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Structural changes in dynamical systems are often related to the
appearance or disappearance of orbits connecting two stationary points
(either heteroclinic or homoclinic). To compute the connecting orbits,
the boundary value problem which is posed on the real line is frequently
replaced by one on a finite interval. Then the problem is solved on the
finite interval using appropriate numerical methods. In this work, we
use a rational spectral approach to compute the connecting orbits. This
method avoids truncating the problem to a finite interval and produces
very accurate numerical solutions with a fairly small number of
computational points. Numerical examples indicate that the method
compares favorably with the existing ones. © 1994 Academic Press, Inc.

1. INTRODUCTION

We consider parametrized dynamical systems of the form

w' = f(u, 1), u(t)eR”, AeR?,

teR, (1.1)
where N, p = 1. A solution u(¢) of (1.1) at A is called a
connecting orbit if the limits

u =

lim u(s), (1.2)

u, = lim u(¢)
{— — 0 t— oo
exist. In the case u_ =u_, the orbit is called a homoclinic
orbit; when u_ #u ., it is called a heteroclinic orbit. A
closed path formed by several heteroclinic orbits is called a
heteroclinic cycle. Homoclinic orbits typically arise as limit-
ing cases of periodic orbits which attain infinite period but
stay bounded in phase space (see, €.g., [13, 15]). There are
also many applications for studying the heteroclinic orbits.
For example, the problem of finding traveling wave front
solutions of constant speed for nonlinear parabolic equa-
tions is equivalent to the problem of finding trajectories that
connect two fixed points of an associated system of ordinary

373

differential equations (ODEs). Such a trajectory is an
example of a heteroclinic orbit (see, e.g., [ 10, 11]).

Computation of connecting orbits involves the solution
of a boundary value problem on the real line. Therefore, the
problem is frequently replaced by one on a finite domain
(see, e.g., [2, 3,9, 12]). The system of ODEs is then solved
by the standard ODE boundary value solvers such as the
multiple shooting methods and the spline collocation
methods [1]. In [10] the connecting orbits are
approximated by a series of periodic solutions via a con-
tinuation process. These periodic solutions are computed by
a spline collocation method with periodic boundary condi-
tions, an integral phase condition, and a pseudo-arclength
continuation equation. In [9, 127 Doedel and Friedman
discuss a method for computing heteroclinic orbits based on
solving boundary value problems. In their computations,
the end points are moved away slightly along the eigenvec-
tor directions from the fixed points, ¢ is scaled into [0, 1],
and the period T is treated as a unknown parameter. Beyn
[2, 3] considers the connecting orbits as a boundary value
problem on the real line which is truncated into an
appropriate finite domain [ 7_, T, ]. The boundary condi-
tions are determined by projecting the solution into the
stable manifold of u, near t=T, and the unstable
manifold of u_ near r=T_. In all of these investigations,
the reduction of the problems to the finite interval is similar
to that in [16].

In this work, we give a new procedure which employs the
rational spectral method to compute the connecting orbits.
This procedure does not require that the infinite interval be
truncated. Further, spectral accuracy can be expected with
this approach. Accurate numerical results can be obtained
using a small number of grid points.

The organization of the remainder of the paper is as
follows. In the next section the rational spectral method is
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introduced. Sections 3 and 4 are devoted to the discussions
of boundary condition and phase condition, respectively.
Section S contains numerical experiments.

2. THE RATIONAL SPECTRAL METHOD

The properties of the rational spectral method have been
discussed by several researchers, e.g., Boyd [5, 6], Christov
[7], and Weideman [ 18, 19] with various different types of
basis functions. Our rational spectral methods are based on
the following basis functions:

R,(1)=cos(n cot " '(1)), n=0,1,... (2.1
The above orthogonal rational functions are merely
mapped Chebyshev polynomials, which in turn are the
transformed cosines of a Fourier series. With the map
x=1//1+ 1 our basis functions, as defined in (2.1), are
equal to T,(x), where the T,(x) are the usual Chebyshev
polynomials. The first five basis functions are

R(nN=1, R(t)=—m Ry(r) = !
o l Pl s
12 =3) _t4—6t2+1

R3(t)_(t2+1)3/2, R4(t)‘_ (l2+1)2 .

