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Abstract

In this paper, we investigate a Galerkin-spectral method, which employs coordinate stretching and a class of trial
functions suitable for solving singularly perturbed boundary value problems. An error analysis for the proposed
spectral method is presented. Two transformation functions are considered in detail. In solving singularly perturbed
problems with conventional spectral methods, spectral accuracy can only be obtaine® wh&as "), where
¢ is the singular perturbation parameter ani$ a positive constant. Our main effort is to make thismaller, say
from % to % or less for Helmholtz type equations, by using appropriate coordinate stretching. Similar results are
also obtained for advection—diffusion equations. Two important features of the proposed method are as follows:
(a) the coordinate transformation does not involve the singular perturbation paran{b)enachine accuracy can
be achieved withv of the order of several hundreds, even whésnvery small. This is in contrast with conventional
spectral, finite difference or finite element methad2001 IMACS. Published by Elsevier Science B.V. All rights
reserved.
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1. Introduction

In this paper we consider spectral approximation for the numerical solution of the singularly perturbed
convection—diffusion equation

{ —eAu(x)+Vux) - p(x) +gx)u(x) = f(x,e) in 2,

1.1
ulpe =0, ( )

where 2 = (=1, 1)? with d = 1, 2 or 3, > 0 is a small parametep = (p1, ..., ps)", g and f are
smooth functions o2, and|| f (-, &) || .=(e) iS bounded by a constant independent of

The problem (1.1) is often viewed as a basic model of a steady-state convection—diffusion process.
For small values ot, this equation in general possesses a thin boundary layer; the solutiath
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vary rapidly in the layer region near the boundary. This boundary layer causes various difficulties in
seeking the numerical solution of (1.1). It is well-known that conventional numerical methods to (1.1)
can produce approximate solutions with oscillations that are unboundedswheh Various approaches

have been proposed to eliminate these oscillations. The last decades have seen substantial progress in t
development of numerical methods for the solution of (1.1) and several software packages are presently
available [1,6,13,14,18]. A large body of literature has been devoted to the effective resolution of the
solutions of (1.1); see, e.g., books [19,22], and references therein.

Most available references analyze the convergence of finite difference or finite element schemes of
fixed (usually low) polynomial degree in conjunction with various mesh refinements; see, e.g., [11,23,
27]. An alternative approach is to increase the polynomial degree, i.e., pisergion of finite element
method or spectral method. In [24], the uniform approximation of boundary layers is studied by using the
p andhp versions of the finite element method. For gheersion with variable mesh (i.e., tthe version),
it is shown that exponential convergence, uniform in the perturbation paraméeteachieved by taking
the first element at the boundary layer to be of sizp (J¢). Discrete methods whose solutions converge
independently ot are said to be-uniform. If a method ig-uniform, mesh refinement causes the error
to decrease in a manner that is independent of the perturbation parameter. The exarjuegasm
method include Shishkin’s grid [27] and Schwab and Suri’s grid [24]. However, thasgorm methods
require that the size of the first (or/and last) element is of the order of boundary layer width. In other
words, the information for the width of the boundary layer should be known prior to the selection of the
grid points.

In [4], a Chebyshev-weighted spectral approximation is investigated for the one-dimensional version
of (1.1), with p =0 and f = 0. Spectral methods for solving singularly perturbation problems can also
be found in many papers such as [3,7-9,13,15]. Although the conventional spectral methods have beer
found attractive in solving (1.1xpectral accuracyannot be observed with reasonably largewhere
N is the total number of grid points/basis functiong; i§ very small (see, e.g., [5,7,10,17]). Itis expected
that the spectral methods together with suitable transformations will be suitable for solving the boundary
layer problems such that spectral convergence can be obtained@vatlihe order of several hundreds,
even whene is very small. A good reference for the transformation technique is [12]. By choosing
appropriate transformation functions, a boundary layer resolving spectral method is designed in [29].
With the special choice of the transformation function, the transformed coefficient functions can be
generated efficiently by machine. Numerical experiments show that the boundary layer resolving spectral
method is simple (the code is just a few lines longer than the standard spectral method code) and robust
The method is much more efficient and accurate than conventional spectral methods, especialliswhen
very small. One of the important features of the present work is that our coordinate transformation does
not involve the singular perturbation parameter, though it is essentially impossible to radwtvarily
thin boundary layers with a non-adaptivendependent coordinate stretching.

Although the idea and algorithm for the spectral method with coordinate transformation are
quite simple, the theoretical error analysis for the approach seems rather difficult. In practice, the
transformations used have to be singular (in the sense that the derivatives of the transformed functions
may be zero at the end points). One of the key steps in the analysis is to handle the transformed equatiol
that is highly degenerate due to the singularity of the transformation used. In the case of the Galerkin-
spectral approximation, one of the key questions is that what trial functions should be employed to
approximate the transformed equation. In this work, a Galerkin-spectral method based on a new class
of trial functions will be investigated for one and higher dimensional problems. Part of the results for
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1-D has been reported in a conference paper by the authors [16]. It is the purpose of this paper to
give a theoretical interpretation of the high accuracy behavior of the Galerkin-spectral method involving
coordinate transformations. The work is the first step towards understanding more complicated boundary
layer resolving spectral methods, such as [20,21,29].

Letx; = g; (y;) with g; € C*°[—1, 1] such that

g(-H)=-1 gi(H=1, (1.2)
Ji(yi):==g!(yi) >0, for y e(=11), i=1,...,d. '
Applying the change of variables= g(y) to (1.1), we obtain
d d
—EZaiayi(aﬁyiv)+Za,-P,~8yiv+Qv=E, in 2, (2.3)
i=1 i=1
where
v(y)=uog(y), a(y)=-—— PFP(y)=piogly, i=1....d,
{ y gy y 7.00) y piog\y (1.4)
Q) =qog(y), F(y,e)=f(g).e).

