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Abstract The Riemann problem for a combustion mode] system with special
kind of viscosity and chemical reaction is considered and the existence of the Riemann

problem is proved. The limit of the Riemann solution as vanished viscosity is also
investigated.
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1. Introduction

If fulid flow is accompanied by chemical reaction, then very complicated wave mo-
tion phenomena occur. Chapman and Jouguet used a simple and typical model which
showed various waves of combustion: strong detonation wave, weak detonation wave,
strong deflagration wave, weak deflagration wave, and their critical states, the so-called
Chapman-Jouguet detonation wave and deflagration wave (see, €.9.; (1-2]). Afterwards,
many authors have done various works about the gtructure of these waves and their
formative conditions using different kinds of models. More research works have been
done in the laboratories and by numerical experiments (see, €.9., [3-4]).

It is an interesting problem how a mathematical model can be applied to these
phenomena and one may investigate them by the theory of differential equations. Some
authors investigated the travelling wave solutions with some Riemann initial value
problems but up to now these investigations are not so deep as that for shock waves
(see, €.g., [5-6]).

A system of combustion model has been introduced in [7]. The governing equations
are

d d a* :

(u+a2) + o (F) = ctas (1a)
0z K

g Ty A (1b)
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where w is a lumped variable representing some features of density, velocity, and the
temperature while 7 represents the fraction of unburnt gas. The constants ¢ = 0,e >0
and K > 0 represent the binding energy, viscosity and the rate of chemical reaction,
respectively; and f(u) is a convex strongly nonlinear function satisfying

flw)>0, f'w>0 (u<0), ffluy=86>0 (u>0) (2)

Function ¢ is defined as

SRS B ®
HE=
T T 2 '
The present work is to consider Eqgs (1) with the initial conditions,
: (ur;0), =0
(ul, 0); Z(x,0)) = (4)
(2w 1) it 0

where ug > 0 > ug,&,q, K > 0. Then the problem considered in Teng and Ying [13]
is a special case (¢ = 0) of (1) and (4). The so-called Z-N-D solution refers to the
solutions of Eqgs (1) and (4) with finite rate of chemical reaction and vanished viscosity,
namely, in Egs (1) let K be fixed and & — 0+.

2. Some Lemmas
Let £ = x/t, the Eqgs. (1) and (4) become

cul = (F'(w) — v — g€Z’ (5a)
¢Z' = Ko(u)Z (5b)

(u; Z)(—oc) = (ur:0), (u, Z)(+o0) = (ur; 1) (5¢)

with £ € R. Here u = u(§) and Z = Z(£).

In this section, C always denotes some positive constants which depend only on
wp, R, q, ) and & but not on £ while C'(g) denotes those constants dependent on €.
For case of notation, we will denote e by u in all of proofs. Moreover, we assume
throughout the paper that & < ¢*. Here £* is a fixed constant.

Lemma 1 (see [7]). Ife £ ¢, then the Egs. (5) possesses a solution (ttey Ze)
with 1. € CY(R) and Z. € C(R). Moreover, the solution (ue, Zc) has only two possible
cases, namely,

(i) (Case I) u(£) decreases monotonically on R with the unique zero-point 1 > 0
(see Fig. 1);
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Fig.1 The solution structure.

(ii) (Case II) there exists a (unique) mazimum value point n; = 0 such that
ue(im ) = max{u(§) : £ € R} and u. increases monotonically on (—oo,n1) and decreases

monotonically on (n1,00) (see Fig. 2).
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Fig.2 The solution structure.