In general, only the R,’s with n even are truly rational but
the others have a square root in the denominator. The
orthogonality relation is

nd,

2

hd 1
J_w_l s R ()R, (t)dt=—"0pr, (2.2)

where dy=2,d,=1(n>1)and §,,, is the Kronecker delta.
Thus, if f(¢) e L*(R) and

o

f(t)= 2 aan(t)s

n=0

then

2 ij 1

== R fORW

n=0.

Now we consider the use of the rational spectral method
to solve (1.1). Let u=(uy,.., uy)" and f=(f1,. fa)"
Substituting the expansions

M+1

u ()= Z ci Ri(1),

k=0

1<i<N, (23)

into (1.1) gives

M+1

T
Y cNkRk(t)> ,A),
k=0
(2.4)

M+1 M+l
Y c,-kRz(t)=f,-<< Y cuRi(2),

k=0 k=0
I<i<N,
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where M is a given positive integer. The derivatives of R(?),
R'(1), can be obtained by direct calculations from (2.1).

2.1. Rational Pseudospectral Method

In the practical calculations, it is appropriate to use the
pseudospectral method. That is, we assume (2.4) holds at
the collocation points {7,}2,. As mentioned before, our
basis functions R,(t) are mapped Chebyshev polynomials,
which suggest that we choose the collocation points as

t.=cot jn
I M+1)

Further, due to the nature of the rational spectral functions
we can add two collocation points, f,=+o and
tr+ 1 = —o0. Using the relation

1<j<M. (2.5)

M+

kjn
u;(t;)= Cix COS (———) 0<jsM+1,(26)
/ ,EO , M+1

we have

2 M+ 1 k
Cp =" - Z Emlui(tm)cos<m 7I>,
(M+1)é .20 M+1

O0<ksM+1,

(2.7)

where ¢, =2 if m=0or M+1 and ¢,=1if Il<m<M.
Noting that

kjn )

+1)°

, . Jn . J
R (t;) =k sin’ <M+ 1) sin (M
we have, for 1 < j< M,
M1 ; ;
, . jr . kjn
uf(tj) = ,E:o cikk Sln2 (W) s (M+ 1)
2 j k k
= sin2< ST )Z _cos<mn>
M+1 M+1) 5.6l M+1
. kjn
X sin <M+1> u; (1))

Note that u(to)=u,, u(tp.,)=u_. The above result,
together with

(2.8)

ui (1) = filu(t;), 4), 1<i<N, 1<j<M, (2.10)
yields NM equations for the NM unknowns u;(¢;), 1 i< N,
1<j<M. The main advantage of the pseudospectral
method is that it allows one to work in the physical space
rather than the coefficient space. Thus it is possible to
handle nonlinearities very efficiently, without the convolu-

tion sums introduced by the pure spectral method.
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2.2. Rational Spectral Method

Applying the collocation points as given in (2.5) to (2.4)
gives, for 1 < j< M, 1<i<N,

M+ 1 . .
. Jn . kjn
k sin® )
’EO sin <M+1>sm<M+l>c"‘
M+

M+1 k_]7[
_fi<<k§0 €1z COS <M+ 1), " ;Z‘o Crk

xcos( kin TAl
M+1))° ")

The above system gives NM equations. We need another 2N
conditions, which are given by (1.2), so that the N(M + 2)
unknowns ¢, 1 <i<N, 0<k< M+ 1, can be obtained.
This will be discussed in Subsection 3.4.

In this work, we solve (1.1)-(1.2), using the spectral
method (2.11). It is also possible to obtain numerical
solutions using the pseudospectral method as described
in Subsection 2.1. A comparison between the rational
pseudospectral method and the rational spectral method
will be given for Example 1 in Section 5.

(2.11)

2.3. Scaling Factor

It has been noted in [5, 6, 17, 18] that for the rational and
the Hermite spectral methods we have the freedom to
stretch the 7 variable according to ¢t « Lt. The scaling factor
L can be selected to optimize accuracy. A detailed analysis
for choosing the scaling factor with the rational and the
Hermite approaches was given in [5, 17], respectively. In
solving (1.1) and (1.2), the use of a scaling factor L yields the
equation

Lu' ()= f(u, 2). (2.12)
We then solve (2.12) subject to the boundary conditions
(1.2). We show how to choose a scaling factor in Section 5.