Therefore, the transformed equation has variable coefficients even when the coefficients of the original
equation are constants. Furthermore, in order to obtain a finer resolution near the boundary, it is often
necessary to havg(—1) = g/(—1) = 0 and/orJ;(1) = g; (1) = O for at least one index Henceg; (y;) is

not even bounded near the boundary. This causes several major difficulties in approximating the solutions
of the transformed equation. For instance, it is not clear what trial function spaces or collocation points
should be used to discretize the equation. It is also difficult to obtain error bounds due to the degenerate
character of the transformed equation.

The paper is organized as follows. In Section 2, we derive a weak formulation for (1.3). Then a general
Galerkin-spectral scheme for the weak formulation is introduced. Some error bounds will be obtained
in Section 3. In Section 4, the theoretical results obtained in Section 3 are illustrated by some feasible
transformations. Error analysis for two-dimensional problems will be given in Section 5. Numerical
results will be presented in Section 6. Note that in our presentation we first consider the easiest case
(Helmholtz equations in one dimension), then a more general one-dimensional equation, and later the
high-dimensional Helmholtz equation. As a result, some of the technical work needs to be done more
than once in different contexts. It would be possible to start off with the more complicated problems in
order to shorten the presentation, but that would make the paper less readable.

2. Weak formulation

We adopt the standard notatioh$(£2) and H™ (£2) to denote the usual Sobolev spaces, Hjd$2) to
denote the subspace Hf" (£2) whose elements have vanishing traces. We denofe? o) and H (£2)
the weighted Sobolev spaces with the weight functiohet / = (—1, 1) and denotery to be the space
of real polynomials o with degrees not exceeding. We set

Xy = {MN emy. uy(Eld =O}
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We shall use letters of boldface type to denote vectors and vector functions as well as product space:s
such as

d
Xy=]]xn.
i=1

Let
wi(y) = (1—y2)", forafixed » with —1 <2 <0,

d 2.1
o () = [ Jor o). @1
i=1

It does not seem suitable to study the weak formulation of (1.3) eithéflip(£2) or H;, ,(£2) since
some integrals (e.gle1 awv®dy andf_l1 aw(v")?dy in the casel = 1) may not exist in these spaces.
Let us denote/ (y) = [1%_, Ji:(y;) and

d

H(£2):= {v € H}(2): lvllzz (o) + ; ||a},,v||Lizjw(Q) < oo}. (2.2)

It is noted that all the smooth functions with compact supposeiare in this space. A weak formulation
of (1.3) can be established #} ,(£2), which is the image space @f? ;(£2) under the transformation
Gu :=uo g, wherea(x) := w(g~1(x)). Let

d
A(U,Z)w=82/(aizl)(ay,.vayi(zw))dy+/szwdy,
2

i~ (2.3)

d

B(v,z)w:Z/aiJP,-(ayiv)zwdy, (F, z)wz/an)dy,
i:l_Q o

where Q(y) = Q(y)J(y) and F(y,e) = F(y,e)J(y). For a fixed weighto, we multiply Eq. (1.3) by

wJ(y). The weak formulation for (1.3) is as follows: finde Hj,o(.(z) such that

AW, D)o+ B, 2)o=(F,2),, VzeH., (2.4)

We now consider the approximation of (2.4) by using a Galerkin-spectral method. It is essential to find
suitable trial function spaces in order to properly approximate the solution of (2@@(\9). Itis clear
that X  is not suitable. It is then natural to consider the image spadeyofinder the transformatio&
as the trial function space. It turns out, however, that with this trial function space we would obtain the
same results as those by applying the conventional Galerkin-spectral methods directly to (1.1).

Let

Yy={veHy(I): vV =J;P, Peny}, i=1....d. (2.5)

It can be verified that}, is an N-dimensional subspace ﬁj’o(l) with G;u :=u o g;. It follows from
(2.5) that for every elemente Y}, there is a unique®, € my such that

)
o(y) = / Ji() Py (1) dbr, (2.6)
]
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but the choice ofP, has to satisfy the following requirement:
1
/ J:() Py (t) dt = 0. 2.7)
-1
Observe that for any € wy there is a unique constasp such that
1
/J,-(t) (ap+ P(1))dr =0.
-1
Thus every element € Y}, can be further represented as

y 1
1
v(y) = /J[(I)(Olp + P(r))dt, with Penmy, ap= —E/Ji(t)P(t) dr, (2.8)
-1 -1
where we have used the fact that
1
/J,-(t) dr=2.
-1

Of course,P in (2.8) is no longer required to satisfy (2.7). It turns out that the space

d
Yyv=]]Yy
i=1

is a good choice as the trial function space. Therefore, the proposed Galerkin-spectral approximation
for (2.4) reads: findy € Y y such that

AN, 2o+ By, 2)w=(F,2)y, VYzeYy. (2.9)

We give two sample transformations that will be used to demonstrate our theoretical results in Section 4.
We consider one-dimensional case only, des 1. The first one was proposed in [29],

x=g() =Sin<n—2y>. (2.10)

The second one is
y
x=g(y)=—1+/c/(1—n2)kdn, 2.11)
-1
wherek > 1 is a given constant and is chosen such thag(l) = 1. It can be shown that both
transformations satisfy the following inequalities: there exist positive consgadisandC, such that

J N/
P, TN o foryeli=(-1.1) (2.12)
()2
wherew(y) = (1 — y?*, =1 < » < 0. It will be seen in the next section that these inequalities play
important roles in studying (2.9). Here we only give a brief proof for the first transformation. The first

Ci<J(1—y?)~
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inequality in (2.12) holds fopB = 1. Direct calculation gives that (noting that(y) = (1 — y?)* with
A e (=1,0])

Jo(aw') 1
(w/)z - 2)»)/2
This indicates that the second inequality in (2.12) holds.

1
(1—y2+2(1—/\)y2+(1—y)%ta”< 2y>)> Fyp 2= >2

3. Error analysisfor 1-D

Throughout this paper; denotes a positive constant independent,@¥, but possibly with different
values at different places. We will establish error bounds for the Galerkin method (2.9). In this section,
we assume = 1 and begin with the one-dimensional Helmholtz type equation.

