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Abstract11

There exists a well defined energy for classical phase-field equations under which12

the dissipation law is satisfied, i.e., the energy is non-increasing with respect to time.13

However, it is not clear how to extend the energy definition to time-fractional phase-14

field equations so that the corresponding dissipation law is still satisfied. In this work,15

we will try to settle this problem for phase-field equations with Caputo time-fractional16

derivative, by defining a nonlocal energy as an averaging of the classical energy with17

a time-dependent weight function. As the governing equation exhibits both nonlocal18

and nonlinear behavior, the dissipation analysis is challenging. To deal with this, we19

propose a new theorem on judging the positive definiteness of a symmetric function,20

that is derived from a special Cholesky decomposition. Then, the nonlocal energy is21

proved to be dissipative under a simple restriction of the weight function. Within the22

same framework, the time fractional derivative of classical energy for time-fractional23

phase-field models can be proved to be always nonpositive.24
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1 Introduction28

A fractional time derivative arises when the characteristic waiting time diverges, which29

models situations involving memory, see, e.g., [1, 2]. In recent years, to model memory30

effects and subdiffusive regimes in applications such as transport theory, viscoelasticity,31

rheology and non-Markovian stochastic processes, there has been an increasing interest32

in the study of time-fractional differential equations, i.e., differential equations where the33

standard time derivative is replaced by a fractional one, typically a Caputo or a Riemann-34

Liouville derivative.35

For the models involved Caputo fractional derivative, Allen, Caffarelli and Vasseur [3]36

studied the regularity of a time-fractional parabolic problem. Their main result is a De37

Giorgi-Nash-Moser Hölder regularity theorem for solutions in a divergence form equation.38

In a more recent work [4], they performed regularity study for porous medium flow with both39

a fractional potential pressure and fractional time derivative. In [5], Luchko and Yamamot40

discussed the maximum principle for a class of time-fractional diffusion equation with the41

Caputo time-derivative. In [6], Li, Liu and Wang investigated Cauchy problems for nonlin-42

ear time-fractional Keller-Segel equation with the Caputo time-derivative. Some important43

properties of the solutions including the nonnegativity preservation, mass conservation and44

blowup behaviors are established.45

On the other hand, for the models involved Riemann-Liouville fractional time derivative,46

Zach [7] investigated the regularity of weak solutions to a class of time fractional diffusion47

equations and obtained a De Giorgi-Nash type theorem which gives an interior Hölder48

estimate for bounded weak solutions. In [8], Vergara and Zacher investigated optimal49

decay estimates by using energy methods; and in [9], they studied instability and blowup50

properties for Riemann-Liouville time-fractional subdiffusion equations. In [10], Le, McLean51

and Stynes studied the well-posedness of the solution of the time-fractional Fokker-Planck52

equation with general forcing.53

Most of the works mentioned above are of semi-linearity in space. It is noticed that54

there exists active research on time-fractional problems with spatial nonlinearity, which55

arises in practical applications. For example, Allen, Caffarelli and Vasseur [4] considered56

a time-space fractional porous medium equation with Caputo fractional time derivatives57

and nonlocal diffusion effects. In [11], Giga and Namba investigated the well-posedness of58

Hamilton-Jacobi equations with a Caputo fractional time derivative, with a main purpose59

of finding a proper notion of viscosity solutions so that the underlying Hamilton-Jacobi60

equation is well-posed. A further study along this line is recently provided by Camilli and61

Goffi [12]. Their study relies on a combination of a gradient bound for the time-fractional62
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Hamilton-Jacobi equation obtained via nonlinear adjoint method and sharp estimates in63

Sobolev and Hölder spaces for the corresponding linear problem.64

The Cahn–Hilliard model [13] may be the most popular phase-field model whose gov-65

erning equation is of the form66

∂tφ+ γ(−∆)
(
−ε2∆φ+ F ′(φ)

)
= 0, x ∈ Ω ⊂ Rd, 0 < t ≤ T, (1.1)

where ε is an interface width parameter, γ is the mobility, and F is a double-well potential67

that is usually taken the form F (φ) = 1
4(1−φ2)2. The corresponding free energy functional68

for the Cahn–Hilliard equation (1.1) is defined as69

E(φ) :=

∫
Ω

(ε2

2
|∇φ|2 + F (φ)

