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Abstract 

The monotonicity of a sequence arising in the convergence proof of a product integration scheme for a 
Volterra integro-differential equation is demonstrated. 

Keywords: Monotonicity 

In a paper in this journal Dixon [ 1 ] studied a nonlinear weakly singular Volterra integro-differential 
equation arising from a reaction-diffusion process in a small cell and attempted to demonstrate the 
convergence of a product integration method. The argument, however, depends crucially upon [ 1, 
second part of Lemma 5.21. However, this is incomplete, based on the incorrect assumption that 
f(i) > f(i+ l), where 

f(i) = (?I2 _ (i _ 1)1/2)e-n2/(idt), 

n is any positive integer, and At is sufficiently small. 
We shall require the following notation. Let ti = i At, i = 0, 1,2, . . . , N, with N At = T > 0. Define 

y’(i) = ;(I +2&eC’2/f8) I”’ (l,dz) ,,*, i= 1,2 ,..., N, 
ll=l I 

where 1 can be any positive integer or infinity. 
The result of this note is: VN > 0, 3 a finite L such that when I > L, 

y’(i) >y’(i+l), i=l,..., N-l. 

The demonstration of this result is necessary for Dixon’s convergence argument. 

* Corresponding author. 
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First we shall prove that 

r”(i) >y”(i+l), i=l,..., N-l. 

This can be achieved by showing that 

k(t) = 

is monotonic decreasing. 
One form of the functional equation of the so-called theta function reads (see, e.g., [2, p.151) 

(3) 

1+2@(x) = (1+2$(9-1’2, 

where e,(x) = Cz, e-n2?rx; taking x = rt in (4) yields 

&(I +2fJe-"I/') = 1 + 2 ~e-n’n2re 
II=1 n=l 

(4) 

(5) 

Since k(t) is the left-hand side of (5), it is clear that k(t) is monotonic decreasing. 
To see how this implies (3)) consider the following. Note that for t > 0 and a > 0, ( 1 + a/t) 1/2 

is also monotonic decreasing, so for s E [ (i - 1) At, i At), 

(s + At)“2 > ((i + 1) At)1’2 
SIP (iAt)‘i2 * 

Hence, 

k(iAt)(‘;;;“2 > k((i+ 1) At,“:++1;t;;i;‘2, 

that is, 

1 + 2: -n*/(iW 
n=, e > &;i,2 > (’ ‘2~e-‘;“i+1’Af’) At (s: At)‘,2’ 

Integrating both sides of (7) from (i - 1) At to i At with respect to s gives 

y”(i) > y”(i+ l), i= l,..., N- 1, 

(6) 

(7) 

mjn{r”(i) - y”(i + 1)) = 26 > 0. 

But y’(i) is a monotone increasing convergent series. Hence there exists an L such that when 1 > L, 

y”(i) -y’(i) <S, i= I,..., N- 1. 

Thusfori=l,...,N-landZ>L, 

y’(i) - y’(i+ 1) > (y”(i) - S) - y”(i+ 1) > S. 
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