
IMA Journal of Numerical Analysis (1993) 13, 93-99

A note on collocation methods for Volterra integro-differential
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Spline collocation methods can be used to solve Volterra integro-differential
equations with weakly singular kernels. In order to obtain optimal convergence
behavior, collocation on suitably graded meshes was considered by H. Brunner
[1]. This work extends his results to more practical values of the grading
exponent.

1. Introduction

This short note is concerned with collocation approximations for Volteira
integro-differential equations (VIDEs)

y'(t)=f(t,y(O)+l\t-s)-*k(t,s,y(s))ds, teI:=[0,T], (1.1)
JQ

with 0< a< 1, and with given initial condition y(0) = y0. For ease of exposition
the linear counterpart of (1.1),

r> t-s)-aK(t,s)y(s)6s, tel, (1.2)

will be employed in the analysis of the principle properties of the collocation
approximations; the extension to nonlinear equations is straightforward (cf. [1,
p. 225]).

High-order numerical methods for VIDEs with weakly singular kernels may be
found in [1,2,6,7,8]. In this note we shall consider collocation methods for
VIDE (1.1), based on Brunner's approach [1]. The following method and
notation were introduced in [1]. Collocation methods generate, as approximations
to the solution of (1.1), elements of the polynomial spline space

S<»XZN) := {u e C(I) : u |a. := un e nm, 0 *£ n « N - 1},

associated with a given mesh sequence FIN :0 = to<ti<---<tN=T, N^l, of
the interval /. Here, nm is the set of (real) polynomials of degree not exceeding m
(with ms*l), an := [tn, tn+l] (O^n^N-l), and ZN := {tn : 1 =sn s£7V- 1}. In
other words, S(£\ZN) is the space of piecewise continuous polynomials of degree
m with (possibly) jump discontinuities in the first derivative at the interior points
ZN. The quantity h,h = max {hn := tn+x - ( n , 0 « n « A / - l } , is often called the
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94 TAO TANG

diameter of the mesh sequence TIN. If hn = T/N for all 0«sn =e N — 1, then the
grid FIN is called a uniform mesh.

The desired approximation to y is the element u e S%\ZN) satisfying

u'(t)=f(t,u(t))+f\t-s)-ak(t,s,u(s))ds, teX(N), (1.3)
Jo

with

where {cj}JLi are collocation parameters. For the linearized VIDE (1.2), the
collocation equations (1.3) can be written as

u'(t) = a(t)u(t) + b(t) + I (t - s)-"K(t, s)u{s) ds, t e X(N). (1.4)
Jo

If the mesh points {tn}".0 are given by

(O^n^N), (1.5)

then nN is called a graded mesh; and the grading exponent r will always satisfy
rs=l.

Brunner [1] considered the above collocation methods for VIDE (1.1). He
found that the use of a uniform mesh leads, due to the nonsmooth nature of the
exact solutions, to convergence of order less than one, regardless of the degree of
the approximating spline functions. However, if a graded mesh of the form (1.5)
with r = m/(l — a) is used, then optimal convergence behavior can be obtained.
In his work he also points out that the use of graded meshes, with the grading
exponent m/(l - a), has a practical limitation since the initial stepsize becomes
very small as N is increased. As an example, if we assume that m = 4 and a = \,
then we have to start the collocation method on a subinterval whose length is of
order N~8. It is obvious, even for moderate values of N, that this may create
serious round-off errors in subsequent calculations. Moreover, if a—*1—, then
the value of r used in [1] tends to infinity which prevents one from obtaining
meaningful approximations for graded meshes, even when working in double or
extended precision.

