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Abstract

This paper is concerned with the Hamilton-Jacobi (HJ) equations of multidimen-
sional space variables with convex Hamiltonian. Using Hopf’s formula (I), we will
study the differentiability of the HJ solutions. For any given point, we give a suf-
ficient and necessary condition under which the solutions are Ck smooth in some
neighborhood of the point. We also study the characteristics of the HJ equations. It
is shown that there are only two kinds of characteristics, one never touches the point
of singularity, and the other touches the point of singularity in a finite time. The
sufficient and necessary condition under which the characteristic never touches the
point of singularity is given. Based on these results, we study the global structure
of the set of singularity points for the HJ solutions. It is shown that there exists
a one-to-one correspondence between the path connected components of the set of
singularity points and the path connected components of a set on which the initial
function does not attain its minimum. A path connected component of the set of
singularity points never terminates at a finite time. Our results are independent of
the particular forms of the equations as long as the Hamiltonian is convex.

1 Introduction

Consider the Cauchy problem for the following Hamilton-Jacobi (HJ) equation
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{
ut + H(Du) = 0 in Rn × (0,∞),

u = g on Rn × {t = 0}, (1.1)

where the Hamiltonian H : Rn → R is Ck smooth with k ≥ 2, and uniformly convex (with

constant α > 0):

n∑
i,j=1

Hpipj
(p)ξiξj ≥ α |ξ|2 , ∀ p, ξ ∈ Rn; (1.2)

g : Rn → R is Ck smooth with k ≥ 2 and satisfies

sup
y∈Rn

|Dg(y)| < ∞. (1.3)

It is known that the solutions to (1.1) are given by the Hopf’s formula (I)1, see, e.g.,

[2, 4, 5, 6],

u(x, t) = min
y∈Rn

{
tL

(
x− y

t

)
+ g(y)

}
, (1.4)

where L is the Legendre transform of H, i.e.,

L(p) = sup
q∈Rn

{p · q −H(q)} (p ∈ Rn). (1.5)

It can be verified that

L(DH(p)) = p ·DH(p)−H(p). (1.6)

Note that the mapping DH : Rn → Rn is one-to-one and onto (since H is uniform convex).

Another equivalent formula for the solutions is given by Kruzkov [7]:

u(x, t) = min
p∈Rn

F (x, t, p), (1.7)

where

F (x, t, p) = tL(DH(p)) + g(x− tDH(p)), (1.8)

and the initial function g is assumed to be lower semi-continuous and satisfies

|g(x)| ≤ M(|x|+ 1). (1.9)

The regularity of the solutions to the HJ equations has attracted attention of many au-

thors, see, e.g., [1, 3, 5, 6, 7, 13, 14, 15] and references there in. It is known [2] that the

solutions u(x, t) defined by the Hopf’s formula (I) are viscosity solutions of (1.1), which

are differentiable a.e. in Rn × (0,∞). However, in general u(x, t) is not of class C1 in the

sense that their gradient may have discontinuities.

1It is called the “Lax formula” in [10].
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Let U be the set of all points (x, t) such that F (x, t, •) has a unique non-degenerate

minimizer. Then U is open on which the solutions are Ck smooth. We study the properties

of characteristics, which are also interesting in their own sake and have other applications.

Given y0 ∈ Rn, let

C = {(x, t)| x = y0 + DH(Dg(y0))t, t > 0}. (1.10)

A characteristic segment

C̄ = C
⋂
{0 < t ≤ T1}

is said to be valid if Dg(y0) is a minimizer for F (x, t, •) for each (x, t) ∈ C̄. In the case

that max T1 < ∞, we prove there exists a point (xs(y0), ts(y0)), where

ts(y0) = max T1, xs(y0) = y0 + ts(y0)DH(Dg(y0))), (1.11)

such that Dg(y0) is a unique degenerate minimizer or one of the minimizers for F (xs(y0), ts(y0), •),
while Dg(y0) will no longer be a minimizer for F (x, t, •) for (x, t) ∈ C, t > ts(y0) and Dg(y0)

is a unique non-degenerate minimizer for F (x, t, •) for (x, t) ∈ C, t < ts(y0). We define

(xs(y0), ts(y0)) as a singularity point. Let S be the set of singularity points.

We will introduce a singularity mapping based on the properties of the characteristics.

A singularity mapping is defined as

S (y) = (xs(y), ts(y)) (1.12)

from Rn to Rn × (0,∞). It will be shown that ts(y0) is finite if and only if

g(y0) > inf
y∈Rn

g(y). (1.13)

Thus the domain of S is

R̃n = {y ∈ Rn| g(y) > inf
x∈Rn

g(x)}. (1.14)

Furthermore, it will be proved that the singularity mapping is continuous. Thus the sin-

gularity mapping is continuous from R̃n ⊂ Rn to Rn × (0,∞) and

S = {(xs(y), ts(y))| y ∈ R̃n}.

