

The ODE systems (2.3), (2.7) and (2.11) have to be solved numerically. Recall that explicit ODE solvers typically require 
time-steps to be �tODE ∼ (�x)2, while implicit ODE solvers can be made unconditionally stable. However, the accuracy 
requirements would limit time-step size and since a large nonlinear algebraic system of equations has to be solved at each 
time-step, implicit methods may not be efficient. Here, we apply the explicit third-order large stability domain Runge–Kutta 
method, developed in [18,19]. This method belongs to a class of Runge–Kutta–Chebyshev methods (see, e.g., [14,24,27–29]), 
which allow one to use much larger time-steps compared with the standard explicit Runge–Kutta methods. In practice, 
when the problem is not too stiff as in the case of ODEs arising in finite-difference approximation of parabolic PDEs, these 
methods preserve all the advantages of explicit methods and are typically more efficient than implicit methods (see [2,3,18,
24,29] for details). We have implemented the code DUMKA3 [19], which incorporates the embedded formulas that permit 
an efficient stepsize control. The efficiency of DUMKA3 is further improved when the user provides an upper bound on 
the time-step stability restriction for the forward Euler method. We therefore establish such bounds in the following three 
theorems.

Theorem 2.4. Assume that the system of ODEs (2.3), (2.4) is numerically integrated by the forward Euler method from time t to 
t + �tFE and that the following CFL condition holds:

�tFE ≤ 1

am
· 1

max
j

(ux)
2
j

, a :=
m∑

p=−m

α2
p, (2.13)

where αp are the coefficients in (2.2) and (ux) j are given by (2.4). Then

‖u(t + �tFE)‖L2 ≤ ‖u(t)‖L2 , (2.14)

where ‖u(t)‖L2 :=
√∑

j u2
j (t)�x.

Theorem 2.5. Assume that the system of ODEs (2.7)–(2.9) is numerically integrated by the forward Euler method from time t to 
t + �tFE and that the following CFL condition holds:

�tFE ≤ 1

4m · max(a,b)
· 1

max
j,k

{(ux)
2
j,k, (u y)

2
j,k}

, a :=
m∑

p=−m

α2
p, b :=

m∑
p=−m

β2
p, (2.15)

where αp and βp are the coefficients in (2.6) and (ux) j,k and (u y) j,k are given by (2.9). Then

‖u(t + �tFE)‖L2 ≤ ‖u(t)‖L2 , (2.16)

where ‖u(t)‖L2 :=
√∑

j,k u2
j,k(t)�x�y.

Theorem 2.6. Assume that the system of ODEs (2.11), (2.12) is numerically integrated by the forward Euler method from time t to 
t + �tFE and that the following CFL condition holds:

�tFE ≤ 1

6m · max(a,b)
· 1

max
j,k

u2
j,k

. (2.17)

Then,

‖u(t + �tFE)‖L2 ≤ ‖u(t)‖L2 , (2.18)

with the same a and b as in Theorem 2.5.

Proofs of Theorem 2.4, Theorem 2.5 and Theorem 2.6 are provided in Appendix A.

Remark 2.3. We would like to emphasize that the code DUMKA3 automatically selects time-steps so that in average the 
selected time-steps �tODE are much larger than �tFE.

3. Pseudo-spectral methods for (1.8)

In this section, we describe the (exact) pseudo-spectral solver for equation (1.8) and its 1-D version.
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3.1. One-dimensional pseudo-spectral method

We consider the 1-D equation,

ut = −uxx − δuxxxx, x ∈ [0, L], t ∈ (0, T ], (3.1)

subject to the L-periodic boundary conditions.
We first use the FFT algorithm to compute the discrete Fourier coefficients {̂um(t)} from the available point values {u j(t)}. 

This gives us the following spectral approximation of u on [0, L]:
u(x, t) ≈

∑
m

ûm(t)ei 2πmx
L . (3.2)

We then substitute (3.2) into (3.1) and obtain very simple linear ODEs for the discrete Fourier coefficients of u,

d

dt
ûm(t) = (s − δs2)̂um(t), s =

(2πm

L

)2
,

which can be solved exactly:

ûm(t + �t) = e(s−δs2)�t ûm(t).

Finally, we use the inverse FFT algorithm to obtain the point values of the solution at the new time level, {u j(t + �t)}, out 
of the set of the discrete Fourier coefficients {̂um(t + �t)}.