In this note, we shall show that if r is slightly greater than m/(2 - a) and if
ueS%XZN) is the collocation solution corresponding to the graded mesh (1.5),
then ||>> - M H . = O(N~m) and y'{t) - u'(t) = O(N~m) if t is away from the origin.
The grading exponent suggested in this work is smaller than the one given in [1].
For the example mentioned above {a = { and m=4) , the initial stepsize is of
order about N~21 (compare A/"8 given by [1]). Moreover, for any a e (0, 1), we
have m/(2 — a)<m. Hence we can use a graded mesh even when a is very close
to 1.
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COLLOCATION METHODS FOR VOLTERRA EQUATIONS 95

2. Main results

The main results of this section can be established using arguments similar to
those used in [1]. The only modification needed will be an application of the
following lemma in place of Lemma 3.3 of [1].

LEMMA 1 Let m 3= 1 and 0 «/* =£ m + 1. If the sequence of points {*„} defines a
graded mesh, then for any s s* 1,

(m+i)|-r) (lssissAO, (2.1)
( m + 1 ) r y ) (l*£i«A0, (2.2)

where y := — r(2 — a) + m + 1.

Proo/. Since r, = iTATr, it follows that

hi = r/+1 - /, = iTAr r[(l + r ' ) r - 1] < r2r-lTir-lN-r

for 1 »s i «s N - 1. Thus we obtain, for 0 =£ \i =s m + 1 and s ss 1, that

fc«+i/j(j-«)-MSQ-«JV»-(».+i) (2.3)

where C is a constant independent of N and

6 := -r[m + 1 + s(2 - a) - /z] + m + 1. For 0 =£ n =£ m + 1 and s 5= 1,

0 =£ -r[m + 1 + (2 - a) - (m + 1)] + m + 1 =s - r (2 - o-) + /n + 1 = y.

Noting that

we can obtain (2.1) by combining (2.3) and (2.4). A similar proof technique
yields (2.2). •

We shall estimate the error function e(t) :=y(t) — u(t) and its derivative e'{t).
The restriction of e to the subinterval on, O^n^N — 1, will be denoted by en.

THEOREM 1 Let the functions a, b and K in (1.2) be m-times continuously
differentiable functions, and assume that b and K do not vanish identically. If
ueS^,\ZN) is the collocation approximation defined by (1.4), and if the
underlying mesh sequence TIN consists of graded meshes of the form (1.5), with
grading exponent r, r>m/(2 — a), then for any collocation parameters {cy} with
0 < Cj < • • • < cm ̂  1, the resulting error e := y — u satisfies

(i) \\e\U = O(N-m), (2.5)

(ii) e:(0 = o(^-(-J ), {l*n*N-l), (2.6)

(iii) e&t) = O(N-«1-a>). (2.7)

Proof. Let C denote a positive constant, independent of N and h, possibly with
different values at different places. By using the same procedure and the same
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96 TAO TANG

notation as [1] (pp. 226-233) we can obtain

Wno\^2 W,h + Chl-+ 2hT+1 \R,(1)\, l^n^N-1, (2.8)
/-o /-o

\\Pn\\i*Ch"fl\\pi\\+h«Zn, l^n^N-1, (2.9)
/-o

(see (3.13) and (3.18) of [1]), where

|K,(1)| « C max {f^""*-"; 1 =£s *£m, 0 « /* « m + 1}. (2.10)

Using Lemma 1 we can show that the last term of (2.9) is to be bounded by
0(W~ (m+1)+r>r r), with y = - r (2 -o r ) + m + l < l . Then a result of [1, p. 232]
gives

\\Pn\\x = O{hnzn) = O(N-(m+^n-<). (2.11)

Since y<\, (2.8), (2.10), (2.11) and Lemma 1 lead to

IA.ol « c " j N~im+1)+rrv + Chi-" = O(ATm). (2.12)
/ - 1

The above estimates (2.11)-(2.12) and (3.7)-(3.8) of [1, p. 228] lead to
(2.5)-(2.7). D

Theorem 1 suggests that if the grading exponent r is greater than m/(2— a),
then we can obtain the optimal convergence rate for the error function e itself. It
can also be seen from (2.6) that e'Jj) = O(N~m) if t is away from the origin.
Moreover, by setting m = 1 in Theorem 1 we can obtain the following results.