In both cases, Z. can be ezpressed as
0, E<0

Z(&) =14 (&/m¥, 0<&<n (6)
1 £2n
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' Lemma 2 (see[7]). fe < e and u, is a solution of Eqgs. (5), then we have
(i) |ue] £C, Var(ug) < C;
1t
) || < Cesl" @€/ for £ € (—00,0),
where Var(ue) denotes the total variation of u; on R.
Lemma 3 If u is a solution of Egs. (5), then for £ € (—00, 0],

hm u. = UL (7)

g—0
Proof :
wl@) —up= [ v()ds; €€ (=000

By applying Lemma 2, one has
£ G
|uel€) — ur| < f GEE“ {D}Erfﬂfzjd{
—

£ Ly C

e | CeefWEge £ ——¢ (8
— Lm : ] 1d£ E— fr{[!} - }

Hence the inequality (8) leads to (7) and this completes the proof.

Lemma 4 For both Cases I and II, if ¢ is sufficiently small, then 1 = f'(ugr)
UL

ur + 2|'1LR|} -
Proof Let A = f'(ug) L . Assumihg that n < A, one will give a contra-
wy, + 2|ﬂﬂ|

here 1 is the (unique) zero-point of te.

diction.
(i) For Case I, v'(§) =0 for £ € Rand f'(u)—€§20 for £ € (0, f'(ug)). Then from
(5a) one has
' < (F'w) - €)' <0, €€ (0,F(ur) (9)

The application of the Lagrange mean-value theorem gives that there exists an £op €
(0, ) such that

il

wln) —u(0)] _ u 0) _ uL
(o)) = [0 2D 5 2o

- 7 U 21
where the last inequality has been obtained in [7] (Lemma 4.1). Ity < A< f'lur),
then by use of (9) one can obtain

1¢WHEHH&HE%§ (10)

(i1) For Case II, v'(f) <0 for & € (n1,00) and f'(u) — & 2 0 for £ € (m, f'(ur))-
Then one can deduce that

u"(€) <0 for £ € (m, f(ur)) (11)
Similarly, there exists an 51' € (m,n) such that
| w(n) —ulm)| L o YL
N s e = (12)
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Riemann problem for

Then by use of (11) one has [v/(M] 2 l'(€1)] = ‘Lf]
(iii) For both Case I and 1L, if £ € (1, f'(ug)) one has o' < 0 and from (9) and (11)

w" < 0. Thus ' (&) = W' (&) = 1—;% for £ € (n, f'(ur)) and further,

f‘{“R} 1
funl = f e ()de 2 S (ur) =)

that n = A and hence a contradiction. This completes the proof.

which yields
Lemma 5 For case I, if e 14 sufficiently small, then n = C, here 1 is the unique
zero-point of ue(€) (cf. Fig. 1). :
ts a constant C' which is independent of such

Proof From Lemma 9. there exis
1. From

that |ue| < C. Without lossing generality,
(5a) and (6), one has

:t is assumed that 7> A = Y+

¢ [llu)—s :
(el = mleh e forg € (1,00) (13)
If £ > A, then
| fllu)—€£< -1 for £ € (n,00) (14)
Thus, (14) gives
1
(O] < (e for € € (m%0) (15)
Integrating (15) on (n,00) one can obtain
lugl < u'(mle (16)
on the other hand, (5a) and (14) give
! > —u' —Kqg forf€ (A1) (17)
which 1s equivalent. to
_'F.___ﬂ. fa
(E‘E £ 'u’): i —-ngiEﬂ for £ € (A,7) (18)
Integrating (18) on (£,m) with £ € (A,n), one can obtain
I I ﬂi
L6 < (Wn)+Kae = — Kq for £ € (4,m)
Integrating (18) on (£,m), one can obtain
L=
J(6) < (W) + Kgle s —Ka L€ (A7) (19)
By use of (16) and for suﬂicieﬁtly small £, ons has
(20)

u'[n]+Hq£~E§+Kq£D
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Thus (19) gives
w'(£) < Kq, &€ (Am) @y

Integrating (21) on (A,7), one has

_C < —u(d) = L " L(€)de < —Kq(n - A)

which gives
7= A+ — (22)

This completes the proof.
Lemma 6 If ¢ is sufficiently small, then ul(0) > 0. !
Proof Let A = min{#, f'(vg)}. From (5a) and (6) one has for £ € (0, A4)

