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There has been an enormous amount of work on error estimates for approxi-
mate solutions to scalar conservation laws. The methods of analysis include match-
ing the traveling wave solutions, [8, 24]; matching the Green function of the lin-
earized problem [21]; weak W−1,1 convergence theory [32]; the Kruzkov-functional
method [19]; and the energy-like method [34]. The results on error estimates in-
clude: For BV entropy solutions, an O(

√
ε) convergence rate in L1 obtained by

Kuznetsov [19], Lucier [25] etc; For BV entropy solutions, an O(ε) convergence
rate in W−1,1 obtained by Tadmor-Nessyahu [27, 32], Liu-Wang-Warnecke [22]
etc; For piecewise smooth solutions, an O(ε) convergence rate in L1 obtained by
Bakhvalov [1], Harabetian [9], Teng-Tang [39, 42], Fan [7] etc; For piecewise smooth
solutions, an O(ε) convergence rate in smooth region of the entropy solution ob-
tained by Liu [21], Goodman-Xin [8], Engquist-Sjogreen [6], Tadmor-Tang [34, 36]
etc. In this paper, we will review some known results on error estimates and will
discuss some recent development on the convergence rates. The corresponding
methods in obtaining these results will be briefly illustrated.

1. L
1-convergence rate in BV -solution space

Consider the IVP for a scalar conservation law:

ut + f(u)x = 0 , −∞ < x < ∞ , t > 0 (1.1)

u(x, 0) = u0(x), −∞ < x < ∞ . (1.2)

We consider numerical approximations to weak solutions of the conservation law
which are obtained by (2k + 1)-point explicit schemes in conservation form

un+1
j = G(un

j−k, · · · , un
j+k) = un

j −
∆t

∆x
(f̄n

j+1/2 − f̄n
j−1/2) (1.3)

where the numerical flux f̄n
j+1/2 = f̄(vn

j−k+1 , · · · , vn
j+k) . We require the numerical

flux function to be consistent with the flux f(u).
To begin with, we consider the so-called monotone difference scheme. A con-

servative finite-difference scheme is monotone if G in (1.3) is a monotone function
with respect to all its arguments. The first result on the convergence rate of the
monotone schemes was given by Kuznetsov in 1976 [19].
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Theorem 1.1. Monotone solutions u∆x converge to BV -bounded entropy solution
u in L1 with convergence rate of order one half:

‖u∆x(•, t)− u(•, t)‖L1 = O(
√

∆x), ∆x → 0.

Kuznetsov’s approach employs a regularized version of Kruzkov’s entropy pairs:

η(u, c) = |u− c|, F (u, c) = sgn(u− c)
(
f(u)− f(c)

)
.

Here, one measures by how much the entropy dissipation rate of u∆x fails to satisfy
the entropy inequality, with Kruzkov’s regularized entropies. Following the general
convergence result of [2], we consider a family of approximation solutions, {uε},
which satisfies

∂tη(vε, c) +∇x · F (vε, c) ≤ ∂tR0(x, t) +∇x ·R(x, t) (1.4)

with

|‖R0(x, t)‖|+ |‖R(x, t)‖| ≤ Const.ε (1.5)

where the norm in (1.5) is related to the Lip′-consistency condition defined in
Tadmor [32]. Then the convergence rate proof can be given by the following: Using
the key property of symmetry of the regularized entropy pairs, ηδ = φδη, F δ =
φδF , one has

∫
x

ηδ(uε;u)dx ≤ Const.ε/δ. In addition, there is a regularization

error, ‖ηδ − η‖L1 , of size O(δ), and an L1 error estimate of order O(
√

ε) follows
(under reasonable assumptions on the L1-initial error with respect to BV data).
It can be verified that the solutions of the monotone difference schemes satisfy
(1.4)-(1.5), with vε = u∆x, which leads to the result of Theorem 1.1.

There has been a large number of paper based on the Kruzkov-functional
method, which include [25, 4] for finite difference schemes; [5] for finite volume
methods; [18] for unstructured/irregular grids; [17, 23, 30] for the relaxation ap-
proximation; [15, 16] for finite element methods; [12, 13, 20, 37, 43] for the splitting
methods.

2. L
1-convergence rate in piecewise-smooth solution space

In this section we will investigate the optimal rate of convergence in L1 in piecewise-
smooth solution space. In other words, the entropy solution u has only finitely
many discontinuities, which is the generic situation. Furthermore, for ease of ex-
position we assume in Sections 2-4 that there is only one shock discontinuity
x = X(t). The extension to finitely many shocks/rarefaction waves can be carried
out by following Tadmor-Tang [34], see also the brief discussion in Section 5.