3. BOUNDARY CONDITIONS

In the present work we assume that both u_ and u are
hyperbolic fixed points. Let M (u, ) and M, (u ) be stable
and unstable manifolds at #_ and u,, respectively, with
corresponding dimensions m , s, m, ;. If there exists exactly
one orbit, then m_,+m_ s=N+1. Whenm_,4+m <
N + 1, the connect orbit is not structurally stable and p=
N+1—(m,,+m,s) free parameters are needed to
stabilize the system. For ease of exposition we consider in
this work the case that there is only one free parameter,
ie., p=1, which is always true for the homoclinic case and
also true for many heteroclinic cases. For p > 1, appropriate
projection boundary conditions can be used to form a
well-posed problem.
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We now summarize some of the well-known boundary
conditions for computing the connecting orbits.

3.1. The Periodic Boundary Condition
The periodic boundary conditions are defined by
w(T_Y=u(T,) (3.1)

This type of boundary condition is very natural for comput-
ing periodic solutions of a dynamical system and is used in
the software package AUTO [8, 10]. In this package, the
homoclinic orbits are approximated by the periodic solu-
tions at very high period. This is because for homoclinic
orbits, there exist nearby periodic solutions. However, it is
not necessarily true for the heteroclinic case and the periodic
boundary conditions may not be appropriate.

3.2. The Eigenvector Method
This method was investigated in [9, 12]. It is clear that

Slu_,2)=0,  flu,,2)=0,

since u , are the fixed points. Suppose that f,(u_, A) hasn _
distinct positive eigenvalues, f,(#,,A) has n, distinct
negative eigenvalues, and these eigenvalues and their
corresponding eigenvectors satisfy

(3.2)

loF =1,

fluy, AYvE=pEvE, i=1,..n,. (33)

Then the boundary conditions for (1.1) are defined by

n_

X (7)=1, (34)

i=1

w(T )=u_+¢e_ Yy ¢/ v,
i=1

ne

Y (e )?=1, (35)

i=1

ny
wT, )=u, +e, Z cof,
i=1

where ¢, , ¢ €R.

3.3. The Projection Method

The projection boundary conditions (also known as
asymptotic boundary conditions) are used by Beyn [2, 3].
The method involves finding the unstable subspace Y'Y (1)
at u_ and the stable subspace Y3 (i) at u, and the
boundary condition takes the form

wT_Y—u_eYY(A), w(T,)—u,eYs(A). (3.6)
Suppose that the rows of matrices L_g(4)eR™*"%,
L, ,(4)eR™ *¥ span the stable subspace of f(u_, 1) and
unstable subspace of fI(u,,A), respectively, then the
projection boundary condition can be written as

L_s(M)(T_)—u_)=0, L,y (T )—u,)=0.
(3.7)
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The projection boundary conditions have better con-
vergence properties than the periodic boundary conditions,
but one would require that the connecting curves be
isolated.

3.4. The Exact Boundary Condition

In our computation, we introduce a different type of
numerical boundary condition due to the nature of the
rational spectral functions. Unlike the above-mentioned
numerical boundary conditions, the following method does
not require that the infinite interval be truncated. For the
boundary conditions (1.2), noting that

lim R,(1)=(=1)",

> —

lim R, (t)=1,

— 0

O0<k<M+1, (3.8)

we obtain that

M+ 1
u, =y ci.
k=0

(3.9)

M+1
u_= Z (—1)kc,~k,
k=0

Equations (2.11) and (3.9) consist of N(M + 2) equations,
N(M + 2) unknowns ¢; (1<i<N,0<k<M+1),and one
free parameter A.

4, PHASE CONDITIONS

If u(t) is a solution of (1.1)-(1.2), then for any constant
to€ R, u(t+1,) is also a solution. To remove the indeter-
minacy it is necessary to add an appropriate constraint
called a phase condition in analogy with the periodic case.
The possible phase conditions are normally of integral or
differential forms.