=1 _F"!-u.—.
¢ Lo ds-f‘iﬁ(;)ﬁﬁff e g (23)
0

u(€) = ' (0)elo i

For £ € (0, A), £ < f'(ur) < f{u). If w/(0) < 0 (cf. Fig. 1), then from (23) one has

€ qK s\ K (eflu-z,,
ﬂx(ﬂﬂ'—fﬂ -E—(E) glo € ds
Cqi sy K Kyl 2680
[E S om0

Thus, N
up — g < u(A) — u(0) = fﬂ L (€)de
IIK 1 AH-I-E

e A 25
- TEFDE+TY 0F (25)
By use of Lemmas 4 and 5, one has
K
up—up € —1— (26)

where €' is a positive constant independent of €. Let £ — 0+, (26) gives a contradiction
and this completes the proof. :

This result implies that the structure of the solution of (5) contains only one possible
case, namely, Case II as shown in Fig. 9 if £ is sufficiently small. Hence we will from
now on concentrate on this case.

Lemma 7 If ¢ is sufficiently small, then the first derivative of ue (£),u'(€), is
uniformly bounded on (0,m), where m is the (unique) mazimum-value point of U, a8
shown in Fig.2.

Proof By Lemma 4, if ¢ is sufficiently small, then there exists a m;mtant {1, such
that n = 3, here 1 is the unique zero-point of u.. Let A = max {l oh 1 } Tt will

ISI'
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be shown that if «"(£) > 0 for any £ € (0,m) then w'(¢) < A, If this were not true,
then there exists an a € (0,m) such that W"(@) > 0 but u'(a) > A. In this case, one
can show that u”(¢) > 0 for all £ € (a,m1). The proof 18 given as follows. Assume that
there exists b € (a,m1) satisfying u(€) > 0 for £ € (a,b) but u’(b) = 0. Then by the
Lagrange mean-value theorem, there exist ¢ and ¢z in (a,b) such that

by K ank s Ly E
QH(E) = QK(E) gK2ef . (E) (b —a) (27)
and
' (b)R(b) = w'(a)hla) + [u" (ca)hlc2) + ()W ()} (b — @) (28)

where h{£) = f'(u) — & Since w” > 0 and u’ > 0 for £ € (a,b), it can be deduced from
(5a) and (6) that :

Me) >0, WOk > (3) (29)
From (27), one has : ;
K ay K
K (E) < qK(E) +qK?(b—a)
< qH(%)K + K256~ 0) (30)

Combining (28}, (29) with (30), one has
w (B h(b) > u'(a)h(a) + w'(eg )R (e2)(b — a)

> ak(2)" + el ulen(en) ~ 0 =)

EqK(

%)H + AFA—D)(b—a)
)

> ()" + HEEF - )60

> QH(% ¥ (31)

From (5a) and (6), (31) implies that w(b) > 0 and this shows that () > 0 for
all £ € (a,m). Then wim) = uwle) > A but it contradicts that w'(m) = 0. This
contradiction indicates that if w'(£) = 0 then w'(§) = A for £ € (0,m). Since u > 0on
(0,m) and w"(0) > 0, it can be obtained that 0 < u' < A on (0,71). :

3. The Properties of the Limit Solution

Since {n}, {m} and {u.} are uniformly bounded with £ (see Lemma 3.1 of [7] and
Lemma 2 of the present paper) and Var(u.) < C, there exists a subsequence of {z}
(still denoted by {} for convenience) such that

i n =1 =
lim m=m (33)

e—0+




368 Fu Enzhong, Tang Tao and Teng Zhenhuan

and

lim ue(€) = u(¢) (34)

g=t{l4
here n* and 7} are real numbers and the limit function u is a real function defined
on R. It should be borne in mind that 7 and m; are dependent on £. By Lemma 3,
u(g) = vy, for £ € (—o0,0]. It is also easily to see that © monotonically increases on
(—oc,ni) and decreases on (n%,00). Lemma 4 indicates that 7* = 0.
The characteristic function Y(a5(£) is defined as follows,