3.1. Helmholtz type equation

The one-dimensional Helmholtz problem is as follows:

—eu"(x) +g(u(x) = f(x,e), xel:=(-11), u(+1) =0. (3.1)
Here we assume thatis positive on[—1, 1]. After the transformation = g(y), problem (3.1) becomes
—e(@aV' () + 0V =F(), yel,  v(*l)=0. (3.2)

Lemma 3.1. Assume that there exist positive constagft€’; and C; such that(2.12) holds. Then for
anyz,ve H} (),

1 1
A, v), = Ce/aa)(v/)zdy—i-/vazdy, (3.3)
1 1
|A(v, 2)0| < Ce|vf Lgm(I)HZ/ 2T C”v”LZQ(I)”Z”LZQ(I)’ (3.4)
whereA(., -),, is defined by
1
A(v, z)w—s/av (wz) dy+/a)szdy (3.5)

-1

Proof. The proof follows a similar idea used in [5]. For ang H 0(I)

1 1

1 /
/av (vw) dy = / dy—l—/avva) / (v/)zdy - E/vz(aw’) dy. (3.6)
“1 “1
On the other hand,

1 1
/av’(vw)’dy = /[(v’a))z—l-vwv’a)/}(lw)*ldy
1

-1
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1
(Vo + vw’)z(]a))_1 dy — /[avv’a)' + (vw’)z(Ja))_l] dy
]

1
(o) ?(Jw) tdy + / v? E (aw) = ()2 (Jo)~t|dy
-1

WV

,L\,_\ l‘—‘\n—\ "“\H

v? E(aw’)/ — (w’)z(la))l} dy. (3.7)

Combining (3.6), (3.7) and the second inequality in (2.12) gives (3.3). Furthermore,
1 1 1

/av'(zw)’dy /aa)v'z’dy /av'za)'dy
1 Z1 Z1
Let w; (v) = (1 — y)*. We have

2 1

< C</awk|v’za);/wk|dy)

0
1 1
< C/awx(v')zdy/awx
0 0
1 1
< C(/w,\—ﬂ (v’)zdy) </wk—ﬂ—2Z2 dy>,
0 0

where we have used the first inequality of (2.12) that gives dd, < Cw;_g for y € (0, 1). It then
follows from Hardy'’s inequality (see, e.g., [5]) that

1 2 1 1

< + . (3.8)

1

/av’za)' dy

0

2

I\ 2
Za)A) dy

),

/ av'ze'dy| <C ( / ww(v’)zdy> < / @5 —p (Z’)zdy> <1z, 0l 12,0
0 0 0
Similarly, we can show that
0 2
N 7112 7112
/av zo'dy| <C||v ng(1)||z 121y (3.9

-1

Combining (3.8)—(3.9) yields (3.4).0

The weak formula of the transformed problem (3.2) reads:zfiacﬁj,o(l) such that

AW, o= (F. 20,  YzeHLyD). (3.10)

It follows from Lemma 3.1 and the Lax—Milgram theorem that the above problem has a unique solution.
Our Galerkin-spectral method for the transformed problem (3.2) readsofimdYy such that

A(UN’Z)(U=(F’Z)(U9 VZEYNa (311)
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whereYy = {v e H}(I): v =JP, P eny}, J(y) =g (y). The well-posedness of (3.11) follows from
Lemma 3.1 and the Lax—Milgram theorem.
Forany¢y € H 0(I) we define its projectioti/ ¢ in Yy such that

1
/ a((¢ — T)w) h'dy =0, foranyh e Yy. (3.12)
-1
It is clear thatlT¢ is uniquely defined irYy.

Lemma 3.2. Letu(x) be the unique solution @8.1)andv(y) = u(g(y)) be the solution of3.2). Then
1

/a)a(v — (Mv))?>dy < CN~ 2Ty, (3.13)
-1
1
/ wa(v' — (ITv))’dy < CN™*T; ., (3.14)
-1
where
1 1
chl:/w( dx+/a)J2 "2 d, (3.15a)
1 1 1
T@z—/w 2dX+/a)12 " dx—i—/ 4 de+ [a() ') (3.15b)
-1

Herew(x) = (g (x)), J(x) =J (g~ (x)) andJ'(x) = J'(g7(x)).

Proof. For any¢ € H, 0(I) let ¢ be the best approximation polynomial fep’ in L2 AACHL with
Jp=(1—y»F. Let

y 1
1
¢ = / Ty +ap)dv, ag == / gy dy. (3.16)
2

Sincej;l1 Jdy =g — g(—1) =2, we can easily show thdi*¢ € Yy. IT*¢ is a modification offT¢
and it is the same ag ¢ if wJg = 1. However, it is easier to derive an upper bound for the modification
thanI1¢ itself, since the modification is given explicitly. From the proof of Theorem 4.1 in [2] (note that
the result is proved only faB + 1| < 1 in [2], but it can be shown that fg# > 0 ando = 2 oro = 2m),
we have

1

/w],g(aqﬁ’—(ﬁN) SCN™ 4Ha¢ HH2 L (DS SCN™ 4Ha¢ HH2 Sy (3.172a)
21
1

/ wlp(ad’ = on) oy <CN 2|5y ) < ON2ad s (3.17b)
-1
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see (4.5) of [2]. It follows from Lemma 3.1 and (3.12) that for @ng I-Nljﬁo(l)

1 1 1
/ aw(¢' — (I¢))°dy < C / a(p — M) (¢ — Mp)w) dy =C / a(g — M*¢) ((¢p — Mp)w) dy
—1 -1 -1

1

1/2 1/2
< ( [aols' - <n¢>'>2dy> ( [ awle' - (n*¢>’>2dy> ,

which implies that
1 1
/ n2 , %\ 2
/ aw(¢' — (1Y) 2dy < / aw(¢’ — (IT°¢))2dy. (3.18)
-1 -1

Now letw(y) :=u'(g(y)) and letw, be the best approximation polynomial forin Lijﬂ(—l, 1). Thus
from (3.18) and (3.16),

1 1

1/2 1/2
</wa(v/ - (Hv)’)zdy) < </wJ(w - (wN+Ole))2dy)