3.2. Two-dimensional pseudo-spectral method

We now solve the 2-D equation (1.8),

ut = −(uxx + u yy) − δ(uxxxx + 2uxxyy + u yyyy),

on a rectangular domain � = [0, Lx] × [0, L y] with the Lx- and L y -periodic boundary conditions in the x- and y-directions, 
respectively.

Similar to the 1-D case, we apply the FFT algorithm and obtain very simple linear ODEs for the discrete Fourier coeffi-
cients of u,

d

dt
ûm,�(t) = (s − δs2)̂um,�(t), s =

(2πm

Lx

)2 +
(2π�

L y

)2
. (3.3)

The exact solution of (3.3) is

ûm,�(t + �t) = e(s−δs2)�t ûm,�(t).

Finally, we apply the inverse FFT algorithm to obtain the point values of the solution at the new time level, {u j,k(t + �t)}, 
out of the set of the discrete Fourier coefficients {̂um,�(t + �t)}.

Remark 3.1. Using Parseval’s theorem and the fact that e(s−δs2)�t ≤ e
�t
4δ , we obtain the following result on stability of the 

pseudo-spectral methods:

‖u(t + �t)‖L2 ≤ e
�t
4δ ‖u(t)‖L2 ,

which is true in both the 1-D and 2-D cases.

4. Adaptive splitting time-stepping strategy

For practical applications, the efficiency of splitting methods hinges on its ability to use (relatively) large time-steps (see, 
e.g., [5–9]). Our numerical experiments indicate that taking �t = δ/100 for the MBE equations and �t = δ/10 for the CH 
equation leads to accurate results. However, one expects such a small �t is only required when the phase transition occurs 
and the solution changes quite rapidly. At other times and especially the solution is close to its steady state, it might be 
safe to use much larger �t . We therefore explore an adaptive splitting time-stepping strategy: We would like to use small 
�t only whenever necessary.

To design an adaptive approach, we need to measure the solution variation. This can be done using either the energy or 
solution roughness at time t , which is defined by

w(t) =
√√√√ 1

|�|
∫
�

[u(x, y, t) − ū(t)]2 dxdy, (4.1)
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Table 4.1
CPU times for Examples 1–4 in Section 5.

Example Number of grid points Final time Splitting step CPU time

1 256 240 constant 3.2805
adaptive 0.9659

2 256 × 256 30 constant 4601.9
adaptive 838.9

3 512 × 512 80,000 constant 223,370
adaptive 38,775

4 128 × 128 20 constant 504.09
adaptive 125.86

where

ū(t) = 1

|�|
∫
�

u(x, y, t)dxdy (4.2)

is the mean height at time t .
We adjust the size of splitting steps using the following roughness-dependent monitor function introduced in [21]

�t = max

(
�tmin,

�tmax√
1 + α|w ′(t)|2

)
, α = Const. (4.3)

Here, �tmin is the smallest splitting step, which is taken to be either �tmin = δ/100 (for the MBE equations) or �tmin = δ/10
(for the CH equation), �tmax is the largest allowed splitting step, and α is a positive adaption constant.

Notice that large |w ′(t)| will lead to small splitting step, which corresponds to the case of rapid change of roughness or 
quick motion of the structural transition from one stage to the next one. Similarly, small |w ′(t)| yields large splitting step, 
which corresponds to the slow MBE growth or slow phase interface motion.

Remark 4.1. A similar adaptive strategy can be designed by replacing w(t) with E(t). However, our numerical experiments 
indicate the roughness-based strategy is more robust than the energy-based one.

Our numerical experiments reported in Section 5 suggest that the adaptive splitting time-stepping strategy can lead to a 
substantial reduction of the CPU time without significantly affecting the accuracy of the computed solution. The data on the 
CPU time reduction achieved in different numerical examples are presented in Table 4.1: In average, the adaptive method is 
about 3–6 times more efficient.

5. Numerical examples

In this section, we illustrate the performance of our fast and stable explicit operator splitting methods on several 1-D 
and 2-D examples. When solving equation (1.7) and (1.11), we use the fourth-order finite-difference schemes developed in 
Section 2 (in Example 5, we also use the sixth-order scheme). Both constant and adaptive splitting steps are employed to 
obtain numerical solutions. The adaptive splitting step is determined by (4.3) with the values �tmin, �tmax and α being 
specified in each example.