(£) = Jhuficilgil)) (35)
AP0 < € @ (i)
It is clear that
X0,y () = X(ony(€): - @ee as ¢ — 0+ (36)

Combining (5a) with (6) and integrating (5a) on (0,£) one has
 e(ug(€) — u(0))
£ £ gy K
= flue) — FluglD)) — Eue + ]{; ue(8)ds — j{; Kg(%) I{D,q}(ﬁjds
Lemma 8 The limit solution u(£) defined by (34) satisfies
(P -6 v =ak ()", €€ )

w(0) = ur

(37)

(38)

Proof TFor £ € (0,7}), using Lemmas 3 and 7 and applying the Lebesgue's theorem
to (37) one can obtain that

fuy— o) —gu+ [ wtvds = [ Ka(%) xomi(o)ds =0 (@9)
Hence, |
g(€) = flu) — Eu
£ £
— fur) - [ wtvds+ [ Ka(5) ds, ¢ € @) (40)

It can be obtained from Lemma 7 that u € C((0,71)) and thus the right hand side of
(40) is continuously differentiable on (0,7%7). Then g € C(0,7n}) and satisfies

§(O) = —u(© +Ke() , €O (41)

For any given £,a € (0,1f),& # a, one has

9(¢) - 9(a)
wlisnfaliceot 1Emm WE LS
e JE©) —J@) _,
u(é) — ula)

(42)
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It can be found that if f'(u) =& # 0 for ¢ € (0,97), then in (42) let a — £ one can

- () + u(e)
4+ u
u'(€) = 2 43
Let h(€) = f'(u) — & Then h(0) = f'(ur) > 0. Assume that there exists an ¢ €
(0,n}) satisfying h(£) > 0,€ € (0,¢) and h(c) = 0. By (41) and (43) one has v'(c—) =
+oo. On the other hand, it is easily to see that h'(c—) £ 0, namely, f"(u(c—))u'(e—) —

1 1 ;
1 < 0. Thus u'(c—) = m < ; which gives an contradiction. This indicates

that h is positive on (0,7%) and (41) and (43) lead to the conclusion of this Lemma.

The equations are now reduced to a system of second-order nonlinear ODEs and a
singular perturbation is involved. The analytical and numerical approaches on singular
perturbation problems are of theoretical and practical interests for many years (see,
e.g. [8-10]). Mathematically, we may consider a system of ODEs where one or more
of the highest derivatives appearing is multiplied by a small parameters . If we let
¢ approach 0, the order of the-system reduces, and one can not in general expect
all boundary conditions imposed on the original ODE system to be satisfiable. The
perturbation is then “singular” when ¢ is not zero but is small, the solution is expected,
- under certain conditions, to exhibit narrow regions where of fast variation (so-called
boundary or interior layers) which connect wider regions where it varies more slowly.
Many interesting phenomena could be found by numerical experiments ([11-12]) for
the limit process of the present problem and this gives the motivation of the theoretical
work. _

Up to now it has been clear for the structure of the limit solution u on (—oc,77).
We then turn to discuss the properties of v on I = (17, +00).

Let h(£) = f'(u) — £. Since v decreases on I and " > 0,h(£) decreases strictly on
[ and has at most one zero-point. It may be assumed that there exists an # € I such
that

h(€) >0, £&l=(m,"b) (44)
h(€) <0, €£el;=(0,+00) (45]

Lemma 9 Ifn} <n*, then ] =48.
Proof Assume that 7 < #, one will have a contradiction.
(i) It will be proved that lim eu, = 0 on I;. If not, there would exist an a € 1, a

e—04

constant 3 > 0 and a subsequence {£;} such that £5 — 00 as i — oo and

lejue (a)| = 3 (46)

It can be observed from (5a), (6) and (44) that if £ is sufficiently small, then u < 0 on
a+d . ;
(a, ——2—:] Since w_ < 0 one has

{1+|I5')

5 (47)

i (€)] > [ul(a)l, €€ (a
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By Lemma 2 there exists a constant C such that Var(ue) < C1 and then

atE

A
> f 5 (€)1dE = ()]

§—a 5]

e 47
22500 (43)
Let j — oo then (48) leads to a contradiction.