)
dx. (1.2)

The Cahn–Hilliard equation can be viewed as a gradient flow with the energy (1.2) in H−1.70

It is well known that with proper boundary conditions the energy functional E decreases71

in time:72
d

dt
E(φ) = −

∫
Ω

∣∣∇ (−ε2∆φ+ F ′(φ)
)∣∣2 dx ≤ 0. (1.3)

This dissipation law has been used extensively as the nonlinear numerical stability criteria.73

The present paper is concerned with time-fractional phase-field equations. Without loss74

of generality, we consider the most representative phase-field models, i.e., the Allen-Chan75

model [14] and the Cahn–Hilliard model [13]:76 {
∂αt φ = −γ G

(
−ε2∆φ+ F ′(φ)

)
in Ω× (0, T ],

φ(x, 0) = φ0(x) in Ω,
(1.4)

where α ∈ (0, 1), ε > 0 is the interface width parameter, γ > 0 is the mobility constant,77

F is a double-well potential functional, and G = 1 (Allen–Cahn) or −∆ (Cahn–Hilliard).78

Here, the Caputo fractional derivative of φ is given by79

∂αt φ(t) :=
1

Γ(1− α)

∫ t

0

φ′(s)

(t− s)α
ds, t ∈ (0, T ), (1.5)

where Γ(·) is the gamma function. For simplicity, a periodic boundary condition is assumed.80

The main purpose of this work is to extend the energy definition (1.2) from the classical81

phase-field models to the time-fractional models (1.4), with the requirement that the energy82

is decreasing with time. To do this, we consider a weighted energy Eω(t) in the following83

form:84

Eω(t) =

∫ 1

0
ω(θ)E(θt) dθ, (1.6)
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where ω(·) ≥ 0 is some weight function satisfying
∫ 1

0 ω(θ)dθ = 1 and E(θt) = E(φ(·, θt)) is85

the classical energy defined by (1.2). Note that Eω is a nonlocal energy. We prove that if86

ω(θ)θ1−α(1− θ)α is nonincreasing w.r.t. θ, then87

d

dt
Eω(t) ≤ 0, ∀ 0 < t < T. (1.7)

In fact, the above result can be achieved as soon as we can prove the negativeness of a88

special integral involving a weakly singular function. To do this, we introduce a special89

Cholesky decomposition, which leads to a new way on judging the positive definiteness of90

a kernel. Then, we can show that (1.7) holds as long as ω(θ)θ1−α(1− θ)α is nonincreasing.91

Furthermore, another interesting dissipation result can be obtained from similar analy-92

sis. More precisely, in the spirit of (1.5), we can define the Caputo time-fractional derivative93

of classical energy in the following sense94

∂αt E(t) :=
1

Γ(1− α)

∫ t

0

E′(s)

(t− s)α
ds, t ∈ (0, T ), (1.8)

where E(s) = E(φ(·, s)) is given by (1.2). In this work, we will show that the time-fractional95

derivative of classical energy (1.8) is always nonpositive, i.e.,96

∂αt E(t) ≤ 0, ∀ 0 < t < T, (1.9)

which was observed in previous numerical simulations [15], but theoretical proof was not97

provided.98

The paper is organized as follows. In Section 2, we first introduce a useful lemma relevant99

to Cholesky decomposition and then give a theorem on judging the positive definiteness100

of a kernel. In Section 3, the main theorem on energy dissipation result (1.7) will be101

established. In Section 4, we prove that the fractional derivative of classical energy (1.2) is102

always nonpositive. Some concluding remarks will be provided in the final section.103

2 A result on positive definite kernel104

Before introducing the theorem on the positive definite kernel, we propose a useful lemma105

about a special Cholesky decomposition.106

Lemma 2.1 (A special Cholesky decomposition). Given an arbitrary symmetric matrix S107

of size N ×N with positive elements. If S satisfies the following properties:108

(P1): ∀ 1 ≤ j < i ≤ N , [S]i−1,j ≥ [S]i,j;109
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(P2): ∀ 1 < j ≤ i ≤ N , [S]i,j−1 < [S]i,j;110