To verify the rates of convergence of the proposed methods, we measure the difference between the solutions computed 
at the same time level on two consecutive grids using the L1- and L∞-errors, which are defined as follows:

||uN,�t1 − uN/2,�t2 ||1 := LxL y

N2

N∑
j=1

N∑
k=1

|uN,�t1
j,k − uN/2,�t2

j,k |,

and

||uN,�t1 − uN/2,�t2 ||∞ := max
1≤ j,k≤N

|uN,�t1
j,k − uN/2,�t2

j,k |,

where uN,�t := {uN
j,k} is a numerical solution obtained with a uniform N × N grid and a constant splitting step �t at some 

time level. Then, to measure the experimental convergence rates, we use the ratio of errors:

r = log2

( ||uN/2,�t2 − uN/4,�t3 ||
||uN,�t1 − uN/2,�t2 ||

)
,

where we either take �t1 = �t , �t2 = 2�t and �t3 = 4�t or fix the splitting step and set �t1 = �t2 = �t3 = �t .
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Fig. 5.1. Example 1: u computed with �t = 10−1.

In the 1-D case, the rates are computed similarly.

Example 1 (One-dimensional morphological instability). We first consider the 1-D MBE equation

ut = (u3
x)x − uxx − uxxxx,

subject to the initial condition
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Fig. 5.2. Example 1: u computed with �t = 10−2 (solid line) and adaptive splitting time-stepping with �tmin = 10−2, �tmax = 10−1 and α = 103 (dashed 
line).

u(x,0) = 0.1
(

sin
πx

2
+ sin

2πx

3
+ sinπx

)
, x ∈ [0,12].

This example was studied in [15] to observe the morphological instability due to the nonlinear interaction.
We compute the solution until the final time t = 240 with a constant splitting step �t = 10−1 on the uniform grid with 

N = 256. Fig. 5.1 shows a sequence of snapshots of the surface height at different times. As one can observe, the initial 
oscillation is damped by t = 1. After a relatively long period of “buffering” time, a new larger scale structure emerges, then 
it increases and finally the steady state is reached by t = 240.

Compared to the results reported in [15], our steady state is in a good agreement with the one obtained there, while 
the “buffering” time evolution is very different. We therefore reduce the splitting step by a factor of 10 and repeat the 
computation with �t = 10−2. The obtained solution, plotted in Fig. 5.2 (solid line), now matches the results in [15]: The 
structure emerges earlier and the steady state is reached by t = 60.

The time evolution process can be monitored by plotting the energy (1.5) and roughness (4.1), see Fig. 5.3. One can 
observe that initially both energy and roughness decay rapidly. However, after a relatively long period of time, roughness 
starts to grow, which is exactly the morphological instability in the rough–smooth–rough pattern. Notice that the flat tail in 
Fig. 5.3(b) and (d) indicates that the steady state is reached much later when �t = 10−1 is used.

To improve the efficiency of the proposed fast and stable explicit operator splitting methods, we implement the adaptive 
strategy described in Section 4. Here, we use �tmin = 10−2, �tmax = 10−1 and α = 103. The obtained solution is shown in 
Fig. 5.2 (dashed line), and the corresponding energy and roughness are plotted in Fig. 5.3 (dashed line). As one can see, the 
adaptive solution practically coincides with the solution computed with �t = 10−2. It is instructive to check what splitting 
steps are used by the adaptive algorithm. To this end, we plot the splitting steps as a function of time in Fig. 5.4. As one 
can see, the splitting steps are smaller than 10−1 only initially and then at the intermediate times. We also compare the 
CPU times of the adaptive and constant (with �t = 10−2) splitting step computations. The results, shown in the first row 
of Table 4.1, indicate that the CPU time for the adaptive method is about four times smaller than the one for the constant 
splitting step.

Finally, we test the accuracy of the proposed fast and stable explicit splitting methods. To this end, we perform the 
mesh-refinement study and measure the L1- and L∞-errors. The results reported in Table 5.1 indicate that the experimental 
convergence rate is close to the expected second-order one. We next fix the splitting step to be very small (�t = 10−3) 
so that the splitting errors do not dominate and perform another mesh-refinement study. The results reported in Table 5.2
show that in this regime, the experimental convergence rate is four, which is the order of finite-difference scheme from 
Section 2.1.
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Fig. 5.3. Example 1: (a) Energy evolution in a short time period; (b) Energy evolution in a long time period; (c) Roughness development in a time period 
t ∈ [0, 40]; (d) Roughness development in a long time period. �t = 10−1 (dashed dotted line), �t = 10−2 (solid line) and adaptive splitting time-stepping 
with �tmin = 10−2, �tmax = 10−1 and α = 103 (dashed line).

