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Abstract

Numerical solutions are presented for steady two-dimensional motion within a circular cylinder generated by
fluid injecting radially over one small arc and ejecting radially over another arc. These solutions are based on
a mixed finite-difference pseudospectral method. Previous calculations were able to obtain convergent results
only for a range of Reynolds numbers from Reé to Re= 20. The main object of this study is to extend the
Reynolds number range for reliable solution, particularly with regard to the flow patterns, based on a pseudospectral
approacho 2000 IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

There are many differences between the external and the internal problems. For example, no solution
of the external problem exists at zero Reynolds number (Stokes’ paradox), but this is not true of the
interior problem. These internal flows may occur through the rotation of part (or all) of the cylinder wall
(moving-wall problem) or fluid entering and leaving the cylinder normal to the wall (inflow—outflow
problem). These problems are of interest physically as they are representative of two distinct types of
motion which occur frequently in practice (see Mills [10] and the references therein). They were also
investigated theoretically and numerically by several researchers (see, e.g., [1,3,9,11]).

The motion inside a circular geometry is also a good model problem for testing numerical methods.
It involves non-smooth boundary conditions, co-ordinate singularity (pole conditions), and stabilization
for large Reynolds numbers. In spite of several numerical methods and computations for the interior flow
problems, accurate results have been obtained only for small Reynolds numbe2BRreThe problem
under consideration in this work is the inflow—outflow problem. The first attempt at this fluid motion was
made by Rayleigh [11] who considered only slow motion. There have been also several approaches for
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solving the inflow—outflow problem numerically [3,4,10,12], which all employed sequential iterative
procedures. In using the iterative methods, difficulties arise in determining boundary values of the
vorticity. In [3,4,10,12], the boundary vorticity has been determined by applying a constraint condition
derived from some integral representations. Convergent solutions have been obtained for small Reynold:s
numbers only. In this work, we will employ Newton’s method rather than iterative methods in solving
the discretized system, which avoids determining boundary values of the vorticity. The direct use of
Newton’s method on two-dimensional numerical approximations have been proved very successful (e.g.,
see [5]).

The main disadvantage in using Newton’s method is that it requires large amount of computing
time and computer memory. This had led many researchers to examine carefully the spectral method
as a useful means for obtaining accurate solutions at a reasonably small number of a grid points.
With spectral methods the relatively coarse grids allow very time- and memory-effective calculations.
Although solutions to the present problems are nonsmooth, our numerical experiments suggest that
spectral convergence in the radial direction can be obtained. Therefore, we will use a finite-difference
approximation in the transverse direction and a pseudospectral method in the radial direction. Using this
approach we are able to obtain accurate numerical solutions for high Reynolds numbers with practical
computing time and computer memory.

2. Mathematical formulation

We shall consider the formulation for the general case of the inflow—outflow problem within the
circular boundary as shown in Fig. 1. Two specific cases are considered numerically, namely the case
of symmetrical flow withe = 0 ande = /30 and the asymmetrical flow with= /8 ande = 7/32.

In this problem, the fluid is injected normally into the circle over an arc CD of lengtémna flows out at
6 = « over the arc AB of the same length as CD. The radiug the circle, the velocityy and half the
flow aeU across the arc CD (or AB) are used to make the variables dimensionless.

Y
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Fig. 1. Inflow—outflow problem.
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Taking plane polar coordinates, 6), the dimensionless radial and transverse velocity components
(v, vg) and scalar vorticity are defined by

_1a¢ . oy 10v, Qv vy
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where ¢ is the streamfunction. From (1) and the Navier—Stokes momentum equations, the governing
equations fory and¢ are well-known to be
Re/oy 0¢ 9y 0¢
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where Re= Uae/v is the Reynolds number of the motionjs the kinematic viscosity coefficient of the
fluid andA = 9,, + 10, + r2044.