(P3): ∀ 1 < j < i ≤ N , [S]i−1,j−1 − [S]i,j−1 ≤ [S]i−1,j − [S]i,j,111

then S is positive definite. In particular, S has the following Cholesky decomposition:112

S = LLT, (2.1)

where L is a lower triangular matrix satisfying113

(Q1): ∀1 ≤ j ≤ i ≤ N , [L]ij > 0;114

(Q2): ∀1 ≤ j < i ≤ N , [L]i−1,j ≥ [L]i,j.115

Proof. Let Sn be the nth principal submatrix of S of size n× n with n ≤ N . We will give116

a proof by induction on n.117

Initial case: First, we need to check the case of S2. Obviously, we have the following118

Cholesky decomposition:119

S2 =

ñ
[S]11 [S]12

[S]12 [S]22

ô
=

 √[S]11 0

[S]12√
[S]11

…
[S]22 −

[S]212
[S]11



√

[S]11
[S]12√
[S]11

0

…
[S]22 −

[S]212
[S]11

 , (2.2)

where [S]12 ≤ [S]11 and [S]12 < [S]22. It is easy to find that the lower triangular matrix in120

the above decomposition satisfies the properties (Q1) and (Q2).121

Inductive step: Assume that Lemma 2.1 is always true until Sn−1 which can be decom-122

posed as Ln−1L
T
n−1. We will show that Sn can still be decomposed as LnLT

n , with the lower123

triangular matrix Ln satisfying the properties (Q1) and (Q2).124

We split Sn as follows:125

Sn =

ñ
Sn−1 b

bT [S]n,n

ô
, (2.3)

where the jth entry of the column vector b is [b]j = [S]n,j , 1 ≤ j ≤ n− 1. We need to find126

an Ln such that LnLT
n = Sn. Assume Ln is of the following form127

Ln =

ñ
Ln−1 0

lT ln,n

ô
=


l1,1
l2,1 l2,2
...

...
. . .

ln−1,1 ln−2,2 · · · ln−1,n−1

ln,1 ln,2 · · · ln,n−1 ln,n

 . (2.4)
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It follows from the splitting form (2.3) of Sn and LnL
T
n = Sn that lT = (ln,1, · · · , ln,n−1)128

should satisfy129

Ln−1l = b (2.5)

and ln,n should satisfy130

lTl + l2n,n = [S]n,n. (2.6)

We need to prove that the solution (l, ln,n) to (2.5) and (2.6) exists and satisfies131

0 < ln,j ≤ ln−1,j , 1 ≤ j ≤ n− 1; ln,n > 0. (2.7)

We now prove the first part of (2.7) by induction. When j = 1, according to (2.5) and132

the property (P1) of S, we have133

0 < ln,1 =
[S]n,1
l1,1

≤ [S]n−1,1

l1,1
= ln−1,1, (2.8)

meaning that the first part of (2.7) is true for j = 1. Assume that the first part of (2.7)134

holds for any 1 ≤ j ≤ m with 1 ≤ m < n − 1, we want to prove that it is also true for135

j = m+ 1, i.e.,136

0 < ln,m+1 ≤ ln−1,m+1. (2.9)

In fact, from (2.5), we know that137

[S]n,m =

m∑
j=1

ln,j lm,j , (2.10)

[S]n,m+1 =
m+1∑
j=1

ln,j lm+1,j . (2.11)

Subtracting (2.10) from (2.11), according to the property (P2) of S, we have138

0 < [S]n,m+1 − [S]n,m ≤
m∑
j=1

ln,j (lm+1,j − lm,j) + ln,m+1 lm+1,m+1.