The second part of the paper is concerned with the differentiability of the HJ solutions. We

prove that u(x, t) is non-differentiable at (x0, t0) if F (x0, t0, •) has more than one minimizer,

and (x0, t0) is a cluster point of non-differentiable points of the solution u(x, t) if F (x0, t0, •)
has a unique degenerate minimizer. Thus an equivalent definition of the singularity point

can be stated as follows: We call a point a singularity point if it is a non-differentiable

point of the solution u(x, t) or a cluster point of non-differentiable points of u(x, t). We

will show that the solution of (1.1) is smooth in some neighborhood of a point (x0, t0) if

and only if there exists a unique non-degenerate minimizer for F (x0, t0, •).
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We are interested in the global structures of S. It will be shown that the set of sin-

gularity points consists of several path connected components. We prove that there exists

a one-to-one correspondence between the path connected components of R̃n and the path

connected component Si of the set of singularity points and each path connected compo-

nent of the set of singularity points never vanishes as t increases. Moreover, our results are

independent of the particular forms of the equations as long as the Hamiltonian is convex.

It is pointed out that this work is a kind of extension of our earlier work on the solution

structures of the entropy solutions to scalar conservation laws [8, 12].

2 Hopf’s formula (I) and characteristics

In this section we will give several lemmas and propositions on characteristics, which play

important role in studying the regularity and global structure of the HJ solutions. The fact

that solutions u(x, t) of (1.1) are given by Hopf’s formula (I) shows that the minimizers of

F (x, t, •) belong to a subset of the set

{Dg(y)|y ∈ Rn},

where y is a point from which the characteristic C:

C : {(x, t) |x = y + tDH(Dg(y)), t > 0} (2.1)

emanates and passes through (x, , t). We will show that Dg(y) is a unique non-degenerate

minimizer of F (x, t, •) for (x, t) ∈ C, t > 0 if and only if

g(y) = inf
y∈Rn

g(y). (2.2)

In the case that

g(y) > inf
y∈Rn

g(y),

there exists (xs(y), ts(y)) belonging to C such that Dg(y) is a minimizer of F (x, t, •) for

(x, t) ∈ C, t ≤ ts(y) and Dg(y) is not minimizer of F (x, t, •) for (x, t) ∈ C, t > ts(y).

We record here the following relations that will be needed later

DpF (x, t, p) = tD2H(p) · (p−Dg(x− tDH(p))). (2.3)

If DpF (x, t, p) = 0, then

DxF (x, t, p) = p, DtF (x, t, p) = −H(p), (2.4)

D2
pF (x, t, p) = tD2H(p)[In + t ·D2g(x− tDH(p) ·D2H(p)]. (2.5)

Definition 2.1 Let p0 be a minimizer for F (x0, t0, •). Then p0 is called non-degenerate

(degenerate) if |D2
pF (x0, t0, p0)| 6= 0 (= 0).
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Lemma 2.1 Let

U = {(x, t) : ∃ unique non-degenerate minimizer forF (x, t, •)}. (2.6)

Then U is an open subset of Rn × (0,∞), and u(x, t) is Ck smooth on U .

Proof: The proof is a straightforward generalization of Lemma 1.1 in [11] for scalar

conservation laws in one space dimension.

Lemma 2.2 Suppose (x0, t0) ∈ Rn × (0,∞) , p0 = p(x0, t0) is a minimizer of F (x0, t0, •),
l is an open straight line segment connecting (x0, t0) and (y0, 0), where

y0 = y(x0, t0) = x0 − t0DH(p0).

If (x1, t1) ∈ l, then there is a unique point

p(x1, t1) = p(x0, t0) = p0

which minimizes F (x1, t1, •). Furthermore,

u(x0, t0) = u(x1, t1) + (t0 − t1)L

(
x0 − y0

t0

)
. (2.7)

Proof: Suppose p1 is a minimizer for F (x1, t1, •). Set y1 = x1− t1DH(p1). It follows from

the Hopf’s formula (I) that

u(x1, t1) = t1L(
x1 − y1

t1
) + g(y1)

≤ t1L(
x1 − y0

t1
) + g(y0). (2.8)

Using the fact that L is strictly convex, we have from (2.8) that

u(x0, t0) = t0L(
x0 − y0

t0
) + g(y0)

= (t0 − t1)L(
x0 − y0

t0
) + t1L(

x0 − y0

t0
) + g(y0)

= (t0 − t1)L(
x0 − x1

t0 − t1
) + t1L(

x1 − y0

t1
) + g(y0)

≥ (t0 − t1)L(
x0 − x1

t0 − t1
) + t1L(

x1 − y1

t1
) + g(y1)

= t0

[
t0 − t1

t0
L(

x0 − x1

t0 − t1
) +

t1
t0

L(
x1 − y1

t1
)

]
+ g(y1)

≥ t0L(
x0 − y1

t0
) + g(y1). (2.9)

Since

u(x0, t0) = min
y∈Rn

{
t0L(

x0 − y

t0
) + g(y)

}
,
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we have

u(x0, t0) = t0L(
x0 − y1

t0
) + g(y1).