4.1. The Integral Form

In [9] the phase condition is obtained by requiring that
the current heteroclinic orbit look like the previously com-
puted orbit as much as possible. More precisely, let ()
denote the previous orbit on a branch of heteroclinic orbits.
Let i#(z + o) be the continuum from which the current orbit
is to be selected. Since [u'(¢)]| =0 as t— + o0, a good
measure of how close & and # are is the integral

D(a)sro 1'(t + o) — &'(1))|? dt. (4.1)

The necessary condition for a minimum is D’(a, ) = 0. With
u(t) =u(t + o,.) the required phase condition can be written
as

(4.2)

jw (1) —d'(8), w' (1)) dt =0,
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In the above, (-, -) is the /? inner product, and | -|| is the
corresponding norm. An alternative approach in [8, 10] is
to minimize the function

E(o)= jw lu(t + o) — a(1)|? dr. (4.3)
Letting E'(0) = 0 yields the phase condition
jw Cult) — a(e), w(2)) di =0. (4.4)

4.2. The Differential Form

A classical phase condition (see, e.g., [2]) is to require

{u(0)—u(0), #'(0)> =0. (4.5)
This phase condition fixes #(0) in a hyperplane through i(0)
and orthogonal to #’(0). From a numerical point of view,
the condition (4.5) is in general not as reliable as the
conditions (4.2) and (4.4).

4.3. A New Phase Condition

Now we introduce a new phase condition which does not
require the information at the previous continuation step
and which is more appropriate when using the rational
spectral method. We choose current solution u(¢) so that the
fastest changing region for u(¢) is in the location where the
collocation points are the most densely allocated. For our
choice of the collocation points, this location is around
t = 0. This means that |u’(¢)| should reach its maximum at
t = 0. Therefore,

dlwl| _dlf( Al
7 2 PN dt

=0. (4.6)

t=0

From (4.6), we obtain the phase condition

{f(u(0), 1), f.(u(0), A) u'(0)> =0. (4.7)
Note that

[(M +1)/2]

w(0)= Y (=D I1<i<N,
k=0
[M/2]

uj(0)= Y (=1 Qk+1)c;ins1s 1<igN,
k=0

where [a] denotes the integral part of a. Hence, (4.7) gives
an equation for ¢, which can be used to determine a unique
solution of (1.1)-(1.2).

In the case when the maximum of ||#'| is more than one,
the new phase condition (4.7) can still be used. Since when
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7] is large {|u’|| decays to zero and therefore its maximums
are located in a fixed interval in which the solution u
changes quite rapidly. The condition (4.7) will fix one of the
(local) maximums/minimums at the origin.

5. NUMERICAL RESULTS

In order to illustrate the numerical method described in
Sections 24, we consider two examples. In our numerical
computation, the subroutine DNEQN from IMSL is used
to solve the nonlinear system of equations. The computa-
tions are done on a SUN 4/670 with double precision.

ExampLE 1. The Huxley equation,
w,=w_+ f(w, a), zeR, t>0, (5.1)
flw, a)=w(l —w)(w—a), ae(0,1). (5.2)

We look for traveling wave solutions to (5.1)—(5.2) of the
form w(z, t) =u(z + bt), where b is the wave speed. This
gives the first-order ODE system

du,
du,(x) = bu,(x) — f(u,(x), a), (54)

dx

where x=z+bt. If a=0.5 and b=0 then (5.3)~(5.4) has
a family of periodic orbits of increasing period. In the limit,
as the period goes to infinity, the orbits approach a
heteroclinic cycle with rest points (0, 0) and (1, 0). The first
of the two heteroclinic orbits has the exact representation

()= exp(x/y/2) o) = 1),
1+exp(x/\/§) dx

The second heteroclinic connection is obtained by reflecting
the phase plane representation of the first with respect to the
horizontal axis u, = 0. Since this test problem has (5.5) as an
exact solution, it is useful to test our spectral method.