Fig. 5.4. Example 1: Splitting step evolution. �t = 10−2 (solid line) and adaptive splitting time-stepping with �tmin = 10−2, �tmax = 10−1 and α = 103

(dashed line).

Table 5.1
Example 1: L1- and L∞-errors and experimental convergence rates at t = 240.

N �t ||uN,�t − uN/2,2�t ||1 Rate ||uN,�t − uN/2,2�t ||∞ Rate

128 2e−2 3.95e−03 – 7.58e−04 –
256 1e−2 1.07e−03 1.89 2.45e−04 1.63
512 5e−3 2.73e−04 1.97 7.17e−05 1.78

1024 2.5e−3 6.84e−05 1.99 1.93e−05 1.89

Table 5.2
Example 1: L1- and L∞-errors and experimental convergence rates obtained with the fixed small splitting step �t = 10−3 at t = 240.

N �t ||uN,�t − uN/2,�t ||1 Rate ||uN,�t − uN/2,�t ||∞ Rate

128 1e−3 8.06e−05 – 2.25e−05 –
256 1e−3 5.18e−06 3.96 1.44e−06 3.96
512 1e−3 3.27e−07 3.99 9.10e−08 3.99

1024 1e−3 2.02e−08 4.02 5.62e−09 4.02

Example 2 (Two-dimensional morphological instability). Next, we consider the 2-D MBE equation (1.3) with δ = 0.1 subject to 
the following initial condition:

u(x, y,0) = 0.1(sin 3x sin 2y + sin 5x sin 5y), (x, y) ∈ [0,2π ] × [0,2π ].
This example was studied in [15,30] to observe the morphological instability due to the nonlinear interaction.
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Fig. 5.5. Example 2: u computed with �t = 10−3.

We first compute the solution on a 256 ×256 uniform grid with the constant splitting step �t = 10−3. Fig. 5.5 shows the 
height profiles at times t = 0, 0.5, 2.5, 5.5, 8 and 30. The corresponding gradients |∇u| are plotted in Fig. 5.6. In Fig. 5.7, we 
demonstrate the experimental energy decay and roughness development, which indicate that the solution reaches a steady 
state at around t = 12. The obtained results are in good agreement with those reported in [15].

We then carry out the adaptive strategy to increase the efficiency of the proposed methods. Here, we choose �tmin =
10−3, �tmax = 10−2 and α = 103. The corresponding energy and roughness curves in Fig. 5.7 are practically indistinguishable 
from those obtained using the small constant splitting step �t = 10−3. Splitting steps evolution, plotted in Fig. 5.8, shows 
that �t ≈ �tmax when the solution approaches its steady state. This leads to a substantial decrease in CPU time, see the 
second row in Table 4.1.

Finally, we perform the mesh-refinement study and verify that the experimental convergence rates for the proposed fast 
and stable explicit operator splitting methods are close to the expected second-order one, see Table 5.3.

Example 3 (Coarsening dynamics). In this example, we study the 2-D MBE equation (1.3) with δ = 1 subject to initial data, 
obtained by assigning a uniformly distributed random number in the range [−0.001, 0.001] to each grid point value of 
u(x, y, 0). We use a 512 × 512 uniform grid on the computational domain � = [0, 1000] × [0, 1000].

Fig. 5.9 shows the contour lines of the free energy function

Ffree := 1
(|∇u| − 1)2 + δ |�u|2
4 2
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Fig. 5.6. Example 2: |∇u| computed with �t = 10−3.

at t = 40,000 and 80,000 computed using the constant splitting step �t = 10−1. As one can see, the free energy is con-
centrated on and thus could be used to identify the edges of the pyramidal structures; the pyramid edges form a random 
network over the surface, which results from the isotropic nature of the surface symmetry; the cells of the network grow 
in time via a coarsening process.