Consequently,
t0 − t1

t0
L(

x0 − x1

t0 − t1
) +

t1
t0

L(
x1 − y1

t1
) = L(

x0 − y1

t0
), (2.10)

where we have used (2.9). Note that

p0 = p1 ⇐⇒ DH(p0) = DH(p1) ⇐⇒ x0 − y0

t0
=

x1 − y1

t1

⇐⇒ t0 − t1
t0

L(
x0 − x1

t0 − t1
) +

t1
t0

L(
x1 − y1

t1
) = L(

x0 − y1

t0
). (2.11)

This, together with (2.10), implies that p0 = p1.

We now discuss the relationship between the critical point of F (x, t, •) and the charac-

teristic. Suppose p0 is a critical point of F (x0, t0, •), i.e.,

DpF (x0, t0, p0) = 0.

Then it follows from (2.3) that p0 = Dg(x0 − t0DH(p0)). Let

y0 = x0 − t0DH(p0). (2.12)

The characteristic

x = y0 + tDH(Dg(y0)) (2.13)

will pass through (x0, t0) with the speed DH(Dg(y0)) = DH(p0).

On the other hand, consider a characteristic

C : x = y + tDH(Dg(y)), t > 0. (2.14)

Then DpF (x, t, Dg(y)) = 0 for (x, t) ∈ C due to the fact that

Dg(y) = Dg(x− tDH(Dg(y)))

and (2.3). This implies that Dg(y) is a critical point of F (x, t, •).
It is natural to ask if Dg(y) is a minimizer of F (x, t, •) for (x, t) ∈ C. The following

lemma gives an answer.

Lemma 2.3 Let y0 ∈ Rn and assume the corresponding characteristic C is given by (1.10).

If g ∈ Ck is bounded, then precisely one of the following statements must hold:

• either Dg(y0) is the unique non-degenerate minimizer of F (x, t, •) for each (x, t) ∈
C;
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• or there exits a point (xs(y0), ts(y0)) ∈ C such that Dg(y0) is either the unique

degenerate minimizer of F (xs(y0), ts(y0), •) or one of more than one minimizers for

F (xs(y0), ts(y0), •). Furthermore Dg(y0) is a unique non-degenerate minimizer for

F (x, t, •) for each

(x, t) ∈ C− := C ∩ {(x, t) : ts(y0) > t > 0},
while for

(x, t) ∈ C+ := C ∩ {(x, t) : t > ts(y0)},
Dg(y0) is no longer the minimizer of F (x, t, •).

Proof: We first show that Dg(y0) is no longer a minimizer for F (x, t, •) for (x, t) ∈ C+

if there exist more than one minimizer for F (xs(y0), ts(y0), •). Otherwise, there exists a

point (x̃, t̃) ∈ C+ such that Dg(y0) is a minimizer for F (x̃, t̃, •). Consequently, Dg(y0) is the

unique minimizer for F (xs(y0), ts(y0), •) according to Lemma 2.2, which is a contradiction

since there are more than one minimizers for F (xs(y0), ts(y0), •).
If Dg(y0) is a unique degenerate minimizer for F (xs(y0), ts(y0), •) , i.e.,

|D2
pF (xs(y0), ts(y0), Dg(y0))| = 0. (2.15)

Therefore, there exists a non-zero vector ξ ∈ Rn such that

ξT D2
pF (xs(y0), ts(y0), Dg(y0))ξ = 0. (2.16)

It follows from (2.4) and (2.5) that

ts[ξ
T D2H(Dg(y0))ξ + tsξ

T D2H(Dg(y0))D
2g(y0)D

2H(Dg(y0))ξ] = 0. (2.17)

Consider the equation

ḡ(t) = ξT D2H(Dg(y0))ξ + tξT D2H(Dg(y0))D
2g(y0)D

2H(Dg(y0))ξ. (2.18)

Thus

ξD2
pF (x, t, Dg(y0))ξ

T = tḡ(t). (2.19)

According to Lemma 2.2, Dg(y0) is a unique minimizer for F (x, t, •) for each (x, t) ∈ C, t ≤
ts(y0) since Dg(y0) is a minimizer for F (xs(y0), ts(y0), •). Then

ξD2
pF (x, t, Dg(y0))ξ

T ≥ 0, ∀ (x, t) ∈ C, t ≤ ts(y0). (2.20)

On the other hand, (2.18) is a linear equation of t and has a unique root, t = ts(y0). Thus

ḡ(t) < 0 for t > ts(y0). (2.21)

It follows from (2.19) and (2.21) that

ξT D2
pF (x, t, Dg(y0))ξ < 0 for (x, t) ∈ C, t > ts(y0), (2.22)

which means that the matrix D2
pF (x, t, Dg(y0)) is negative definite or non-definite. Con-

sequently, Dg(y0) can not be a minimizer for F (x, t, •). This completes the proof of this

lemma.
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The analogue of Lemma 2.3 for convex scalar conservation laws was obtained by Li and

Wang in [8].