COROLLARY 1 Let the functions a, b and K in (1.2) be continuously
differentiable in their corresponding domains, and assume that b and K do not
vanish identically. If u € S\°\ZN) is the collocation approximation defined by
(1.4), and if the underlying mesh sequence 77^ is a uniform mesh, then for any
choice of a collocation parameter c, e [0, 1], the resulting error e := y - u satisfies

(i) ||e|L = O(Ar'), (2.13)

(H) e'n(t) = o{N-l{^Y), (l*n*N-l), (2.14)

(iii) e;(0 = O(N-<'->). (2.15)

The following theorem is concerned with collocation in the space S(^{Zn), with
m 5= 2, using a uniform mesh. It can be established in a similar way to the proof
of Theorem 1. Dixon [4] shows that, away from the origin, the error in product
integration and collocation schemes for second-kind Volterra integral equations is
of order 2 - a. The following theorem can also be obtained by a similar proof
technique to that given in [4].

THEOREM 2 Let the functions a, b and K in (1.2) be subject to the conditions
stated in Theorem 1. If ueS(°\ZN), m > 2 , is the collocation approximation
defined by (1.4), and if the underlying mesh sequence TIN is a uniform mesh, then
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COLLOCATION METHODS FOR VOLTERRA EQUATIONS 97

for any choice of collocation parameters 0 ̂  cx < • • • < cm =s 1, the resulting error
e := y — u satisfies

(i) IMI- = O(AT(2—'), (2.16)

(ii) e'n(t) = o(N-v-a) + N-m("y+m '), ( l«n« /V- l ) , (2.17)

(Hi) ei(0 = O(N-(1-")). (2.18)

Theorem 2 suggests that if the mesh sequence /I^ is uniform and m > 2, then
for any choice of the collocation parameters {c,} the global convergence rates of
collocation approximations are

\\e\U = O(N-^~a\ |k ' | l- = O(7V-(I-ff)). (2.19)

Brunner [1] presented some numerical results for (1.2) for m = 2 and a = \,\ and
§. His numerical results, obtained by using a uniform mesh, give convergence
rates of ||e||» as l-65(a = ^), l-47(a = \) and l-29(a = §); they are in good
agreement with the theoretical estimate (2.19) (convergence rate 2 — a). Also,
the numerical calculations give the convergence rates for ||e'||« as 0-65(<* = ^),
0-48(ar = 2) and 0-31(or = §); they are also in good agreement with the theoretical
estimate (2.19) (convergence rate 1 - or).

3. Numerical example

For numerical verification of the results stated in Section 2, we consider

(t-s)-y(s)ds, y(0) = 0, O^t^T,

with a{t) =5 — 1, A = - 1 , and with b(t) chosen so that y{t) = t2'". This equation
was tested in [1] in which a detailed description of the discretization of the
collocation equations (1.3) and (1.4) was provided.

The grading exponents used in our calculations are rx = 1 (uniform mesh),
r2

 = m/(2— a) + i (suggested by this work) and r3 = m/(l — a) (suggested by
[1]). The numerical results are obtained with m = 3 and with the collocation
parameters cx = 0-1, c2 = 0-3 and c3 = 0-5.

Firstly we consider the case when a is not too close to 1. In Table 1 we list the
errors, ||e||», and the computed rates of convergence for a = 0-5 and T = l. The

