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Abstract

The monotonicity of a sequence arising in the convergence proof of a product integration scheme for a
Volterra integro-differential equation is demonstrated.
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In a paper in this journal Dixon [1] studied a nonlinear weakly singular Volterra integro-differential
equation arising from a reaction-diffusion process in a small cell and attempted to demonstrate the
convergence of a product integration method. The argument, however, depends crucially upon [1,
second part of Lemma 5.2]. However, this is incomplete, based on the incorrect assumption that

) > f(i+1), where
(i) = (2 = (i = 1)/2)e /a0,

n is any positive integer, and At is sufficiently small.
We shall require the following notation. Let ¢, =i4¢,i=0,1,2,..., N, with N 4¢ =T > 0. Define

iy = - <1+2i _,,z/,) /‘" ds i=1,2,....N (1)
== € ' DY 1=1,4,..., ¥,
4 At n=1 0 (ti - s)l/2

where [ can be any positive integer or infinity.
The result of this note is: VN > 0, 3 a finite L such that when [ > L,

Y >YU+1D, i=1,...,N—-1. 2)
The demonstration of this result is necessary for Dixon’s convergence argument.
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First we shall prove that

YW@ >y>*U+1), i=1,...,N—1. (3)
This can be achieved by showing that
1 > 2
k() = —(1+42 ‘"/'>, t>0,
(0 =—=(1+ > e

is monotonic decreasing.
One form of the functional equation of the so-called theta function reads (see, e.g., [2, p.15])

1+2¢(x) = (1 +2¢( ))x—‘ﬂ, (4)

1
X
where ¢ (x) =Y 2, e "' taking x = ¢ in (4) yields

1 ( o 2 bt 2 2
—_{1+2 e"”/')=1+2 e ", (5)
NCACREDD 2

Since k(¢) is the left-hand side of (5), it is clear that k() is monotonic decreasing.
To see how this implies (3), consider the following. Note that for # > 0 and a > 0, (1 + a/t)"/?
is also monotonic decreasing, so for s € [(i —~ 1) 4t¢,i At),

(s+ 402 ((i+1) a0’

s1/2 (iAt)1/2
Hence,
. . 1/2
o ian'”? . ((i+1) )
that 1s,
> . 1 e 200 1
1 2 —n?/(i 4t) 1 2 —n /((t+l)At)),—____. 7
( + Z}e )Ats‘/2>( + Zle At (s+ 4r)172 7

Integrating both sides of (7) from (i — 1) 4t to i At with respect to s gives
YU >y>*@+1), i=1,...,N-1,
so,
ml_in{'y""(i) — Y@+ 1)} =26 > 0.
But ¥'(i) is a monotone increasing convergent series. Hence there exists an L such that when I > L,
yoU) -y <8, i=1,...,N—1.
Thus fori=1,...,.N—1land !> L,
Y@ =Y+ 1) > @0 -8 —y°(@i+1)>6
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