We begin by the following observations:

• If the flux function f is linear, then the L1-convergence rate of order
O(
√

∆x) is the best possible, even if the entropy solution is piecewisely
smooth. The detail proof of this observation is provided in [38];
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• If the entropy solution is in BV -solution space, then the L1-convergence
rate of order O(

√
∆x) is the best possible, even if the flux function f is

nonlinear. The detail proof of this observation is provided in [29].

Now the natural question is what is the optimal rate of convergence for convex con-
servation laws, f ′′ > 0, with finitely many shock or rarefaction discontinuities (and
these are the only solutions that can be computed!)? In fact, many numerical evi-
dences show that approximation methods with nonlinear flux in piecewise-smooth
solution space are of higher convergence rate, see e.g. [10, 31]. Therefore, it is
of theoretical and practical implications to break down the barrier of half-order
convergence rate.

To provide a rigorous analysis for the optimal rate of convergence, we recall
the earlier result of Harten-Hyman-Lax [11]:

Theorem 2.1. Monotone scheme approximates solutions of the viscous modified
equation:

ut + f(u)x = ∆t[β(u, λ)ux]x , λ = ∆t/∆x (2.1)

where β ≥ 0, β 6≡ 0, to second-order accuracy. Moreover, monotone schemes are
at most first-order accurate in approximating the conservation law (1.1).

Theorem 1.1 indicates that a monotone scheme is closely related to the vis-
cous modified equation (2.1). Therefore, we first consider the convergence rate of
viscosity approximation:

uε
t + f(uε)x = ε(B(uε)uε

x)x , f ′′ > 0, (2.2)

uε(x, 0) = u0(x), −∞ < x < ∞ ,

where B > 0, to the corresponding conservation law:

ut + f(u)x = 0 , f ′′ > 0, (2.3)

u(x, 0) = u0(x), −∞ < x < ∞ .

For piecewise smooth solutions, an O(ε) convergence rate in smooth region of
the entropy solution was obtained by Goodman-Xin [8], where a matching method
was developed. The basic principle of the matching method is to construct an
auxiliary continuous approximation ûε by replacing all shock jumps in the entropy
solution u at each fixed time t with their corresponding traveling wave solutions
Uε (see Figure 1):

ûε = u(x, t)−H
(
x−X(t);u−(t), u+(t)

)
+ Uε(x−X(t);u−(t), u+(t)),

where x = X(t) is the shock curve, u±(t) = u(X(t) ± 0, t), H is the Heaviside
function, and Uε(x;u,u+) is a traveling wave solution for the viscosity equations
with u± as infinity boundary conditions.

The main reason for constructing the auxiliary function ûε is that unlike
the entropy solution u it is continuous. By using the contraction property of the
viscous conservation equations with source terms we can show that the L1-error
of ûε − uε is bounded by O(ε + ε| ln ε|). It can also be shown that the L1-error of
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Figure 1. Illustration of u and ûε.

u− ûε is bounded by O(ε) by using the properties of the traveling wave solution.
The detail proof can be found in Tang-Teng [39] in which the following theorem
is obtained.

Theorem 2.2. If the entropy solution u of (2.3) has finitely many shock/rarefaction
discontinuities, then the error between u and the viscous solution uε of (2.2) sat-
isfies

|u(• , t)− uε(• , t)‖L1(R) = O(ε| ln ε|) .

Moreover, the above error bound can be improved to O(ε) if there is no initial
central rarefaction wave and no new formed shock in u.

It is expected that the results in Theorem 2.2 can be extended to the mono-
tone difference schemes, by following the similar proof technique used in [35, 39].
In fact, some related results have been obtained: Teng-Zhang [44] provided an O(ε)
rate for monotone schemes for piecewise constant solutions; Fan [7] established the
same rate for Godunov scheme. In Wang [45], it is shown that the O(ε| ln ε|) error
is transient at new shock-formed time and also persists along centered rarefaction
edges.

3. Pointwise error estimate

Introduce the weighted distance function: (i): φ(x) ∼ |x|α , |x| � 1, (ii): xφ′(x) >
0, x 6= 0, (iii): φ(x) → 1, |x| → ∞ , where α ≥ 1 is a finite constant. The constant
α is called power of the weighted distance function φ, whose value is the indicator
of the width of the boundary layer.
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3.1. Viscosity approximation

We define the weighted error as following

E(x, t) = φ(x−X(t))(uε(x, t)− u(x, t)) .