-1 -1
1
/ JwN dy
-1

Note thatff1 Jwdy =u(g(l)) —u(g(—1)) =0. Then using (3.17) and the above inequality gives

1 1/2
< C</wJﬂ(w—wN)2dy) +C

-1

1 12 1
< /wa(v/ — (Hv)/)zdy> < CN’lHav/HHle(I) +C /(Ju)N — Jw)dy
2 ]
1 1/2
< CN71’|aU/HH}w(1) + C( /wlﬁ(wzv - w)zdy>
2
< CN_1||"U,HH}M(1)
1 1 1/2
= CN—1< /@(u’(x))zdx +/@f(u”(x))2dx> ) (3.19)
] ]

This gives (3.13). The bound (3.14) can be established in a similar way. This completes the proof of
Lemma3.2. O

Lemma 3.3. Letu(x) be the unigue solution @8.1)andv(y) = u(g(y)) be the solution of3.2). Then

1
/a)Q(v _ Tv)?dy < CN“*T, 4, (3.20)
-1
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1
/a)Q(v—Hv) dy < CNT, 5, (3.21)
-1

whereT; 1 and T; » are defined by3.15)

Proof. Observe that

1

-1 _ 2
/a)Q(v—Hv)zdy<C/a)1(v—17v)2dy —C sup (Joy0J (v —ITv)gdy)

Y geL? (I) ”g”Lz (D
—C sup ([ra(y — Ty (w(v — )’ )dy)2
wherey € H? o(1) is defined by
1
/ ay’' (wh) dy = / Joghdy, foranyh e H: o(I). (3.22)
-1 -1

It follows from Lemma 3.2 and inequalities similar to (3.19) that

wQ —Mv)?dy < C||(v— vy HLz o sgp
€Ly

1
Y LD ”g”Lz (D)

_4
< CN"¥lav ||H1 1) SUp lay’ ||H1 (1)/||g||Lz Iy
gel2, (1)

and
1

Joow—mv2dy <CN®av|e oy sup [law i /180 0
) g€L2, (1)

Using Lemma 3.1 and (3.22) gives
law' ||z /18112,y S €. for g € L2, (D),

whereC is independent of. Therefore, we have

1 1
/wQ(v — Mv)*dy <CN~*||av/ HHl L) /“’Q(” — MMv)*dy < CN™°|av/ HH2 n
-1 -1

This completes the proof of Lemma 3.30

Having the above lemmas, we are ready to state and prove the main result of this section.
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Theorem 3.1. Letu(x) be the unique solution ¢8.1)andvy (y) be the unique solution ¢8.11) Assume
thatg in (3.1)is positive and/ satisfieq2.12) Then the following error bounds can be obtained

ellu’ — g/NHigm +llu—vylIP<C(N 2+ N 4T, (3.23)

/

ol — vill7py + llu — Uyl S C(N e+ N )T, (3.24)

whereuv y (x) = vy (g~ 1(x)), and T; 1 and T; , are defined by3.15)

Proof. Again letv(y) =u(g(y)) be the solution of (3.2). Laty be the solution of (3.11). It follows from
the Poincare’s inequality, Lemma 3.1, and the standard error estimate for the Galerkin approximation that

1

ellv' = vyl )+ llv = ol 1D S len/( a(' —1')’ + 0w — h)))wdy. (3.25)
Z1

Observe that

ellv’ - U;VHifm(I) + v — UN”L2 oD =eu — y/NHi%(I) + llu _QN”i?(I)’ (3.262)
@ qi

lu — UN||L2 D7 2 Cllu— UN||L2(1) (3.26Db)

The last inequality is due to the assumption thas positive on[—1, 1]. Using Lemmas 3.2 and 3.3,
together with (3.26), leads to (3.23) and (3.24)0]

The above results can be generalized to higher order approximatigfi*it’ (m > 2) exists. The
dominant term on the right side of (3.23) or (3.24) will then be the integral

1
C(N—2m8+N—2(m+1))</C’612m(u(m+1))2dx). (3.27)

-1

Remark 1. The most useful feature of Theorem 3.1 is thatas 0, the dominant terms in the right

hand sides of (3.23) and (3.24) can be controlled by choosing suifaflkis is the essential difference

of such estimates with the conventional ones and will be demonstrated further later. This seems to give a
theoretical interpretation for the efficiency of our Galerkin-spectral scheme wken. If applying the
conventional Galerkin-spectral methods to (3.1) directly (i.e., without using any transformation), then we
only have

1 1
SHM,_M;VHiZ(I)—i_”u MN”Lz(]) C(8N + N~ )(/(u’)zdx—f—/(u”)fidx),
-1 -1

1 1 1

ella’ =y ) + It = unliZz ) < C(eN 4+ N70) ( J)Pdet [y e+ /(u/”)zdx)

-1 -1 -1



326 W. Liu, T. Tang / Applied Numerical Mathematics 38 (2001) 315-345

In the case of having boundary layers the teffa(x”)2dx and [*,(w”)2dx (or [*, J?u")?dx and
f_ll JHu")?dx in (3.23)—(3.24)) are usually the dominant ones in the above error estimates (or in (3.23)—
(3.24)) as= — 0. In many cases one can show that

1 1 1 1
/ T2 de < / (") ek, / T4 dr < / (W")2dr, ase— 0.
21 -1 -1 -1
This seems the key gain of the present method over the conventional methods.