The boundary conditions for the present problem (see Fig. 1) are that; &t

r

@ —a)/e, fora—e<O<a+te,

_ )1 fora+e<0<m—s,
v=r® = (m—0)/e, form—e<O0<m+e, (3)
-1, form+e<0<2r+a—e¢,
0
a—wzo for0< o < 2r. (4)
,

The governing equations (2) are singularr-at 0. Some special treatment at this point is required for
finite difference or pseudospectral approximations. It can be shown that spectral accuracy is obtained if
the (standard) pseudospectral method is applied to such coordinate-singular problems with suitable pole
conditions (e.g., see [2,6]). It is assumed that at0 the stream function and vorticity are smooth and
unique (single valued). This, together with the Navier—Stokes equations (2) and Taylor expansion, yield:
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They are used as numerical boundary conditions=aD. Fora = 0 these conditions can be significantly
simplified for the case of symmetrical flow due to the symmetry. In this case, we have

¥(0,0)=0 and ¢(0,0)=0 for0<6 < 2. (5)

3. Numerical methods

We use central finite differences in thedirection and a pseudospectral (Legendre collocation) method
in ther-direction. Letp;, 0<i < N, be a set of Legendre—Gauss—Lobatto pointg-eh 1], whereN, is
a positive integer. We define transformed collocation points in-tdgection as; = (1 + p;)/2. In the
6-direction grid points are defined as= jhg, hy =27 /Ny, 0< j < Ny. Denote the approximations of
Y (r;,0;) ande(r;, 6;) by ¥; ; and¢; j, respectively, and define

Nr Nr
Vi)=Y YiLi(r), i)=Y & iLi(r),  0<j <Ny, (6)

i=0 i=0
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whereL;(r) are the Lagrange basis functions associated Wj;}f';o. Then discretizing the governing
equations (2) by using central differences in thelirection and the pseudospectral method in the
r-direction at the interior grid points gives: at r;,

® 1d a(r) — 205 (r) +
(5247 5w+ D=2 IVR0 gy, ™
6
¢ 1d Cjpa(r) —2¢;(r) +&-a(r)
<ﬁ+?d_r)§j(r)+ . réhg =
_Re[Ya(r) —yya(r) dg; - dyry g (r) — §-a(r)
=7 Dhy a 2h, ’ (®)

forl<i< N, —1,0<j<Ny— 1.

For high Reynolds numbers it is often required for numerical schemes to have some type of upwind
features in order to stabilize the computation. Here we employ an upwind treatment for the pseudospectral
approximation in the-direction. This technique has been used successfully by Huang and Sloan [7] for
solving a class of singular perturbation problems.

Define the approximation of the velocity componepas (v,); j = (¥;1(ri) — ¥;—1(r:))/2r;hg and
let

N,—1 N,
G =" GiLir), )= ¢,Lir),  0<j< N, ©)
i=0 i=1

whereL, (r) are the Lagrange basis functions associated {Nmﬁ’;gl, L;(r) are associated wit{rk},’f;l.
Then replace the terrgus; /dr)(r;) on the right-hand side of Eq. (8) by

& i, it 020,

d—](ri) = gf (10)
r .

i(l’i), if (v,);; <O.

dr

This treatment has been used in all calculations presented in this paper and it is found that this technique
stabilizes the computation. It is especially useful for the case of asymmetrical flow with high Reynolds
numbers.

The system consisting of (7), (8) and related boundary conditions is nonlinear and is solved by
Newton’s method with continuation in Re.

4. Numerical results

We shall investigate two typical cases of the inflow—outflow problem as described in Fig. 1, the
symmetrical flow with(e, ¢) = (0, 7/30) and the asymmetrical case wiil, ¢) = (7 /8, 7 /32). We first
consider the symmetrical flow problem which has been investigated numerically in [3,4,12].

To examine the accuracy of the numerical method described in the previous section and its capability
of handling the coordinate singularity mt= 0, numerical experiments have been carried out for the flow
with Re= 0 where the analytical expression of the solution is available [10]. First wé,fand consider
the accuracy of the method for a couple of valuevpf A relatively largeN, (N, = 140 is chosen so



W. Huang, T. Tang / Applied Numerical Mathematics 33 (2000) 167-173 171

Fig. 2. Streamlines for the symmetrical flow with (a) Rel00, (b) Re= 200, (c) Re= 400, (d) Re= 600,
(e) Re=800 and (f) Re= 1000.