Definition 2.2 A characteristic segment

C̄ = C
⋂
{0 < t ≤ T1}

is said to be valid if there exists 0 < T1 ≤ ∞ such that for each (x, t) ∈ C̄, Dg(y0) is a

minimizer for F (x, t, •), C is given by (1.10).

For each point (x0, t0) ∈ Rn× (0,∞), there exists at least one valid characteristic segment

C̄ = C
⋂{0 < t ≤ t0} passing through it. Lemma 2.3 can be used to judge if F (x0, t0, •) has

a unique non-degenerate (or degenerate) minimizer or several minimizers by considering

the relationship between C− and C̄. That is to say: if C− ⊂⊂ C̄, then F (x0, t0, •) has a

unique degenerate minimizer or more than one minimizer; if C̄ ⊂⊂ C−, then F (x0, t0, •)
has a unique non-degenerate minimizer.

From the above lemma, for y ∈ Rn satisfying ts(y) < ∞, consider C, a characteristic

emanating from y of the form (2.1). We see that

{
ts(y) = max{t | u(x, t) = F (x, t, Dg(y)), (x, t) ∈ C, t > 0},
xs(y) = y + ts(y)DH(Dg(y)).

(2.23)

We define the point (xs(y), ts(y)) as singularity point of solution u(x, t) and let S be the

set of singularity points. In order to study the structure of the set of singularity points we

introduce a singularity mapping S from some subset of Rn to Rn × (0,∞),

S (y) = (xs(y), ts(y)). (2.24)

In other words, (xs(y), ts(y)) is the point such that F (xs(y), ts(y), •) has a unique degen-

erate minimizer or more than one minimizer.

Lemma 2.4 S defined by (2.24) is a continuous map.

Proof: We need to prove that ts(yn) → ts(y0) if yn → y0, where yn ∈ Rn. This will be

done in two steps.

Step 1. We claim

lim sup ts(yn) ≤ ts(y0). (2.25)

Otherwise there exists a subsequence {ts(ynk
)} of {ts(yn)} such that ts(ynk

) → T1 > ts(y0).

Then according to the definition of ts(ynk
), for k big enough we have

u
(
DH(Dg(ynk

))T1 + ynk
, T1

)
= F

(
DH(Dg(ynk

))T1 + ynk
, T1, Dg(ynk

)
)
. (2.26)
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Using the continuity property of u(x, t) and F (x, t, p), we obtain by letting k → ∞ in

(2.26) that

u
(
DH(Dg(y0))T1 + y0, T1

)
= F

(
DH(Dg(y0)T1 + y0, T1, Dg(y0)

)
, (2.27)

which contradicts the definition of ts(y0) and Lemma 2.3.

Step 2. We claim

lim inf ts(yn) ≥ ts(y0). (2.28)

Otherwise there exists some subsequence {ts(ynk
)} of {ts(yn)} such that ts(ynk

) → T <

ts(y0). Then there exists a neighborhood U(x1,T ) of (x1, T ), where

x1 = y0 + TDH(Dg(y0)).

For each (x, t) ∈ U(x1,T ), there exists a unique non-degenerate minimizer for F (x, t, •). On

the other hand, for sufficiently large k, we have
(
DH(Dg(ynk

))ts(ynk
) + ynk

, ts(ynk
)
)
∈ U(x1,T ).

According to Lemma 2.3, there are more than one minimizers or a unique degenerate point

for F (ynk
+ ts(ynk

)DH(Dg(ynk
)), ts(ynk

), •), which is a contradiction.

Consider a characteristic given by (1.10), we have shown that either Dg(y0) is a mini-

mizer for F (x, t, •) for each (x, t) ∈ C (in this case ts(y0) = ∞) or Dg(y0) is a minimizer

for F (x, t, •) for (x, t) ∈ C, t ≤ ts(y0) < ∞ while Dg(y0) will be no longer a minimizer for

F (x, t, •) for (x, t) ∈ C, t > ts(y0) in lemma 2.3. How to determine a point y0 whether

ts(y0) is finite ? That is to say what the domain of definition of the singularity mapping

S is. The following three propositions on the characteristic, which are also interesting in

their own sake and have other applications, provide a criterion. The criterion is dependent

on the initial data and independent of the particular forms of the equations as long as the

Hamiltonian is convex.

Proposition 2.1 Assume that the initial function g(y) attain its minimum at y0. Then

Dg(y0) must be a unique non-degenerate minimizer for F (x, t, •) for (x, t) ∈ C, where C

is defined by (1.10).