3.2. Advection—diffusion equation

We now consider the following perturbation problem:
—eu"(x) + p()u' (x) + g(x)u(x) = f(x,8), xel, u(£1) =0. (3.28)
To simplify our analysis, we will restrict ourselves to a special class of problems by assuming that

P

c(x):=

This assumption makes the analysis simpler and yet can cover many useful cases. Under this assumptiot
the well-posedness of (3.28) is standard. The transformed equation corresponding to (1.3) reads as

—e(a(V' ) + PO ) + Q)v(y) = F(y,e), yel, v(£1) =0. (3.30)

It is much more difficult to analyze our numerical schemes for (3.30) than for the Helmholtz type
equations. The techniques used in [4] do not seem applicable here &irdasst too small.
We now examine the weak formulation of (3.30). Let

+qx)>0 forxe[-1,1]. (3.29)

AW,2),=¢ f_llav/(wz)/dy + f_lla)sz dy, for v,ze I?Ial)’o(l), (3.31)
B(v,2)y = ffl Pv'wzdy for v,z € ﬁj’o(l). '
The weak formulation is now stated as follows: fine ﬁjﬁo(l) such that
1
A(W,2)p +BW,2), = /a)Fz dy, Vze I—NIal),O(—l, 1). (3.32)
-1
The Galerkin approximation of (3.30) reads as follows: firde Y such that
1
A(vN,h)w—i-B(UN,h)w:/a)thy, YVheYy. (3.33)

-1
To illustrate the main idea for establishing the error estimates for the above Galerkin approximation, we
will only consider (3.33) in the case= 1.

Theorem 3.2. Letc(x) >0o0n[—1, 1] andw = 1. EQ.(3.33)is well posed irty. Letu(x) be the unique
solution for(3.28)and vy (y) be that of(3.33) Assume that there exi€t, C,, 8 > 0 such that

C1<IMA-y)P<C Vyel[-1.11.
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Then the following error bounds can be obtained

ellu’ — vy |22 + e — vy 122, SC(N 2+ N~ 1)1y, (3.34)
e[’ — vy || 72, + llu — uyliZz,, SC(N*e+ N84T, (3.35)
where
1 1
Ty— ( / ()2 dx + f(u”)zdx>, (3.36a)
-1 -1
1 1 1 1
T, = (/(u/)zclxJr/f(u”)zcbwr 14(u/”)2dx+/(1)2(u”)2dx>. (3.36b)
-1 -1 -1 -1

Here vy (x) = vy (g 1(x)), J(x) = J(g 1(x)) and J'(x) = J'(g1(x)). Moreover, ifc(x) > 0 on
[—1, 1], we further have

ellu — Q/NHiZ(I) + lJu — UN”LZ(I) C(N 2+ N, (3.37)

ella’ — vy |72y + lu — vy 1122, S C(N4+ N7, (3.38)

Proof. We begin with the following observations:
1
Z/Pw’wdy = —/P’wzdy = —/Jp/wzdy, Yw e H(I). (3.39)
1 -1 -1

Then it can be shown that there exists a constantO independent of such that for any, w H0 )

{EHU HLZ(I) + ||U||L2 0 S < CB(v,v),

/ (3.40)
oy + ||U||L2Q(1)||w||L2Q(1) + v ||L3(1)||Pw||L§(1)’

wherec = c(g(y)). Without loss of generality, we will assume that the constarin (3.40) equal to
the unit (i.e.,C = 1). Poincare’s inequality and (3.40) imply that the well posedness of (3.33). From the
second inequality in (3.40) we further have

0(1)) + é”vHLZQ(I) + ;”w”LZQ(I) + é“v HL%(I) ”Pw”LZ(I)
(3.41)

& 2
B(v,w) < E(HU/HL,EW

It follows from (3.32) and (3.33) that for anye Yy
B(v—vy,v—vy) =B —vy,v—h),

which leads to
1
gllv' — U;vHig(l) + v — vN||L2 S <C mln /( a(v' — h’)2 +Jetw—hm)?+ Qe Hw —h)?)dy
Y
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Then following the same procedure as in the proof of Theorem 3.1 we can prove (3.34) and (3.35). If
c(x) > co>0o0on[-1, 1], then

2
B(v,w) < EHU/ L?,(I)Hw/ 2yt ||U||L2Q(1)||w||L2Q(1) + C||v||L§(1)||w||L§(1) + ||UI|L§(I)Hw/ L2(D)
€ 1.2 712 2 -1 2 2 1], ..12
< E(HU | 2yt |w ||L§(1)) + C5||UI|L§(1) +C8 ”w”L§(1) + 5”””L§(1) + 8 Jw| L2(1)
(3.42)

wheres is a positive constant. Sinegx) > ¢o > 0, we can maké small enough such that there exists a
L > 0 satisfying

2 2 2 2
”v”L%E(I) - C(S”v”[‘%(]) + (SHUHL%([) 2 LI|U||L35(1). (343)

Therefore, we have

1

el[v = vyllzz, + v = owllzz ) < € min /(G(U' — )"+ = m?)dy.
-1

Consequently, using Lemmas 3.2 and 3.3 we obtain the error bounds (3.37) and (8138).

4. Applicationsof theerror estimates

In this section, we give some applications of Theorems 3.1 and 3.2. We consider two cases: the first
case is for constant weight and the second one is for the weight= (1 — y?)*.

4.1. Constant weight

Assumption 4.1. Assume that there are positive constamts, C such that forx € [—1, 1]
\u(i)(x)] <C+ Ce*"/z(e*“(lfx)/ﬁ + e*”(”x)/*/g), i=12 ..., (4.1)

whereu is the solution of3.1).

The above assumption is indeed the case for many equations of the Helmholtz type [11]. Let us
consider the transformation

x=g(y)= Sin<%y). (4.2)

Straightforward calculation yields that
s =e0y3y). I =(e ) = FVITR,

| 2 2 (4.3)
S0 =g hw) =2
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Therefore,
1
T < C+ C&‘*l/(efza(lfx)/‘/g+e*2V(1+x)/«/5)dx

-1
1

n Cg—Z/(e—Za(l—x)/ﬁ e AN (1 x2)dy
-1
< CHCePypcet<ee™,
whereT; is defined by (3.36). Similarly, we have
T < Ce%2,

It follows from Theorem 3.1 that

{ ellu _Q,NHiZ(I) + llu — QN”%Z(I) C(N"2+N""/e),

<
< C(N e V24 N=8c73/2),

ellu’ = iy |22, + e — vn 2z,

It can be proved that the above estimates can be generalized to give the following result:

ellu’ — QlNHiz(l) + lu — QN”iZ(I) < C(m)(N_zmg_(m_l)/z + N—Zm—Zg—(m-i—l)/Z)’

for all m > 1 (cf. (3.27)), whereC (m) is a constant dependent an but independent ol ands.