Table 1
Values foryr, ¢ and coordinates at the centers of the primary vortex (with subscript 1)
and secondary vortex (with subscript 2)

Re Y1 1 x1 V1 V2 §2 x2 y2
100 1554 —-12306 0337 Q461 Q993 1401 -0479 0653
200 1449 -10739 0384 Q452 Q971 2074 -0.440 Q537
400 1324 —-8.3824 Q0441 Q438 Q965 1731 —-0.429 Q522
800 1214 —-6.467 Q477 Q431 Q972 1153 -—-0.408 0529
1000 1186 —5.682 0481 Q432 Q975 Q0984 -0.402 Q530

that the discretization error in thfedirection is sufficiently small. It is observed that spectral accuracy is
indeed achieved and the numerical results with a few collocation points are fairly accurate. Next we fix
N, = 24 and varyN,. As expected the convergence order of the central difference scheme is about 1.8
which less than two due to the nonsmoothness of the boundary conditierrs &t Numerical results
also suggest that the grid sizes in théirection should be chosen such that no grid points coincide with
the sharp edges. When the sharp edges are grid points the numerical errors become larger.

The streamlines for the cases abZ Re < 20 obtained withN, = 24, N, = 140 are in excellent
agreement with the published results. The streamlines obtained withAgrid 40 and Ny = 160
for higher Reynolds numbers 180 Re < 1000 are shown in Fig. 2. It is observed that a secondary
vortex appears around Re100. The secondary vortex becomes stronger until about R@0 and is
subsequently getting weaker Asncreases. This can also be seen from Table 1 where the values of the
stream function, vorticity and coordinates at the primary and secondary vortex centers are listed. Table 1
also suggests that positions of the vortex centers tend to be independent of Re as the Reynolds numbe
increases.
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Fig. 3. Streamlines for the asymmetrical flow with (a) ReL00, (b) Re= 200, (c) Re= 400, (d) Re= 600,
(e) Re=800 and (f) Re= 1000.

In order to ensure tha¥, = 160 is larger enough for higher Reynolds numbers, results fee R@0
and 600 with different values df, are computed. It is noticed that the changes figyn= 160 to 200
are very small.

Finally, we consider asymmetrical flow with = 7/8 and ¢ = 7/32. This problem has been
investigated by Mills [10] and Dennis et al. [4] for Re20. Again, our results for Rg 20 are in good
agreement with those given in [4]. They are also comparable with those presented by Mills [10] except
for the case of Re= 2.5. In this case, our result consolidates the observation of Dennis et al. who found
two regions of separation rather than one as shown by Mills.

The streamlines obtained witlV,, Ny) = (40, 160 for 100< Re< 1000 are shown in Fig. 3. The
values of the stream function, vorticity and coordinates at the vortex centers are listed in Table 2. It is
observed that the flow patterns for large values of Re are almost independent of the Reynolds numbers.

The full spectral methods in bothandé directions, based on spectral element techniques, can be
found in [8].
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Table 2

Values fory, ¢ and coordinates at the centers of the primary vortices (the upper one with
subscript 11 and the lower with 12) and secondary vortices (the upper one with subscript 21
and the lower with 22) for the asymmetrical flow

Re V11 {11 X11 y11 Y12 {12 X12 y12

100 1501 -14509 (0222 0583 —-1.647 11111 Q400 -0.318
200 1364 —12288 (0265 0586 —1532 9763 0446 —0.299
400 1279 —-9.398 0297 Q590 —-1.394 8345 0507 -0.264
800 1182 —-6.370 Q0304 0596 —-1.266 6710 0564 -0.226
1000 1157 -5513 Q305 Q600 —1231 6198 0580 -—0.215

Re V21 {21 x21 y21 V22 {22 X22 Y22

100 Q993 1609 —0.520 0646 —0.991 —1.399 -0.473 -0.624
200 Q976 2229 —-0.471 Q549 —0.966 —2.047 —-0.441 —-0.506
400 Q974 1765 —-0475 0524 —0.957 —-1.697 —-0.406 —-0.502
800 0981 1173 —-0.494 0514 -0961 —-1.135 —0.331 -0.518
1000 0984 0996 -0.496 0514 —-0.964 —-0.979 -0.307 -0.521
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