The energy (1.5), normalized by the domain size, and the roughness (4.1) are plotted in Fig. 5.10. To further demonstrate 
the robustness of the proposed methods, we experimentally verify several important properties of the computed solution. 
In Fig. 5.11(a), the energy (1.5), normalized by the domain size, is plotted in the log–log scale and it is nearly parallel to 
the dashed line representing the t−1/3 curve. This suggests that the energy decays in time as a power law Ctn with the 
exponent n = −1/3. In Fig. 5.11(b), the interface height, defined by

ũ(t) =
(

1

|�|
∫
�

u2(x, y, t)dxdy

) 1
2

,

and the roughness (4.1) are demonstrated to evolve in time according to a power law Ctn with the exponent n = 1/3. Finally, 
Fig. 5.11(c) suggests that the difference ū(t) − ū(0), where the mean height ū(t) is defined in (4.2), remains practically zero 
at all times, which implies the mass conservation. The obtained results match the experimental and numerical results 
reported in [15,20,30].

When the adaptive technique with �tmin = 10−1, �tmax = 5 and α = 1 is implemented, the obtained results are very 
similar. As one can see in Fig. 5.10, the splitting step increases to �tmax very soon and then is always selected close to 
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Fig. 5.7. Example 2: (a) Energy evolution in a short time period; (b) Energy evolution in a long time period; (c) Roughness development in a short time 
period; (d) Roughness development in a long time period. �t = 10−3 (solid line) and adaptive splitting time-stepping with �tmin = 10−3, �tmax = 10−2

and α = 103 (dashed line).

Fig. 5.8. Example 2: Splitting step evolution. �t = 10−3 (solid line) and adaptive splitting time-stepping with �tmin = 10−3, �tmax = 10−2 and α = 103

(dashed line).

Table 5.3
Example 2: L1- and L∞-errors and experimental convergence rates at t = 30.

N �t ||uN,�t − uN/2,2�t ||1 Rate ||uN,�t − uN/2,2�t ||∞ Rate

64 4e−3 3.36e−03 – 6.01e−04 –
128 2e−3 9.09e−04 1.88 1.55e−04 1.96
256 1e−3 2.48e−04 1.87 4.96e−05 1.64
512 5e−4 6.52e−05 1.93 1.55e−05 1.68

�tmax due to the slow variation of the roughness. This leads to substantial CPU time usage saving, see the third row in 
Table 4.1.

Remark 5.1. We would like to point out that in this example, the curves for the interface height growth and the roughness 
development in Fig. 5.11(b) almost overlap since ū(t) = ū(0) ≈ 0.

Remark 5.2. We would like to stress that in this example, the energy transition does not occur, and the solution has a 
smooth variation. It is therefore safe to take a relatively small value α = 1 and �tmin = 10−1, which is much larger than 
δ/100 = 10−2.
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Fig. 5.9. Example 3: Contour plots of Ffree computed with �t = 10−1.

Fig. 5.10. Example 3: (a) Energy evolution; (b) Roughness development; (c) Splitting step evolution. �t = 10−1 (solid line) and adaptive splitting time-
stepping with �tmin = 10−1, �tmax = 5 and α = 1 (dashed line).

Fig. 5.11. Example 3: (a) The log–log scale plot of the energy evolution; (b) The log–log scale plot of the interface height and roughness development; 
(c) Mean height evolution. In (a)–(c), �t = 10−1.

Example 4 (Non-mean-zero initial data). In this example, taken from [10], we consider the 2-D CH equation (1.4) with δ =
0.01 subject to the following non-mean-zero initial condition:

u(x, y,0) = 0.05 sin x sin y + 0.001, (x, y) ∈ [0,2π ] × [0,2π ].
We first compute the solution on a 128 × 128 uniform grid with the constant splitting step �t = 10−3. The solution 

computed at times t = 1, 2, 5 and 20 is shown in Fig. 5.12 (left). The experimental energy decay and roughness development 
curves, shown in Fig. 5.13, indicate that the solution reaches a steady state at about t = 9. These results are in good 
agreement with those reported in [10].

We then compute the solution using the adaptive strategy with �tmin = 10−3, �tmax = 10−2 and α = 102. The results 
are plotted in Fig. 5.12 (right). As one can see, the solution dynamics can be captured correctly when the adaptive strategy 
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Fig. 5.12. Example 4: u computed with �t = 10−3 (left column) and adaptive splitting time-stepping with �tmin = 10−3, �tmax = 10−2 and α = 102 (right 
column).

is employed. The corresponding energy and roughness curves shown in Fig. 5.13 have some discrepancy with those obtained 
using the small constant splitting step �t−3, though the adaptive and non-adaptive solutions are quite close and the result-
ing steady states seem to be the same. Splitting steps evolution, also plotted in Fig. 5.13, shows that �t ≈ �tmax when the 
solution approaches its steady state, which leads to a substantial saving in CPU time, see the fourth row in Table 4.1.