329

(4.4)

(4.5)

In Fig. 1, we plot the error bound in (4.5) with = 10, by assuming thaf (m) = 1. It is seen that
with N of the order of several hundreds the errors become very small, even for very small vadues of

We further give the following result.

silon=10e-8

15 =~

107 ~ .

20 1 L 1 L 1 1 1 L 1

40 60 80 100 120 140 160 180 200 220 240

10

Fig. 1. Error bounds in (4.5), witlk = 10.
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Theorem 4.1. Assume the Galerkin-spectral meth@dl1)with the transformatior{(4.2) be applied to
the Helmholtz type equatidi.1). If the Assumptiord.1 holds, then a spectral convergence rate can be
obtained inL?(I) provided that

N 2 8_1/4_87 (46)

whereé is an arbitrary positive constant.

Proof. The right hand side of (4.5) can be written as
Cm)((Ne¥*) 2" /& + (Ne¥/4) 2" 72).
Therefore, spectral accuracy can be obtained as lodgag Y4° with 6 > 0. O
Let us consider another transformation:
y
x=g(y)=—l+/</(l—172)kdn, k>1 and k=
-1

2
L@ = y2)kdy’

which is exactly (2.11). It was pointed out in Section 2 that this transformation satisfies (2.12). Moreover,
we can show that

4.7)

J(y) = K(l _ yZ)k’ J(gfl(x)) < C(l _ x2)k/(k+1)’ J/(gfl(x)) < C(l _ x2)(k*1)/(k+1)

and so on. Thus,
1
T_']_ < C+Cg_l/(e_za(l_x)/ﬁ+e_ZV(1+X)/ﬁ)dx

-1
1

n CS—Z/(e—Za(l—x)/ﬁ e 2V O/VEY (1 xz)Zk/(k+1) dr
-1
< C+ Ce Y2 4 Com¥/2th/tD) 0 g=3/24k/(h+D),
Similarly, it can be shown that
T < C8_3/2+(k_1)/(k+1).

Using Theorem 3.1 we obtain the following error bounds:

!/ / 2 — — —
{gHu — V|12 + e — vyl < C(N26 + N~4)e 324k 64D, @)

~
8||u’ _Q;VHiZ(]) T llu _QN”%Z(I) < C(N_48 + N—6)8—3/2+(k—1)/(k+1)_

In Fig. 2, we plot the error bounds in (4.8) far= 3. Without loss of generality, we choose the
constantC in the bounds as one.
If we let k be sufficiently large, then the above upper bounds can be made close to

2 _ a4
{8||M/_Q;VHL2(1)+||M—QN||22(I)%O(N 212 4 N~4¢ 1/2), (4.9)

eHu’ - Q;VHiZ(I) + Ju — QN”%z(I) ~ O(N_481/2 + N_68_1/2).
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Fig. 2. Error bounds in (4.8) with = 3: (a) is for the first bound, and (b) is for the second bound. The line types
are as follows: dashed line fer= 104, dash-dotted line fos = 10~6 and solid line fors = 10~8.

In Fig. 3, we plot the error bounds in the right hand side of (4.9). It is observed from Figs. 2 and 3 that
by suitably choosing the powérin the transformation (4.7) the spectral accuracy can be obtained with
N of the order of about 100 with the present Galerkin-spectral methods.

It can be proved that the above estimates can be generalized to give the following result:

2 —2m —2m— —-1/2—m
el — iyl + llu = vyl < Clm k) (N72"e 4 N72072) g2/ 0D, (4.10)

for anym > 1. By analyzing the right hand side of (4.10), we end up with the following result.

Theorem 4.2. Assume the Galerkin-spectral meth@dl1)with the transformatior{(4.7) be applied to
the Helmholtz type equatio3.1). If the Assumptior.1 holds, then spectral accuracy can be obtained
in L2(I) provided that

N > g Y20k+D=5 (4.11)

whereé is an arbitrary positive constant.
Similar curves as given in Fig. 1 can be obtained. The spectral convergence properties will also be

confirmed by numerical experiments in Section 6.
The third transformation is the one proposed by Orszag and Israeli [21]:

y=gtx)= (tan‘1 <x

NG

1
) + tan‘l(

x+1
JeE

)) (e

2

&

)

(4.12)
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0
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107 <>

~12
. . . 10 . . .
0 50 100 150 200 0 50 100 150 200

Fig. 3. Error bounds in (4.9): (a) is for the first bound, and (b) is for the second bound. The line types are as follows:
dashed line for = 10~%, dash-dotted line for = 106 and solid line fors = 108,

It can be shown that
1

1
/ ()2 ce + / J2(u")?dr < Ce ™.
-1 -1
Therefore, the resulting error estimates are similar to those for the transformatiorg(y) =
sin((/2)y), see (4.4).

Applying conventional Galerkin-spectral methods to (3.1), we can only expect an upper bound of the
following, see [4],

el = 2l Fay + I = ulgy < C(N 26724 N 4679, (@13)

This estimate is weaker than (4.4) and (4.8). Hence there is a good improvement in using our Galerkin-
spectral methods with appropriate transformations.

Results similar to Theorems 4.1 and 4.2 hold for advection—diffusion equations. As an example, we
consider

—eu"(x) + p(x)u' (x) + g(x)u(x) = f(x,8), xel, u(+1) =0, (4.14)
where
—p'(x)+29(x) >0, px)Za>0, qkx) =8, Vxel[-1,1], (4.15)
o’ +4¢B > 0. '

It follows from [28] that for any solutiom of (4.14)—(4.15)
[u®(x)| < C+ Ce ¥ (e7@I0/e fgmv@0/EY i =12, (4.16)
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wherew, v are positive constants independent oT he bounds in (4.16) imply that the solution of (4.14)
has boundary layers of width (©, while (4.1) suggests that width for the solution of Helmholtz
equations is Q/¢).