Proof: We first show that for each (x, t) ∈ C, any other local minimum of F (x, t, •)
is strictly greater than F (x, t, Dg(y0)). Suppose Dg(y1) is another local minimizer for

F (x, t, •). Thus Dg(y1) 6= 0. Let

h(s) = L(DH(sDg(y1))). (2.29)

Direct computations yield

h(0) = L(DH(0)) = L
(
DH(Dg(y0))

)
,

h(1) = L
(
DH(Dg(y1))

)
,

(2.30)
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and

h′(s) = sDg(y1)D
2H(sDg(y1))Dg(y1)

T

≥ sα|Dg(y1)|2 > 0, (2.31)

where we have used the fact that Dg(y0) = 0 and Dg(y1) 6= 0. Consequently, h(s) is

strictly increasing, which gives h(1) > h(0), i.e.,

L
(
DH(Dg(y1))

)
> L

(
DH(Dg(y0))

)
. (2.32)

Since g attains its minimum at y0, we have

g
(
x− tDH(Dg(y1))

)
− g

(
x− tDH(Dg(y0))

)

= g
(
x− tDH(Dg(y1))

)
− g(y0) ≥ 0. (2.33)

Therefore, we have

F (x, t, Dg(y1))− F (x, t, Dg(y0))

= t
[
L(DH(Dg(y1)))− L(DH(Dg(y0)))

]

+g
(
x− tDH(Dg(y1))

)
− g

(
x− tDH(Dg(y0))

)
> 0. (2.34)

The above result indicates that Dg(y0) is a unique non-degenerate minimizer for F (x, t, •).
This completes the proof of the lemma.

Proposition 2.2 Assume that Dg(y) → 0 as |y| → ∞, g(y) does not attain its minimum

at y0 and Dg(y0) 6= 0. Let C be given by (1.10). Then there exists (x̃, t̃) ∈ C such that

Dg(y0) is not the minimizer for F (x̃, t̃, •).

Proof: Choose yn ∈ ∂B(y0, rn) with rn →∞ as n →∞. Then we have

Dg(yn) → 0, as n →∞.

For n ≥ 0, let

Cn = {(x, t) : x = yn + DH(Dg(yn))t, t > 0}.
Now we claim that there exists a point yn ∈ ∂B(y0, rn) for n sufficiently large such that

the characteristics Cn intersects with the characteristic C. In fact, we only need to show

that there exists a solution yn for

yn − y0 = t
(
DH(Dg(y0))−DH(Dg(yn))

)
. (2.35)

Let f : ∂B(0, rn) → ∂B(0, rn) be the mapping

ỹn → DH(Dg(y0))−DH(Dg(ỹn + y0))

|DH(Dg(y0))−DH(Dg(ỹn + y0))|rn,
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where ỹn = yn−y0 and yn ∈ ∂B(y0, rn). It is obvious that f is continuous and f(∂B(0, rn)) 6=
∂B(0, rn) for sufficiently large n since

DH(Dg(yn)) → DH(0) 6= DH(Dg(y0)), as n →∞.

Then f has a fixed point according to an equivalent form of Brouwer’s fixed point theorem.

This implies that Eq. (2.35) has a solution.

Denote (xn, tn) with xn = yn + tnDH(Dg(yn)) being the intersection point of Cn and

C. Then

y0 + tnDH(Dg(y0)) = yn + tnDH(Dg(yn)), (2.36)

which gives

|yn − y0| = |DH(Dg(x0))−DH(Dg(yn))|tn. (2.37)

Thus tn → ∞ as n → ∞ by the fact that |yn − y0| = rn → ∞ and |DH(Dg(x0)) −
DH(Dg(yn))| −→ |DH(Dg(x0))−DH(0)| 6= 0 as n →∞. We also have

F (xn, tn, Dg(y0))− F (xn, tn, Dg(yn))

= tn

[
L(DH(Dg(y0)))− L(DH(Dg(yn)))

]

+g
(
xn − tnDH(Dg(y0))

)
− g

(
xn − tnDH(Dg(yn))

)

= tn

[
L(DH(Dg(y0)))− L(DH(Dg(yn)))

]
+ g(y0)− g(yn) →∞,

where we have used the facts that tn →∞ and

L
(
DH(Dg(y0))

)
− L

(
DH(Dg(yn))

)

→ L
(
DH(Dg(y0))

)
− L(DH(0)) > 0. (2.38)

The proof of (2.38) is as same as (2.32). This indicates that Dg(y0) is no longer the

minimizer for F (xn, tn, •).

Remark 2.1 It is worth pointing out that the condition Dg(y) → 0 as |y| → ∞ is

necessary in general. For example, it can be verified that there exists a global smooth

solution of (1.1) if the initial function g is convex on Rn.

Proposition 2.3 Assume that g(y) does not attain its minimum at y0 and Dg(y0) = 0.