As mentioned in Section 2, a scaling factor L is useful to
optimize computational accuracy. In Fig. 1 we plot the
computed u, with M =29 and L=2, 1, 0.5, and 0.1, respec-
tively. It is observed that if L is not carefully chosen then
numerical oscillations are present. Graphically it is seen that
a reasonable choice of L in this case is in the region
[0.1,0.5], since smooth curves are obtained if L is in this
interval. It was found in [5, 6] that the accuracy is not very
sensitive to L in the neighborhood of the optimum L.
Therefore, it is safe to use any L in this “trusted” region.
Based on this observation, for any given M we can obtain
a corresponding interval from which we can choose any
value as L.

(5.5)

3717

0.2 . 02
0.15 0.15F
0.1
u2 01
0.05} =1
0 0.05F
. 0 .
0‘050 0.5 1 0 0.5 1
0.2 - v 0.2
0.15} 1 0.15}
L 4 1
w o1 0
_ L=0.1
005} L=0.5 § 005}
. 0 R
00 0.5 1 0 0.5 1
ul ul

FIG. 1. Numerical solutions of u, with M =29 and various values of L.

For Example 1, the exact representation of the two
branches is b= + \/5 (a —0.5). Therefore in the case a = 0.5
the exact value of b is 0. Figure 2 shows the numerical values
of |b| against the number of collocation points, M; the
corresponding scaling factors used are shown in Fig. 3. It is
noted that if M > 10 then the scaling factors used are almost
independent of M. The spectral accuracy can be clearly seen
from Fig. 2. For a given M, we define the numerical errors
as

error= max |u(t;)— U,
1<jsM

<

(5.6)

where u = (u,, u,)" is the exact solution given in (5.5), U is
the numerical solution, ||-|| is the standard /2 norm. The
numerical error is plotted in Fig. 4, which also shows a spec-
tral convergence rate. Figure S5 shows the numerical results

107 ¢ 3
-8 L
0% ¢ a=0.5
109 ¢ E
Ibl [ ]
]()-10E E
10ng 3
10121 E
10-13
2 4 6 8 10 12 14 16 18

FIG. 2. Numerical solutions of |5| in the case a = 0.5 with different M ;
the exact value of b at a=10.5is 0.
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0.6

0.55}
05k a=0.5
0451
0.4+
035
03
0.25}

0.2}

FIG. 3. The variation of the scaling factor L with M for a =0.5.

of the two branches of traveling wave front solutions to
(5.1)—(5.2). This figure is graphically indistinguishable from
the analytical representation b= + \/5 (a—0.5). It is noted
that Doedel and Friedman [9] also obtained the same
results by using AUTO with total 200 collocation points. In
Fig. 6 we compare the methods used in [9] and in the pre-
sent paper by plotting the numerical errors of . The AUTO
results are obtained by using 25 mesh intervals, four
orthogonal points on each mesh interval and adaptive mesh
selection, and thus 100 collocation points in total. The
spectral results are obtained by use of 29 collocation points
with a constant scaling factor L = 0.181.

The solution procedure with AUTO is as follows. We
begin by using the exact periodic solution with period T=5
(T'=T, — T_) as starting values. AUTO used 90 continua-

error

102}

a=0.5 b

103} .

104} 1

105} 1

10} .

107} 1

10

FIG. 4. The maximum errors between the exact and the numerical
solutions of u,.
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,1)8 S VY N Y N - i L 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a

FIG. 5. The two branches of traveling wave solutions to the Huxley
equation. The number of collocation points used is 29.

tion steps, with 68 s CPU time, to obtain approximate
heteroclinic solution with 7= 5000. Then 46 continuation
steps, with 31 s CPU time, were used to obtain the lower
half branch (0.5 < a < 1). The total CPU time used is about
100 s. The rational spectral method requires 46 s CPU time
to compute the same branch using 50 different values of a.
In order to compare the efficiency and accuracy of
rational spectral method and rational pseudospectral
method we also present numerical results using the rational
pseudospectral method as described in Subsection 2.1. Tt
can be seen from Fig. 6 that the results using the rational
pseudospectral method are comparable with those obtained
with AUTO but are less accurate than those obtained with

Absolute Error of b
102 T T T

T TV
2 1aay

1l

105 AUTO

TV

TEWEvITN

10#

......