If we use the mapping (4.7), then using (4.16) and a similar procedure for Theorem 4.2 leads to the
following error bound:

/ 112 —2m —2(m —y—=1-2m
8”“ _QNHLZ(I) + ”M _QN”iZ([) < C(% k)(N 2 + N & +1))8 y-1-2 /(k+1)7 (417)
whereu is the unique solution of (4.14),y is the solution of (3.33)y > 0 can be arbitrarily small. The
estimate (4.17) leads to the following theorem.

Theorem 4.3. Assume the Galerkin-spectral meth@i33) with the transformatior{(4.7) is applied to
the convection—diffusion equatiqd.14) Then a spectral convergence rate can be observed provided
that

N = O(e~Ykth=0), (4.18)
whereé is an arbitrary positive constant.
This result is weaker than that given by Theorem 4.2, in the sense that to obtain a desired accuracy
the Helmholtz equations require less number of grid points. The reason for this is that the width for the
Helmholtz equations is of the orden (J¢), but for Eq. (4.14) it is Q¢).

4.2. General weights for Helmholtz type equations

Let w(y) = (1 — y?)* for a fixedx with —1 < A < 0. We still consider the transformation (4.7). For
any O<y < %,

1 —14-e” —1+g” 1
o< C [ o) a+ [ aw)Pdr [ o) e+ [ o) d
1—ev -1 -1 1-¢gv

g C (1 —+ 87*177)»/(/(‘%1) + 8(3+)\/(k+1))772*2)//(1+k))
< C(1+4 ¥ P/ D—2-2y/Aeh)y
Similarly, it can be shown that

Tpo < C(1+ % Hh7/ (D =34y /(th)y

If v is chosen close té, then an application of Theorem 3.1 gives

2 _ _ _ _
{eHu’—z’NHmw||u—yN||ie<z><C(N 26 + N~4)g -2/ @0+D)-1/2 w19)

~
2 2 _ _ _ _
elle’ =iz, + e = vy, S CN~e + N7O)p0mb/@ism12
In general, we have
2 2 —2m _2m Ay / (k+1)—m—2 1+k
SHu/ _QINHLS)(I) 4 ”u _QN”LLZD(I) g CN m8 y+y+iy /(k+1)—m—2my [(1+k)

+ CN*Z(m+1)82my+y+)»y/(k+1)7rn7172my/(1+k). (420)
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If v is chosen close té, then the right hand side of (4.20) gives

C(m, y)(N—2m81/2(1+(k—2m)/(k+1)) + N—Zm—zg1/2(—1+(A—2m)/(k+1))). (4.21)
Theorem 4.4. Letw(y) = (1 — y?*, » € (—1,0], o(x) = w(g~1(x)). Let the transformation function
x = g(y) be given by(4.7). Assume the Galerkin-spectral meth@11) be applied to the Helmholtz

type equatior(3.1). If Assumptiort.1 holds, then a spectral convergence rate can be obtaindd i)
provided that

N = O(g~Y/2kth=8) (4.22)

whereé is an arbitrary positive constant.

5. Error boundsfor higher dimensionswith regular domain

The error analysis in previous sections can be extended to higher dimensions when the solution domair
is regular. In this section, we briefly describe the results and the outlines of proof. We here only consider
the Helmholtz type equation. Let(v, z),, and(F, z),, be given in (2.3), i.e.,

d
A(v,z)w=8Z/(ain)(ayivayi(zw))dy+/sza)dy,
2

i:lg

(F,z)wz/an)dy.
19

Then the weak formulation for the Helmholtz type equation of (2.4) is as foIIowsvfmd?j’o(Q) such
that

AW, 2= (F,2)u, VYzeH!y(2). (5.1)
It will be approximated by the following Galerkin-spectral method: firde Y 5 such that
A(y,2)o=(F,2)w, VYzZEeYy. (5.2)

We wish to carry out some error analysis for this scheme. First we need results similar to Lemma 3.1. To
this end, we let

d
a(v,2)y = Z/(af]) (8,,v0y, (zw))dy, c(v,2) = / Quzwdy.
=19 2
Lemmab5.1. Assume that there exist positive constahit€’; and C, such that forl <i <d

Jiw;(a;w;)’

C g], i 1- ~27ﬁ<Ca
1< LD (1-y7) 2 )2

>2, fory,el:=(-11). (5.3)

Then for anyz, v € H2 (£2),
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a(U v)w CZ”ay,v”Lz (_Q)? (54)
i=1

d
la(v, 2)w| < <Z ||8y,v||L2 (Q)) <Z ||8y,-Z||L22, (Q))' (5.5)
i=1 4

Proof. The proof follows a similar idea used in Section 3.1. For the ¢ase2, for instance, we only
need to note that

a(v,z) = /J2(y2)</alaylvayl(za)1(yl))dy1>a)2(y2) dy,
7 7

+f h(n)( [ aziyev, (sz(yz))dy2>w1(y1) dvi+ [ [ Quzody.
1 1 I 1

Then applying Lemma 3.1 will give (5.4) and (5.5)0

For any¢ € Hj,o(fz), we definelT¢ € Y i such that
ath,p —IIp) =0, VheYy. (5.6)

It is clear thatlT¢ is uniquely defined ir¥ 5. Now we are able to extend the error analysis in Section 3
to the high-dimensional case:

Theorem 5.1. Letu(x) be the unique solution ¢5.1)andvy (y) be the unique solution ¢6.2). Assume
that J; satisfieq5.3). Then the following estimate holds

| Vi = Vou 2 + = unliZz )
<C(N2%+N™% i/@(a”>dx+2/ J2(8u>dx (5.7)
= =) 0x; 92x; ' .

wherea(x) = (g (x)), vy(x) =vy(g7 X)), L;(x) = Ji(g 7 (x)), Li(xi) = J/ (g7 (x)).

Proof. The following results are similar to those in Lemmas 3.2 and 3.3: forvamyil 0(£2)

a(v—TITv,v—ITv) <CN~ <Z/ <au>dx+2/ J2<82)Z> dx) (5.8)
clv—IHv,v—IMv) <CN~ <Z/ (8x1>dx+2/ (82x>dx>. (5.9)

We briefly outline the proof for (5.8). It follows from Lemma 5.1 that
a(v—TIv,v—Mv) <a(v—IMT*v,v— "), VYve I-Nlj’o(.Q),
where

d
Ty = (H ®17i*> v,
i=1
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and [T is defined by (3.16). Then using the same techniques as that in Lemma 3.2 and Theorem 4.4
of [2], we can obtain (5.8). The estimate (5.9) can be established by following a similar procedure. Using
(5.8)—(5.9) and the techniques used in the proof of Theorem 3.1 will lead to (537).