Let C be defined by (1.10). Then there exist (x̃, t̃) ∈ C such that Dg(y0) is not the minimizer

for F (x̃, t̃, •)

Proof: Note that

DL(DH(p)) = p, ∀ p ∈ Rn. (2.39)

Differentiating (2.39) with respect to p gives

D2L(DH(p))D2H(p) = In, (2.40)
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where In is an identity matrix. Consequently,

D2L(DH(p)) = (D2H(p))−1 ≤ 1

α
In, (2.41)

where we have used the facts that D2H(p) is positive definite and D2H(p) ≥ αIn. Using

(2.41) and Dg(y0) = 0 gives

L(DH(p))− L(DH(Dg(y0))) = DL
(
DH(Dg(y0))

)
· V (p; y0)

+

∫ 1

0

{
sV (p; y0)

T D2L[sDH(p) + (1− s)DH(Dg(y0))]V (p; y0)
}

ds

≤ 1

2α
|V (p; y0)|2, (2.42)

where for ease of notations, we let

V (x; y) = DH(x)−DH(Dg(y)). (2.43)

For each point (x, t) ∈ C, i.e., x = y0 + tDH(Dg(y0)), we have

F (x, t, Dg(y0))− F (x, t, p)

= g(y0)− g(y0 − tV (p; y0)− t
[
L(DH(p))− L(DH(Dg(y0)))

]

≥ g(y0)− g(y0 − tV (p; y0)− t

2α
|V (p; y0)|2, (2.44)

where in the last step we have used (2.42). Let m = infy∈Rn g(y). We have g(y0)−m > 0

since g(y) does not attain its minimum at point y0. There are two cases to be considered.

• Case 1: there exists y1 such that m = g(y1). Then set

y0 − tV (p; y0) = y1,

or equivalently,
y0 − y1

t
= V (p; y0), (2.45)

where V is defined by (2.43). Select tn > 0 with tn →∞ and set c1 = |y0 − y1|. Since the

map DH is one-to-one and onto, we can find pn satisfying

y0 − y1

tn
= V (pn; y0). (2.46)

Consequently, |V (pn; y0)| = c1/tn, which gives that

tn
2α
|V (pn; y0)|2 =

c2

tn
, (2.47)

where c2 = c2
1/2α. For tn sufficiently large, we have

c2

tn
≤ 1

2

(
g(y0)− g(y1)

)
, (2.48)
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Combining (2.42)-(2.48), we have, for sufficiently large n,

F (xn, tn, Dg(y0))− F (xn, tn, pn)

≥ g(y0)− g(y1)− c2

tn

≥ 1

2

(
g(y0)− g(y1)

)
> 0, (2.49)

where xn = y0 + tnDH(Dg(y0)). This implies that for tn sufficiently large, Dg(y0) is no

longer a minimizer for F (xn, tn, •).
• Case 2: there does not exist y1 such that m = g(y1). Then we can find a sequence

{ȳn}n≥1, such that |ȳn| → ∞, and g(ȳn) → m, as n →∞. Set

y0 − ȳn

tn
= V (pn; y0), tn = |y0 − ȳn|3. (2.50)

Then
1

2α
tn|V (pn; y0)|2 =

1

2α
t
− 1

3
n . (2.51)

By the definition of ȳn, we have for |ȳn| sufficiently large,

0 < g(ȳn)−m ≤ g(y0)−m

3
,

which gives

g(y0)− g(ȳn) ≥ 2

3

(
g(y0)−m

)
. (2.52)

Consequently,
1

2α
t
− 1

3
n ≤ 1

3

(
g(y0)−m

)
. (2.53)

Using (2.50)-(2.53), we have, for xn = y0 + tnDH(Dg(y0)),

F (xn, tn, Dg(y0))− F (xn, tn, pn)

≥ g(y0)− g(ȳn)− 1

2α
t
− 1

3
n

≥ 2

3
[g(y0)−m]− 1

3
[g(y0)−m]

=
1

3
[g(y0)−m] > 0, (2.54)

which implies that

F (xn, tn, Dg(y0))− F (xn, tn, pn) > 0. (2.55)

The above result indicates that for tn sufficiently large, Dg(y0) is no longer a minimizer

for F (xn, tn, •). The proof is then complete.

From Lemmas 2.3-2.3, we see that Dg(y) → 0 as |y| → ∞, and that the domain of

definition of the singularity mapping S is given by

R̃n = {y ∈ Rn| g(y) > inf
x∈Rn

g(x)}. (2.56)
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Then the singularity mapping S is continuous from R̃n to Rn × (0,∞) and the set of

singularity points can be written in the form

S = {(xs(y), ts(y))| y ∈ R̃n} (2.57)

where (xs(y), ts(y)) are defined by (2.23).

3 Regularity and global structure of solutions

This section is concerned with the regularity of the solutions and global structure of the

set of singularity points S of the solutions in the upper half space Rn × (0,∞). We will

show that S, as the complementary set of the set U in Lemma 2.1, is a closure of the

set consisting of points at which the solution is non-differentiable. Then as a corollary

we have the the result that the solution u(x, t) is Ck smooth in some neighborhood of

(x0, t0) if and only if there is a unique non-degenerate minimizer for F (x0, t0, •). The set

of singularity points consists of several path connected components Si. We will show that

there exists one-to-one correspondence between the path connected components Si of the

set of singularity points and path connected components Ri of the subset of R̃n on which

initial function does not attain its minimum. A singularity never terminates as t increases.