The weighted error function satisfies E(x, t) = O(ε) for |x −X(t)| ≤ Cε. We will
consider the magnitude of E in the region away from the shock wave: |x−X(t)| ≥
O(ε). To this end, we need a transport equation for the weighted error function
and will use the maximum principle. It can be verified that the weighted error
function satisfies a transport equation:

Et + h(x, t)Ex − εExx = p(x, t)E + q(x, t)ε

where the coefficient functions are defined by

h(x, t) = f ′(uε) + 2εB(uε)
φ′

φ
q(x, t) = B′(uε)u2

xφ + B(uε)uxxφδ − B(uε)εφ′′

p(x, t) =
{

(f ′(uε)−X ′(t)) + 2εB(uε)
φ′

φ
− εB′(uε)

}φ′

φ
− f ′′(•)ux .

It is known that the derivatives ux, uxx are bounded away from the shock curve.
Therefore, it is easy to see that q is bounded by a constant (independent of ε) for
|x − X(t)| ≥ O(ε). The key step is to upper bound the coefficient function p. In
order to do so, we use

• The Lax geometrical entropy condition, and
• A non-optimal pointwise error estimate obtained by using the so-called

Lip+-stability theory developed by Tadmor [32].

It was shown in Tadmor-Tang [34] that if φ(x) ∼ min(|x|, 1), i.e. α = 1 then there
exists a constant D > 0 independent of ε such that p(x, t) is upper bounded for
|x−X(t)| ≥ Dε. These results, together with the maximum principle, lead to the
following pointwise error estimate (with optimal rate of convergence).

Theorem 3.1. If the entropy solution of the convex conservation law (2.3) has only
one shock discontinuity S(t) = {(x, t)|x = X(t)}, then the following error estimate
holds:

• For a weighted distance function φ, φ(x) ∼ min(|x|, 1),
|(uε − u)(x, t)|φ(|x−X(t)|) = O(ε) .

• In particular, if (x, t) is away from the singular support, then

|(uε − u)(x, t)| ≤ C(h)ε , dist(x, S(t)) ≥ h.

The above pointwise error estimates are sharp enough to recover (an almost)
first-order, O(ε| ln ε|) L1-error estimate, see, e.g. [34]. It is noted that under the
framework of [34], we can convert any non-optimal local estimate, such as

|uε(x, t)− u(x, t)| ≤ Cεγ , for |x−X(t)| ≥ εγ (3.1)

with 0 < γ < 1, to the optimal pointwise error bound for the viscosity approxima-
tion.
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3.2. Finite-difference methods

We follow the presentation in [28] and for simplicity we consider the three-point
schemes of the following form:

vn+1
j = vn

j −
λ

2

(
f(vn

j+1)− f(vn
j−1)

)
+

1

2

(
Qn

j+ 1

2

(vn
j+1 − vn

j )−Qn
j− 1

2

(vn
j − vn

j−1)
)
.

Thus, three-point schemes are identified solely by their numerical viscosity coeffi-
cient, Qn

j+ 1

2

= Q(vn
j , vn

j+1). The schemes of Roe, Godunov and Engquist-Osher are

canonical examples of three-point monotone schemes, associated with increasing
amounts of numerical viscosity coefficients.

Similar to the continuous case, we introduce some notations: Error function
en
j = vn

j − un
j with un

j = u(xj , tn) and Weighted error function En
j = φn

j · en
j , where

φn
j = φ(xj − X(tn) . It can be shown that if (xj , tn) is of O(∆x) distance away

from the shock curve, then the following estimate holds:

en+1
j = h1e

n
j−1 + h2e

n
j + h3e

n
j+1 + Sn

j +O(∆x2) (3.2)

where Sn
j satisfies |φn+1

j Sn
j | ≤ C∆x‖En‖∞ + O(∆x2). In the equation (3.2), we

have used the notations hk = hk(vn
j−1, v

n
j , vn

j+1), h̃k = hk(un
j−1, u

n
j , un

j+1).
We now consider two cases. The first one is the error control in small zone near

the shock. In the small zone near the shock, we need to use the fact |φ(x)| ∼ O(x)
to control the error, since en

j is essentially O(1) in this small zone. It can be shown
that if |xj −X(tn)| ≤ ∆xγ , with a constant γ ≥ 1, then

|En+1
j | ≤ (1 + C∆t)‖En‖∞ +O(∆x2) .

The second case is the error control away from the shock, namely the estimate of
the discrete weighted error in the region |xj−X(tn)| ≥ ∆xγ . It can be shown that
in this case we have

h1(u
n
j−1, u

n
j , un

j+1)− h3(u
n
j−1, u

n
j , un

j+1) =
∆t

∆x
f ′(un

j ) +O(∆xγ) .