Finally, we perform the mesh-refinement study and verify that the experimental convergence rates for the proposed fast 
and stable explicit operator splitting methods are close to the expected second-order one, see Table 5.4.
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Fig. 5.13. Example 4: (a) Energy evolution; (b) Roughness development; (c) Splitting step evolution. �t = 10−3 (solid line) and adaptive splitting time-
stepping with �tmin = 10−3, �tmax = 10−2 and α = 102 (dashed line).

Table 5.4
Example 4: L1- and L∞-errors and experimental convergence rates at t = 20.

N �t ||uN,�t − uN/2,2�t ||1 Rate ||uN,�t − uN/2,2�t ||∞ Rate

64 2e−3 1.61e−00 – 3.01e−01 –
128 1e−3 1.37e−01 3.55 2.64e−02 3.51
256 5e−4 3.44e−02 2.00 5.79e−03 2.19
512 2.5e−4 1.12e−02 1.62 1.72e−03 1.75

Example 5 (Mean-zero initial data). In this example, also taken from [10], we consider the 2-D CH equation with δ = 0.01
subject to the following mean-zero initial condition:

u(x, y,0) = 0.05 sin x sin y, (x, y) ∈ [0,2π ] × [0,2π ].
We first use a uniform 128 × 128 grid with a constant splitting step �t = 10−3 and compute the solution until a large 

final time t = 100. The obtained results are shown in Fig. 5.14 (left column). Even though the solution at a small time t = 2
is similar to the corresponding solution reported in [31], later on our solution bifurcates and seems to converge to a different 
steady state. We therefore perform a thorough comparative study by taking a smaller �t = 10−4 and finer 256 × 256 grid. 
The results, plotted in Fig. 5.14, clearly indicate that different numerical solutions may converge to different steady states. 
We then use the sixth-order semi-discrete finite-difference scheme for equation (1.11) instead of the fourth-order one and 
discover even more different steady-state patterns, see Fig. 5.15.

Our results suggest that the mean-zero solutions of the 2-D CH equation (1.4) may be unstable. Our conjecture is sup-
ported by recent analytical results on unstable equilibria in the 1-D CH equation, see [22].
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Appendix A. Proofs of Theorems 2.4–2.6

Here, we provide proofs of Theorems 2.4–2.6. We denote tnew := t + �tFE. We also use the following notations: unew
j :=

u(x j, t + �tFE) (in Theorem 2.4) and unew
j,k := u(x j, yk, t + �tFE) (in Theorems 2.5 and 2.6).

A.1. Proof of Theorem 2.4 (1-D MBE equation)

Applying the forward Euler method to discretize (2.3) results in

unew
j − u j

�t
= F j. (A.1)

We first multiply both sides of equation (A.1) by (unew
j + u j)/2, replace unew

j on the right using (A.1) and sum over the 
entire domain to obtain∑ (unew

j )2 − u2
j

2�t
=

∑
F ju j + �t

2

∑
F 2

j . (A.2)

j j j
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Fig. 5.14. Example 5: u computed with a 128 × 128 grid, �t = 10−3 (first column); 128 × 128 grid, �t = 10−4 (second column); 256 × 256 grid, �t = 10−3

(third column); 256 × 256 grid, �t = 10−4 (fourth column).
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Fig. 5.15. Example 5: Same as in Fig. 5.14, but using the sixth-order scheme for (1.11).



64 Y. Cheng et al. / Journal of Computational Physics 303 (2015) 45–65
We then rewrite the first term on the right-hand side (RHS) of (A.2) as follows:∑
j

F ju j
(2.3)=

∑
j

m∑
p=−m

αp H j+pu j =
m∑

p=−m

αp

∑
j

H j+pu j =
m∑

p=−m

αp

∑
j

H ju j−p

=
∑

j

H j

m∑
p=−m

αpu j−p =
∑

j

H j

m∑
p=−m

α−pu j+p
(2.5)=

∑
j

H j

m∑
p=−m

(−αp)u j+p
(2.4)= −

∑
j

(ux)
4
j ,

and estimate the second term on the RHS of (A.2) using the Cauchy–Schwarz inequality:

∑
j

F 2
j

(2.3)=
∑

j

⎛⎝ m∑
p=−m

αp H j+p

⎞⎠2

≤ 2m
∑

j

m∑
p=−m

α2
p H2

j+p

= 2m
m∑

p=−m

α2
p

∑
j

H2
j+p = 2am

∑
j

H2
j

(2.4)= 2am
∑

j

(ux)
6
j .