Lemma 3.1 If F (x0, t0, •) has a unique degenerate minimizer or more than one mini-

mizer, then u(x, t) = minp∈Rn F (x, t, p) is not differentiable in any neighborhood U(x0,t0) of

(x0, t0).

Proof: Without loss of generality we assume that Dg(y) → 0 as |y| → ∞ since we are

concerned with local properties of solutions u(x, t).

The assertion that the solution u(x, t) is not differentiable at (x0, t0) if there are more

than one minimizer for F (x0, t0, •) can be deduced from Theorem 2.1 of Hoang [6].

For the case that there is a unique degenerate minimizer p0 = Dg(y0) for F (x0, t0, •),
we only need show that for any neighborhood U(x0,t0) of (x0, t0),

there exists a point (x, t) ∈ U(x0,t0) such that

there are more than one minimizer for F (x, t, •). (3.1)

Otherwise,

there exists a neighborhood U(x0,t0) of (x0, t0) such that for each point

(x, t) ∈ U(x0,t0) there is a unique minimizer for F (x, t, •). (3.2)

It follows from Lemma 2.1 that g(y0) > infy∈Rn g(y). Then there exists a neighborhood

Uy0 ⊂ Rn × {t = 0} of y0 such that g(y) > infy∈Rn g(y) for each y ∈ Uy0 . By Lemmas 2.2

and 2.3, we conclude that ts(y) is finite for each y ∈ Uy0 . Then by Lemma 2.4 we have

S (Uy0) = {(xs(y), ts(y))|y ∈ Uy0} (3.3)
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is a continuous manifold passing through (x0, t0).

It follows from (3.2) that the singularity mapping S from Uy0 to S (Uy0) is one-to-one

if S (Uy0) ⊂ U(x0,t0) provided that Uy0 is small enough. Then S (Uy0) is a n-dimensional

continuous hyper-surface. Moreover, there is a unique intersection point for each charac-

teristic from Uy0 and the hypersurface, and (x0, t0) is an interior point of the hypersurface.

Therefore, there exists a neighborhood of (x0, t0) as a subset of U(x0,t0) (denoted again by

U(x0,t0)) which can be divided by the hypersurface S (Uy0) into three parts. More precisely,

U(x0,t0) = U+
(x0,t0)

⋃
U−

(x0,t0)

⋃
S (Uy0). (3.4)

where

U+
(x0,t0) = U(x0,t0)

⋂
{t > ts(y)}, U−

(x0,t0) = U(x0,t0)

⋂
{t < ts(y)}.

Consider a sequence (x̄n, t̄n) ∈ U+
(x0,t0), which is convergent to (x0, t0). Assume C−

n is the

valid segment of the characteristic emanating from yn and passing through (x̄n, t̄n), here

the assumption (3.2) is used. Then C−
n must meet S (Uy0) for n sufficiently large since

there is a unique minimizer for F (x0, t0, •), which implies that t̄n > ts(yn). This contradicts

Lemma 2.3. Thus assertion (3.1) is true.

Let

S2 = {(x, t) ∈ Rn × (0,∞)| F (x, t, •) has more than one minimizer},
S1 = {(x, t) ∈ Rn × (0,∞)| F (x, t, •) has a unique degenerate minimizer}. (3.5)

It follows from the proof of Lemma 3.1 that (x, t) is a non-differentiable point of the solution

u(x, t) for (x, t) ∈ S2 and (x, t) is a cluster point of non-differentiable points of the solution

u(x, t) for (x, t) ∈ S1. This implies each point of S1 is a cluster point of the elements of

S2. Furthermore, the set of singularity points S is a closure of S2. Then another definition

of a singularity point can be given: a point is called a singularity point if it is a non-

differentiable point of the solution u(x, t) or a cluster point of non-differentiable points of

the solution u(x, t).

The following theorem follows from Lemmas 2.1-3.1.

Theorem 3.1 The solution u(x, t) is Ck smooth in some neighborhood of (x0, t0) if and

only if there is a unique non-degenerate minimizer for F (x0, t0, •).

It is known that

R̃n = {y ∈ Rn| g(y) > inf
x∈Rn

g(x)}
is an open subset and is the union of path connected components Ri, i.e.,

R̃n = {y ∈ Rn| g(y) > inf
x∈Rn

g(x)} =
⋃

Ri. (3.6)
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Theorem 3.2 Assume g ∈ Ck and |Dg(y)| → 0 as |y| → ∞. Let Ri be the path connected

component of R̃n on which initial function does not attain its minimum. Then Si = S (Ri)

is a path connected component of the set singularity points S and never vanishes for t > ti,

where ti is the formation time of Si. Moreover, there exists one-to-one correspondence

Si ↔ Ri and S =
⋃

Si.