T TTTT

101

IWEEETTI G A BRI

T rrmr

.
L@
2

104}

T
ARt

107 L " " " " . " " N
05 055 06 065 07 075 08 08 09 095

-

FIG. 6. The comparison between the AUTO results (solid line),
pseudospectral (dashed line), and the spectral solutions (dot-dashed line).
The number of collocation points used are 100 for AUTO and 29 each for
the rational pseudospectral method (RPSM) and the rational spectral
method (RSM). The scaling factor used for RPSM and RSM is 0.181.
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b (38/3,541.77181)

3001 1

200+ R

00+
(8/3,13.926555)

2 4 6 8 10 12 14

c

FIG. 7. The values of b for a branch of homoclinic orbits in the Lorenz
equation.

the rational spectral method. However, the pseudospectral
method used only 23 s CPU time and, as expected, is more
efficient than both AUTO and the pure spectral method.

ExaMmpLE 2. The Lorenz equation,
X' =a(y—x), y' =bx—y—xz, = —cz+ xy.

(5.7)

When (a, ¢) = (10, §), the Lorenz equation has a homoclinic
solution. The stationary point is (0, 0, 0), and there is one
positive eigenvalue and two negative eigenvalues in the
linearized ODE system at the origin. Therefore, the dimen-
sion of the unstable and stable subspaces are one and two,
respectively. At the Lorenz values (a, ¢) = (10, §), we com-
pute the homoclinic orbit connecting the origin with itself
and the b value using 29 collocation points. The computed

300
2501 1
200+ h
z 3c=32
150+ 1
100+ h
26
S0 20 h
4
]
0 A 1 " L I
0 10 20 30 40 50 60 70

X

FIG. 8. Projection of homoclinic orbits in the Lorenz equations into
xz plane with 3¢ =8, 14, 20, 26, and 32.
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1200

3c=23
1000 i

800 i

(ol
600+ 4

200+ 11 i

0.6 -0.4 -0.2 0 0.2 04 0.6
t

FIG. 9. The variation of {ju’'l. The phase condition is to fix the
maximum point of ||«'|| at the origin.

value for b in this case is 13.926555 which is in very good
agreement with h=13.926557 obtained by Beyn [3].
Figure 7 shows the values of b along the branch as obtained
by our procedure. The curve is in good agreement with
Beyn’s. Furthermore, the phase curves are plotted in Fig. 8,
which are found graphically indistinguishable from Beyn’s
results. Finally, we show how the new phase condition
introduced in Section 4 works. In Fig. 9, we plot ||
against ¢, with a = 10 and several values of ¢. It is observed
that the new phase condition fixes the maximum values of
[lu']l at the origin, which ensures the uniqueness of the
solution.

6. CONCLUSIONS

In this work we have developed a numerical technique
based on rational spectral methods for computing connect-
ing orbits for the dynamical systems (1.1), which avoids the
difficulty in satisfying the boundary conditions at infinity.
Numerical results indicate that the new technique can
produce very accurate numerical solutions with a small
number of collocation points. In the conclusion we give a
summary of the points we have raised in the present work.

« It is well known that spectral methods are very efficient
for solving differential equations with smooth solutions
(see, e.g., [14]). That is, the smoothness of exact solutions
plays an important role for the convergent rates of
spectral methods. For the dynamical systems (1.1), if
fe C*(RY xR?), which is the case in the Huxley equation
and the Lorenz equation, then the solutions u € C . There-
fore, it is reasonable to use spectral methods to solve (1.1)
whenever the given function f'is smooth.

o« The rational pseudospectral/spectral methods
described in Section 2 are very useful in obtaining accurate
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numerical solutions for the dynamical systems (1.1)-(1.2).
The main advantage of using the rational approach is that
the procedure does not require that the infinite interval be
truncated.

o The new phase condition (4.7) is found to be more
appropriate when using the rational spectral approach. The
numerical calculations indicate that Newton’s method,
together with the pseudospectral/spectral methods and the
new phase condition, converges very quickly.

 In the calculations, it is found that a scaling factor is
useful to optimize accuracy. Like [4] we obtained the
optimum scaling factor through trial and error. It remains
to be investigated if we can find a theoretical method to
determine the optimum scaling factor.
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