Therefore, the left-hand side (LHS) of equation (A.2) can be bounded by∑
j

(unew
j )2 − u2

j

2�t
≤ −

∑
j

(ux)
4
j + am�t

∑
j

(ux)
6
j ≤

[
am�t max

j
(ux)

2
j − 1

]∑
j

(ux)
4
j ,

which is nonpositive provided the time-step is bounded by (2.13). �
A.2. Proof of Theorem 2.5 (2-D MBE equation)

Applying the forward Euler method to discretize (2.7) results in

unew
j,k − u j,k

�t
= F j,k. (A.3)

We first multiply both sides of equation (A.3) by (unew
j,k + u j,k)/2, replace unew

j,k on the right using (A.3) and sum over the 
entire domain to obtain∑

j,k

(unew
j,k )2 − u2

j,k

2�t
=

∑
j,k

F j,ku j,k + �t

2

∑
j,k

F 2
j,k. (A.4)

We then use (2.7)–(2.9) to rewrite the first term on the RHS of (A.4) as follows:∑
j,k

F j,ku j,k = −
∑

j,k

[
(ux)

4
j,k + (ux)

2
j,k(u y)

2
j,k

]
−

∑
j,k

[
(u y)

4
j,k + (u y)

2
j,k(ux)

2
j,k

]
,

and use (2.7), (2.8) and the Cauchy–Schwarz inequality to estimate the second term on the RHS of (A.4):∑
j,k

F 2
j,k ≤ 8am

∑
j,k

[
(ux)

6
j,k + (ux)

2
j,k(u y)

4
j,k

]
+ 8bm

∑
j,k

[
(u y)

6
j,k + (u y)

2
j,k(ux)

4
j,k

]
.

Therefore, the LHS of equation (A.4) can be bounded by∑
j,k

(unew
j,k )2 − u2

j,k

2�t
≤

[
4am�t max

j,k
(ux)

2
j,k − 1

]∑
j,k

(ux)
4
j,k +

[
4bm�t max

j,k
(u y)

2
j,k − 1

]∑
j,k

(u y)
4
j,k

+
[

4am�t max
j,k

(u y)
2
j,k − 1

]∑
j,k

(ux)
2
j,k(u y)

2
j,k +

[
4bm�t max

j,k
(ux)

2
j,k − 1

]∑
j,k

(u y)
2
j,k(ux)

2
j,k,

which is nonpositive provided the time-step is bounded by (2.15). �
A.3. Proof of Theorem 2.6 (2-D CH equation)

Applying the forward Euler method to discretize (2.11) results in

unew
j,k − u j,k = F j,k. (A.5)
�t
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Once again, we multiply both sides of equation (A.5) by (unew
j,k + u j,k)/2, replace unew

j,k on the right using (A.5) and sum over 
the entire domain to obtain∑

j,k

(unew
j,k )2 − u2

j,k

2�t
=

∑
j,k

F j,ku j,k + �t

2

∑
j,k

F 2
j,k. (A.6)

We now notice that within the accuracy of the scheme

Hx
j,k = 3u2

j,k(ux) j,k and H y
j,k = 3u2

j,k(u y) j,k. (A.7)

We then use (A.7), (2.10) and (2.11) to rewrite the first term on the RHS of (A.6) as follows:∑
j,k

F j,ku j,k = −3
∑

j,k

u2
j,k(ux)

2
j,k − 3

∑
j,k

u2
j,k(u y)

2
j,k,

and use (A.7), (2.11) and the Cauchy–Schwarz inequality to estimate the second term on the RHS of (A.6):∑
j,k

F 2
j,k ≤ 36am

∑
j,k

u4
j,k(ux)

2
j,k + 36bm

∑
j,k

u4
j,k(u y)

2
j,k.

Therefore, the LHS of equation (A.6) can be bounded by∑
j,k

(unew
j,k )2 − u2

j,k

2�t
≤ 3

[
6am�t max

j,k
(u2

j,k) − 1

]∑
j,k

u2
j,k(ux)

2
j,k + 3

[
6bm�t max

j,k
(u2

j,k) − 1

]∑
j,k

u2
j,k(u y)

2
j,k,

which is nonnegative provided the time-step is bounded by (2.17). �
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