(i) Eq. (1) is a system of conservative equatiom, it can be obtained by use of the

theory on the conservative gystem that any discontinuous point £ of u satisfies the
so-called Rankine-Hugoniot condition, namely,

i SYfp S) )

[] ut —u”

<here u¥ = w(£ £ 0). Since f* > 0 and u decreases on Ip, then for any discontinuous
point £ € I one has

£ > min{f'(u*), f'(w)} = F/(u7) (50)
On the other hand, (44) gives
£ < min{f'(u?), (w7)} = £ (51)

which contradicts (50) and this indicates that u € I1.
(iii) Since k() > 0 on Iy and eu! approaches 0 as ¢ — 0, it can be obtained by
using similar techmque employed in the proof of Lemma g that u € C*(I1) and satisfies

h(€)u' = Kq(f;)ﬁ, £ € (i, min(6,7°)) (52)

Since 7} is less than gither 8 or 7,17 < min(f,n*). On I;, o' < 0 but h and the
right-side-hand of (52) are positive, thus give a contradiction.

Lemma 10 If g} =8, then =1

Proof Ifn} =, then h({) < 0on I = (9},+o0). By applying Lebesgue’s theorem,
one can show that &1_% eu'(£) = 0 on L. By use of similar technique employed In the

proof of Lemma 9, it can be obtained that u € C(I). Finally, it can be deduced that
u € C((n%,n*) U (1, +00)) and satisfies

e = Ka() xor)®) (59)

Then by (45), one has »’ =0 on (n*,+oc). Since u(+400) = up it can be obtained that
w(€) = up for £ € (n*,+occ). Then u(n*=) = 0 and u(n*+)ug < 0, and thus n* is a
discontinuous point. This contradicts that u € C(I). Thus 7" = N7 -

From Lemmas 9 and 10, it has been proved that n" = .

Lemma 11 u(f) =ug for £ € (m*, +o0).

Proof (i) It is possible that @ # nt, here # is defined by (43) and (44). By similar
procedure employed in the proof of Lemma 8, it can be deduced that h{£)u’ =0 for
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¢e Ul Then u' =0 on I; and I;. Hence u = c 011 I; and u = ug on I, here ¢ is a
constant. , f
(ii) If ¢ is a discontinuous point of u, then c # uR and by (49) one has

L ful) = @) S ) =
=t s (u(n+) = () (54)
0= f{uﬂ} = f{ﬂ} o fﬂ[ﬂ] {55}

URp — C

here one uses the fact that u decreases on (n},+oc). Then § < n} which gives a
contradiction. Hence ¢ = ug and u(€) = ug for £ € (7, +co).

4. The Main Theorem

C'ombined Lemmas 3, 8 with 11, the following main theorem can be obtained.
Theorem 1 The similarity solutions, (te, Ze)s of the Riemann problem (1) con-
. verges to o piecewise-smooth solution of the equalions

9wt a2)+ 5o U) =0 (562
82" K
T —Tﬁf'(ﬂ]z (56D)
"
(u(x,0), Z(z,0)) = { o, ) (5.6c)
(ur, 1)

s £ tends to 0. The limit solution (u(z,t), Z(x,t)) = (u(€), Z(£)), with € = %: consists
of three pieces of smooth functions, t.

( (uL,0), £<0
we, 2@ =4 (U, (%)), o<e<n (57)
L {T"!"R!l}? é > 7]'* |

here n* is a fived constant and U(£) is a monotonically increasing function defined by

L= R ENK ;
A Ke(x) ) €€On)
U(0) =ug

(58)
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