Proof: We have g(y) = infx∈Rn g(x) and the characteristic emanating from y has slope

DH(0) for y ∈ ∂Ri, where ∂Ri is the boundary of Ri. It follows from Lemma 2.1 that for

y ∈ ∂Ri Dg(y) is the unique non-degenerate minimizer for F (x, t, •), where x = y+tDH(0).

Note that Ri and Rj are both path connected components of R̃n, and so Ri and Rj disjoint.

Therefore, a valid segment of characteristic from Ri and a valid one from Rj(i 6= j) can

not intersect with each other.

For each y ∈ R̃n, it is known that S (y) = (xs(y), ts(y)), where

xs(y) = y + ts(y)DH(Dg(y)),

ts(y) = max{t| u(x, t) = F (x, t, Dg(y)), (x, t) ∈ C},

where C = {(x, t)|x = y + tDH(Dg(y))}. Furthermore

S (R̃n) = {(xs(y), ts(y))| xs(y) = y + ts(y)DH(Dg(y)), y ∈ R̃n}
=

⋃
S (Ri) =

⋃
Si = S,

(3.7)

where Si = S (Ri). We have Si

⋂
Sj = ∅ (i 6= j) since valid segments of characteristic

from Ri and Rj can not intersect with each other. Thus Si = S (Ri) is a path connected

component of the set of the singularity points since the singularity mapping S is continuous

and Ri is path connected.

Next we will show each path connected component Si never vanishes as t increases.

Suppose Si vanishes before t = T < ∞. Then

for each point (x, t) ∈ Πi

⋂{t ≥ T}, there exists a

valid segment of characteristic passing through (x, t),
(3.8)

where

Πi = {(x, t)| x = y + tDH(Dg(y)), y ∈ Ri, t > 0}.
We see Πi

⋂
Πj = ∅ if i 6= j since valid segments of characteristic from Ri and Rj can not

intersect with each other. Using this fact, we claim that

the valid segment of characteristic must emanate from

a point y satisfying g(y) = infy∈Rn g(y).
(3.9)

Otherwise, it follows from Lemmas 2.2 and 2.3 that the characteristic emanating from y

will meet at the singularity point (xs(y), ts(y)). This contradicts to the fact that Si is a

path connected component.
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The assertion (3.9) suggests that all valid segments of characteristics passing through

Πi

⋂{(x, t), t = T} have slope DH(0). Therefore, the valid segments of characteristics

mentioned above will cover Πi

⋂{(x, t), 0 < t < T} and therefore meet Si. This contradicts

to the fact that Si is a set of singularity points. Hence the theorem is proved.

The above result is dependent on the initial data, while it is independent of the partic-

ular forms of the equations as long as the Hamiltonian is convex. Using Theorem 3.2 we

have the following corollary.

Corollary 3.1 The domain of dependence of a point (x, t) ∈ Πi is Ri

⋂
B(x, rt), where

r = supy∈Rn |DH(Dg(y))|. The domain of influence of a point y ∈ Ri is

Πi

⋂
{(y + ξt, t) : |ξ| ≤ r}.

4 Concluding Remarks

This paper is concerned with the Hamilton-Jacobi equations of multidimensional space

variables with convex Hamiltonian. Using Hopf’s formula (I), we studied the differentia-

bility of the solutions. For any given point, we give a sufficient and necessary condition

under which the solutions are Ck smooth in some neighborhood of the point. We also

study the characteristics of the HJ equations. It is shown that there are only two kinds of

characteristics, one never touches the singularity, and the other touches the singularity in

a finite time. The sufficient and necessary condition under which the characteristic never

touches the point of singularity is given. It is also shown that there exists an one-to-one

correspondence between the path connected components of the set of singularity points and

the path connected components of the subset of Rn×{t = 0} on which the initial function

does not attain its minimum. A path connected component of the set of singularity points

never terminates at a finite time.

In the second paper [16], we will consider the regularity and global structure of the HJ

solutions with convex initial data under the assumptions that the initial function g ∈ Ck

is strictly convex with general Hamiltonian H. The solutions to the Hamilton-Jacobi

equations are given by Hopf’s formula (II) as analogue to Hopf’s formula (I). In this case,

we also obtain the regularity results on the differentiability of the solutions similar to the

ones obtained in this work. We will show that there exists a one-to-one correspondence

between the path connected components of set of singularity points and the path connected

components of the set

{(Dg(y), convH(Dg(y)))| y ∈ Rn}\{(Dg(y), H(Dg(y)))| y ∈ Rn},

where convH is the convex hull of H,

convH(x) = inf
{ m∑

i=1

λiH(xi) |
m∑

i=1

λixi = x,

m∑
i=1

λi = 1, λi ≥ 0}.
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That each path connected component of the set of singularity points never terminates at

a finite time is also proved.
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