Since lm+1,j− lm,j ≤ 0, ∀1 ≤ j ≤ m and lm+1,m+1 > 0, we deduce from the above inequality139

that140

ln,m+1 > 0. (2.12)

Similar to (2.10) and (2.11), we also have141

[S]n−1,m =

m∑
j=1

ln−1,j lm,j , (2.13)

[S]n−1,m+1 =
m+1∑
j=1

ln−1,j lm+1,j . (2.14)
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Subtracting (2.10) from (2.13), we obtain142

[S]n−1,m − [S]n,m =

m∑
j=1

(ln−1,j − ln,j) lm,j , (2.15)

and subtracting (2.11) from (2.14), we obtain143

[S]n−1,m+1 − [S]n,m+1 =
m+1∑
j=1

(ln−1,j − ln,j) lm+1,j . (2.16)

Combining (2.15), (2.16), and the property (P3) of S, we then have144

0 ≤ ([S]n−1,m+1 − [S]n,m+1)− ([S]n−1,m − [S]n,m)

=

m∑
j=1

(ln−1,j − ln,j) (lm+1,j − lm,j) + (ln−1,m+1 − ln,m+1) lm+1,m+1
.

Since ln−1,j − ln,j ≥ 0, lm+1,j − lm,j ≤ 0, ∀1 ≤ j ≤ m, and lm+1,m+1 > 0, we then obtain145

from the above inequality that146

ln,m+1 ≤ ln−1,m+1. (2.17)

Combining this inequality with (2.12), we obtain that (2.9) is true where j = m + 1. By147

induction, we conclude that the first part of (2.7) holds for any 1 ≤ j ≤ n− 1.148

We now turn to prove the second part of (2.7), i.e., ln,n > 0. It follows from (2.5) and149

the first part of (2.7), we have150

[S]n,n−1 =
n−1∑
j=1

ln,jln−1,j ≥
n−1∑
j=1

l2n,j (2.18)

and using (2.6) gives151

[S]n,n =

n∑
j=1

l2n,j .

This, together with (2.18), gives152

l2n,n ≥ [S]n,n − [S]n,n−1 > 0, (2.19)

where the property (P2) is used. This implies that ln,n is a real number and we can take153

ln,n > 0.154
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In summary, we have proved that Ln is computable and satisfies (2.7). Therefore, Ln155

satisfies the properties (Q1) and (Q2) in the lemma and the principal submatrix Sn is then156

positive definite.157

Conclusion: By induction, we conclude that the lemma holds for the full matrix S of158

size N ×N with N ∈ N+.159

From the kernel point of view, the special Cholesky decomposition provides a new way160

on judging if a symmetric positive function is a positive definite kernel. We state and prove161

the related theorem below.162

Theorem 2.1. Given a symmetric function κ(x, y) > 0 defined on R2. If κ(x, y) satisfies163

• ∂xκ(x, y) ≤ 0, ∀x > y;164

• ∂yκ(x, y) > 0, ∀x > y;165

• ∂xyκ(x, y) ≤ 0, ∀x > y,166

then κ(x, y) is a positive definite kernel.167

Proof. Take an arbitrary sequence of points x1, x2, · · · , xN ∈ R, N ∈ N+. Without loss of168

generalization, we assume that x1 < . . . < xN . Then, ∀c1, . . . , cN ∈ R, we want to prove169

N∑
i=1

N∑
j=1

cicjκ(xi, xj) ≥ 0. (2.20)

Let K = [κ(xi, xj)]N×N be the symmetric matrix corresponding to the left-hand side of the170

above inequality. From the three conditions of κ in this theorem, it is not difficult to verify171

that K satisfies all three properties in Lemma 2.1. In particular, straight computation172

gives: ∀i < j,173 Ä
[K]i−1,j−1 − [K]i,j−1

ä
−
Ä
[K]i−1,j − [K]i,j

ä
= κ(xi−1, xj−1)− κ(xi, xj−1)− κ(xi−1, xj) + κ(xi, xj)

=

∫ xj

xj−1

∫ xi

xi−1

∂xyκ(x, y) dx dy ≤ 0,

(2.21)

that is the third property in Lemma 2.1. Therefore, K is a positive definite matrix and the174

inequality (2.20) always holds, meaning that κ(x, y) is a positive definite kernel.175
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Remark 2.1. If κ(x, y) is a positive definite kernel, then κ(y, x) is also a positive definite176

kernel. This indicates that if a positive symmetric function κ satisfies ∂xκ < 0, ∂yκ ≥ 0,177

and ∂xyκ ≤ 0 for all x > y, then κ is a positive definite kernel as in Theorem 2.1.178