It can be further shown that

|En+1
j | ≤

(
1−∆tX ′(tn)

(φ′)n
j

φn
j

+ C∆x

)
‖En‖∞

+∆x
(φ′)n

j

φn
j

(h1 − h3)‖En‖∞ + |φn+1
j Sn

j |+O(∆x2).

Combining the above two results gives

|En+1
j | ≤ (1 + C∆t)‖En‖∞ +

(φ′)n
j

φn
j

(
f ′(un

j )−X ′(tn)
)
∆t‖En

j ‖∞ +O(∆x2).

Using similar tricks as used for the viscosity approximations, we can handle the
term involving (f ′(un

j ) − X ′(tn)) above. As a result, we can bound En+1
j in the

region away from the shock curve:

|En+1
j | ≤ (1 + C∆t)‖En‖∞ +O(∆x2), |xj −X(tn)| > ∆xγ .
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Combining the estimates within and away from the shock curve, we obtain the
following Gronwall type inequality

‖En+1‖∞ ≤ (1 + C∆t)‖En‖∞ + C∆x2,

which leads to the following result.

Theorem 3.2. Assume that the entropy solution has only one shock discontinuity
S(t) = {(x, t)|x = X(t)}. Let v∆(x, t) be the piecewise linear interpolant of the
grid solution. Then

|(v∆ − u)(x, t)|φ(x−X(t)) = O(∆x) ,

|(v∆ − u)(x, t)| ≤ C(h)∆x , dist(x, S(t)) ≥ h.

4. Regularity of the approximate solution and superconvergence

The results list above are concerned with the convergence of the approximate
solution itself, essentially nothing is obtained for its derivative. In this section, we
will investigate the convergence of the first derivative of the approximate solutions.
By properly choosing a weighted distance function φ, we will obtain an O(ε)-bound
for e = uε − u in a weighted W 1,1 space.

Theorem 4.1. Assume that the entropy solutions of the scalar conservation laws
satisfy a weak pointwise error estimate (3.1). Then there exists a constant C in-
dependent of ε such that∫

R

φ(x−X(t))
(
|e(x, t)|+ |ex(x, t)|

)
dx ≤ Cε . (4.1)

The proof of the above theorem is based on the standard energy-type method
and can be found in Tang-Teng [40]. For convex conservation laws, the assumptions
of the weak pointwise-error estimate (3.1) is verified in for example Tadmor [32].
Therefore, one immediate application of our W 1,1-convergence theory is that for
convex conservation laws we indeed have W 1,1-error bounds for the approximate
solutions to conservation laws. Furthermore, the result (4.1) implies that

‖uε
x(•, t)− ux(•, t)‖L1(R\[X(t)−h,X(t)+h]) ≤ C(h)ε ,

for any given h > 0. As a consequence of the above inequality, the W 1,1-estimate
recovers the O(ε)-pointwise error bound obtained in the last section, i.e. Theorem
3.1. The detail proof of this consequence can be also found in [40].

The results in Theorem 4.1 suggest that if a weak pointwise-error estimate can
be established for the nonconvex conservation laws, then the optimal pointwise-
error bounds can be obtained for the nonconvex case. So far, almost no pointwise-
error estimates have been obtained for nonconvex conservation laws.

Assume that the numerical scheme (1.3) is monotone with smooth numerical
flux. Then the results of Theorem 4.1 can be extended to the monotone schemes.
Furthermore, the O(∆x) pointwise-error bounds for numerical solutions away from
the shock curves can be established. The detail proof can be found in [41].
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5. Concluding remarks

The idea described in Sections 2-4 can be easily extended to the case that the en-
tropy solution of (2.3) has finitely many shocks, i.e. S(t) := {(x, t) |x = Xk(t), 1 ≤
k ≤ K}. In this general case, we define the weighted distance function as

ρ(x, t) =

K∏

k=1

φ
(
|x−Xk(t)|

)
.

The pointwise error estimates similar to those in the theorems in Sections 2-4
can be obtained by considering the weighted error function E(x, t) = (uε(x, t) −
u(x, t)) ρ(x, t).

Due to the limitation of space, we have neglected many important contribu-
tions to the topic of convergence analysis from other people, most notably are the
work done on finite volume methods, relaxation schemes and kinetic schemes (e.g.
[3, 5, 14, 26, 46]). Some results on these topics can be found in a recent lecture
notes of Tadmor [33].
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