TABLE 1
Errors and convergence rates with a = 0-5 and T = 1: \\e\\e,

r = r, r = r2 r = r3

N ||e|U rate ||e|U rate | M | . rate

10
20
40
80

1-69D-3
5-88D-4
2-090 - 4
7-46D - 5

1
1
1

•52
•49
•49

M I D - 4
1-53D-5
2-07D - 6
2-72D - 7

2-
2-
2-

86
89
93

8-54D - 4
9-20D - 5
1-06D-5
1-27D-6

3
3
3

•21
•12
•06
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98 TAO TANG

TABLE 2
Errors and convergence rates with a = 0-5 and T = 1: \e(T)\

, 2

|c(7)| rate \c(J)\ rate |e(T)| rate
10
20
40
80

6-66D - 5
1-98D-6
4-83D - 6
2-41D-6

6-
— 7-
— 8-
— 9-

35D-5
07D-6
29D-7
99D-8

3-
3-
3-

17
09
05

8-54D-4
9-20D - 5
106D - 5
1-27D-6

3
3
3

•21
•12
•06

TABLE 3
Errors and convergence rates with a = 0-5 and T = 1: | e ' ( r ) |

r = r, r = r2 r = r3

N \e'{T)\ rate \e'(T)\ rate \e'(T)\ rate

10
20
40
80

9-81D-4
304D-4
9-94D - 5
3-37D-5

1
1
1

•69
•61
•56

3-45D-4
3-66D - 5
4-13D-6
4-85D-7

3
3
3

•24
•15
•09

7-20D - 3
8-52D - 4
101D-4
1-22D - 5

3-08
3-08
3-05

TABLE 4
Errors with a = 0-9 and T = 5: ||e|U and \e(T)\

N \\e\U HT)\ ||e||. |e(r)| ||e||. \e(T)\

10 3-62D-2 1-40D-4 419D-2 419D-2 8-24D - 1 8-24D - 1
20 114D-2 1-50D-5 606D-5 2-70D-5 3-72D - 1 3-72D - 1
40 403D-3 5-48D-6 909D-6 6-29D-6 3-94D+0 3-94D+0
80 1-56D-3 218D-6 1-32D-6 5-85D-7 1-20D +1 1-20D +1

convergence rates predicted in Theorems 1 and 2 for the error function are
confirmed by Table 1. It can also be seen that the numerical results obtained by
using the grading exponent r2 as suggested by the present work are more accurate
than those obtained by using r, and r3. For the derivative of the error function
this work suggests that high orders of convergence may be observed at the right
endpoint of the interval of integration. It was pointed out by Brunner [1] that in
many practical applications one is more interested in generating a numerical
approximation which is very accurate at the right endpoint t = T. In Tables 2 and
3 we list the errors \e(T)\ and |e ' (r) | and the corresponding computed rates of
convergence, respectively. The convergence results of Theorems 1 and 2 for the
derivative of the approximate solution are reflected in Table 3. Moreover, both
Tables 2 and 3 indicate that numerical results at t = T obtained by using the
grading exponent r2 are much more accurate than those obtained by using r, and
'3-

Finally we look at the convergence behavior of the collocation methods with
graded grids when a is close to 1. For this purpose we consider the case a = 0-9
and T = 5. Table 4 shows the errors ||e||oo and |e(T)|. It can be seen from this
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COLLOCATION METHODS FOR VOLTERRA EQUATIONS 99

table that graded meshes with the grading exponents given in Theorem 1 lead to
very accurate numerical solutions. However, solutions with r = r3 are divergent,
because the initial stepsizes used in the calculations are too small.

4. Condusion

This note is concerned with collocation methods for Volterra integro-differential
equations with weakly singular kernels. By choosing a smaller grading exponent
than that suggested in [1], we are able to obtain optimum rates of convergence
while overcoming the practical problems encountered using previous grading
exponents. The grading exponent suggested by this note is not greater than m
(the polynomial degree) which is independent of a. This is in contrast to the
theories of spline collocation methods for Volterra integral equations of the
second kind. The main disadvantage of using a graded mesh to solve Volterra
integro-differential (or integral) equations with weakly singular kernels is that
O(N2) instead of O(N) quadrature weights have to be computed for the kernel
(t-s)~a. This increase of computational work is not present for the approaches
in [3] and [5]. However, computational time is in general not too expensive for
the one-dimensional calculations. Moreover, since the collocation method is easy
to implement and can produce very accurate results by using reasonably small
numbers of collocation points, it is still considered to be a useful tool in solving
VolterTa equations.
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