Remark 2.2. The well-known Abel kernel e−|x−y| satisfies the three properties in Theorem179

2.1 and is consequently a positive definite kernel.180

3 Dissipation-preserving energy181

In this section, we shall construct a dissipation-preserving energy based on the result in182

Theorem 2.1. Consider the classical energy functional for the time-fractional Allen–Cahn183

or Cahn–Hilliard equation (1.4):184

E(t) =

∫
Ω

Å
ε2

2
|∇φ|2 + F (φ)

ã
dx. (3.1)

Straightforward computation of its derivative with respect to time gives185

E′(t) =

∫
Ω
∂tφ

(
−ε2∆φ+ F ′(φ)

)
dx = −1

γ

∫
Ω
∂tφ

(
G−1∂αt φ

)
dx, (3.2)

where G−1 is the inverse of G. It is still a challenge to prove E′(t) ≤ 0 despite that numerous186

numerical tests have verified this. We remark that Tang et al. demonstrated in [16] that187

the energies associated with the time-fractional problems are bounded above by the initial188

energy, i.e.,189

E(t) ≤ E(0), for all t > 0. (3.3)

To preserve the dissipation law, we consider a weighted energy Eω(t) in the form of190

Eω(t) =

∫ 1

0
ω(θ)E(θt) dθ, (3.4)

where ω(·) ≥ 0 is some weight function satisfying
∫ 1

0 ω(θ)dθ = 1. It is then followed from191

(3.4) that192

Eω(t) ≤
∫ 1

0
ω(θ)E(0) ds = E(0), ∀ t > 0. (3.5)

This indicates that Eω is also bounded by the initial energy. Further, it follows from (3.3)193

and (3.4) that194

E′ω(t) =

∫ 1

0
ω(θ)θE′(θt) dθ. (3.6)
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Substituting (3.2) into (3.6) and taking into account the periodic boundary condition, we195

have196

E′ω(t) = − t1−α

γΓ(1− α)

∫
Ω

∫ 1

0

∫ θ

0

ω(θ)θ

(θ − η)α
ψ(θt)ψ(ηt) dη dθ dx

= − t1−α

2γΓ(1− α)

∫
Ω

∫ 1

0

∫ 1

0
κ(θ, η)ψ(θt)ψ(ηt) dη dθ dx,

(3.7)

where197

ψ =

{
φ′ Allen–Cahn,

∇(−∆)−1φ′ Cahn–Hilliard,
(3.8)

and198

κ(θ, η) =


ω(θ)θ

(θ − η)α
θ > η,

ω(η)η

(η − θ)α
θ < η.

(3.9)

We assume that the solution φ is first-order continuously differentiable w.r.t. time. As199

soon as κ(θ, η) is a positive definite kernel, the dissipation property of Eω will be ensured,200

i.e., E′ω(t) ≤ 0. Based on Theorem 2.1, we state and prove the following theorem on the201

dissipation-preserving energy.202

Theorem 3.1. For the Allen–Cahn and Cahn–Hilliard models (1.4), if function ω(θ)θ1−α(1−203

θ)α is nonincreasing w.r.t. θ, then the weighted energy (3.4) is dissipative, i.e., E′ω(t) ≤204

0, ∀t > 0.205

Proof. When θ > η, κ(θ, η) given by (3.9) can be rewritten as206

κ(θ, η) = ω(θ)θ1−α(1− θ)α θ
α(1− η)α

(θ − η)α
1

(1− θ)α(1− η)α
. (3.10)

It is trivial to see that 1
(1−θ)α(1−η)α is a positive definite kernel. Further, one can easily207

verify that208

µ(θ, η) =
θα(1− η)α

(θ − η)α
, ∀θ > η (3.11)

decreases w.r.t θ, while increases w.r.t. η. Moreover, straight computation gives209

∂θηµ(θ, η) = ∂η
[
α(1− η)α

(
θα−1(θ − η)−α − θα(θ − η)−α−1

)]
= α2(1− η)α−1θα−1(θ − η)−α−1η − α2(1− η)αθα−1(θ − η)−α−2(αθ + η)

= −α2(1− η)α−1θα−1(θ − η)−α−2 [η(1− θ) + αθ(1− η)]

≤ 0.

(3.12)
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Since ω(θ)θ1−α(1−θ)α is nonincreasing, ω(θ)θ1−α(1−θ)αµ(θ, η) satisfies the three conditions210

in Theorem 2.1. Therefore, its symmetric extension is a positive definite kernel.211

In summary, κ(θ, η) in (3.9) is the product of two positive definite kernels and itself is212

consequently a positive kernel. Therefore, we have E′ω(t) ≤ 0 according to (3.7).213

Corollary 3.1. Consider the following two cases:214

(i)

ω(θ) =
1

B(α, 1− α)θ1−α(1− θ)α
, (3.13)

where B(·, ·) is the Beta function, and215

(ii)

ω(θ) =
1

αθ1−α , (3.14)

it can be verified that the weighted energy Eω in (3.4) is dissipative for both cases.216

4 Fractional derivative of classical energy217

We have discussed how to construct a weighted energy for the time-fractional phase-field218

equations, which preserves the dissipation law, i.e., E′ω(t) ≤ 0 for all t > 0. However, it219

is still an open question if E′(t) ≤ 0 holds true. We don’t have an affirmative answer yet.220

But from another point of view, we can show that the dissipation of classical energy (3.1)221

holds in the sense of time-fractional derivative.222

Theorem 4.1. For the Allen–Cahn and Cahn–Hilliard models (1.4), the Caputo time-223

fractional derivative of the classical energy is always nonpositive, i.e., (1.9) holds.224

Proof. Substituting (3.2) into (1.8) yields225

∂αt E(t) = − 1

γΓ(1− α)2

∫
Ω

∫ t

0

∫ s

0

ψ(s)ψ(τ)

(t− s)α(s− τ)α
dτ ds dx

= − 1

2γΓ(1− α)2

∫
Ω

∫ t

0

∫ t

0
κ(s, τ)ψ(s)ψ(τ) dτ ds dx,

(4.1)

where ψ is given by (3.8) and226

κ(s, τ) =


1

(t− s)α(s− τ)α
s > τ,

1

(t− τ)α(τ − s)α
s < τ.

(4.2)
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When s > τ , we can rewrite227

κ(s, τ) =
1

(t− s)α(t− τ)α
(t− τ)α

(s− τ)α
. (4.3)

It is trivial to see that 1
(t−s)α(t−τ)α is a positive definite kernel. Further, we can find easily228

that229

µ(s, τ) =
(t− τ)α

(s− τ)α
(4.4)

decreases w.r.t. s, while increases w.r.t. τ . Straight computation gives230

∂sτµ(s, τ) = ∂τ
î
−α(t− τ)α (s− τ)−α−1

ó
= −α(t− τ)α−1(s− τ)−α−2 [(t− τ) + α(t− s)]
≤ 0.

(4.5)

According to Theorem 2.1, the symmetric expansion of µ(s, τ) is a positive definite kernel.231

Therefore, κ(s, τ) in (4.2) is a positive definite kernel. This means that ∂αt E(t) ≤ 0 for all232

t > 0.233

5 Conclusion234

It is known that the historic memory of time-fraction plays a significant role as demon-235

strated in many numerical simulations, see, e.g., [16, 17, 18]. Although the whole evolution236

process may be slower due to the memory effect, it is still expected that main regularity237

properties, nonlinear stability and other main features of the relevant phase-field equations238

will be preserved. The main purpose of this work is along this direction. More specifically,239

we have proposed a new energy Eω for the time-fractional phase-field equations, which240

preserves the dissipation law under a restriction of the weight function. Moreover, the241

time-fractional derivative of classical energy is proved to be nonpositive, which has been242

observed in previous numerical simulations [15].243

We remark that Theorem 2.1 on judging a positive definite kernel is innovative, which is244

based on the special Cholesky decomposition. This result is the key ingredient in this article245

that allows us to analyze the dissipation property of weighted energy and the time-fractional246

derivative of classical energy.247
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