However, in general, the solutions of higher dimensional problems have much richer structures, e.g.,
parabolic boundary layers, which do not exist in the 1-D case. Therefore the explinirgy error
bounds obtained for the 1-D problems may only hold for simpler problems of a higher dimension with a
single exponential boundary layer. Also the approach used in this section only works for a tensor-product
type of higher dimensional problems. Much more research is still needed to deal with perturbation
problems in higher dimensions.

6. Numerical experiments

In this section, we consider several numerical examples by using the Galerkin-spectral method (2.9).
Thus Eq. (1.1) is first transferred into (1.3) via a suitable transformation, and then approximated using the
basis functions ir¥ 5. Then the resulting linear systems from (2.9) are solved. All of the computations
are based on the transformation (2.11) witk= 1. In order to demonstrate the high accuracy of the
proposed method in this work, we make some comparisons with the conventional Legendre—Galerkin
methods, Chebyshev—Galerkin methods, and the boundary layer resolving Chebyshev-collocation
method proposed in [29].

6.1. When to stop computation?

Once a coordinate transformation is chosen, we need to know when to stop the computation.
particular, we wish to observe the spectral convergence. ratethis end, the numerical procedure is
proposed as follows.

e Stepl. Choose a set of poinsvery close to the boundaries. For example, if the boundary layer is

near right boundary = 1 then an example of the set is

S ={0.98+ j -0.001|0< j < 20}. (6.1)

Choose a starting number of the basis functiadsz Ny, and perform a computation to obtain
numerical solutior{U;}.
e Step2. Interpolation. After the approximation$tU j}ﬁ."zo are obtained, we use the collocation idea to

obtain the coefficientsczj}f’zo in the following expression:

N
Ux) =Y a;Ti(x), (6.2)
j=0
where T, are Chebyshev/Legendre polynomials. Then use the above expression to obtain
approximate solutions on the s&t The interpolation values wittVy basis functions is denoted
by So.
e Step3. Forl > 1, useN, = 2' - Ny basis functions to obtain the numerical interpolatich®n the
set S. Then compute the differences betwegnand S;_;. If the difference is less than a given
tolerance, then the computation is stopped.
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—— diff N=16 and 32
10° £ - - - N=32 and 64
x N=64 and 128

difference

0.98 1
X axis

Fig. 4. The differences between consecutive grids for Example 6.1switth0~6.

e Step4. Output the numerical results obtained with the largést N;.

Example 6.1. To illustrate the above ideas, we consider the following problem:
{ —eu’"(x) + (1 — x)u'(x) = f(x),

u(0) =exp(—%>, u(l) =sinl+1,

where f is chosen such that the exact solutiom ($) = sinx + exp(—(1 — x)//¢).

(6.3)

This problem does not correspond with one for which the error estimates have been derived. It is
a problem with a turning point at the boundaries. One of the reasons for choosing this problem is to
demonstrate numerically that our Galerkin-spectral methods can handle many types of problems. We
will show that based on the above four steps the convergent solutions can be obtained. Moreover, the
exponential rate of convergence will be observed without using the information of exact solution.

The procedure for solving Example 6.1 is the following. In Step 1, the transformation used is based
on the transformation (2.11) with = 1. The set of points for interpolation is the one given by (6.1).
The starting number of basis functions is choseWgs- 16. The numerical interpolation on the seis
performed as described in Step 2. In Step 3, three finer meshes are employed. The differenceSpetween
andsS;_,, defined by

di(s) == |UP(s) — U (s)|

is computed over the boundary layer Set

We first demonstrate numerical results fo= 1078, In Fig. 4, the differences betweesh and S;_1,
with / = 1,2 and 3 are plotted, which suggests exponential rate of convergenter the Galerkin-
spectral methods. The numerical approximations to the unknown funetisith N = 32 and 64 are
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Fig. 5. The numerical approximations with 32 and 64 basis functions for Example 6.% witt0 5.

2 T 2
o N=32 o N=64
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Fig. 6. The numerical approximations over the boundary point set (6.1) with 32, 64 and 128 basis functions, for
Example 6.1 withe = 10710,

plotted in Fig. 5. It is found that the solution curves obtained by uding 32 and 64 are graphically
indistinguishable. For = 10719, we repeated the previous procedure, except choadsing 32. Over
the boundary layer set (6.1), the numerical approximations to the unknown functitth N = 32, 64
and 128 are plotted in Fig. 6. The agreement of solution curves obtained byNising2 and 64 seems
unsatisfactory, while the curves witti = 64 and 128 are in good agreement.
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6.2. More examples

In this subsection, we consider three examples to verify the theoretical error estimates obtained in this
work. We note that for the transformation (2.11) with= 1, the highest degree of Legendre polynomials
in bothX y andY y_z is N. Hence, we shall compare the conventional Legendre—Galerkin mettiog in
with the new Legendre—Galerkin method¥n,_s. Note, however, thak y is an(N — 1)¢-dimensional
space, while¥ y_3 is an(N — 3)¢-dimensional space.

Let My be the set of the Legendre—Gauss—Lobatto collocation points with respEgt tBor all the
examples considered below, we compute

’

lu — unlle = max |u(g(y)) —un(g())
yeMy

and

’

[v — vy—_sllie = max |v(y) — vy_3(y)
yeMy

wherev = u(g(y)), uy andvy_z are respectively the solution of the conventional Legendre—Galerkin
scheme and the new Legendre—Galerkin scheme. It is clear that the collocation pointg Vatlable(s)

in My are well condensed near the boundary for the@ariables, though we are aware that these
e-independent discrete max-norms may not truly resolve very thin boundary layers.

Example 6.2. Our first example is the one-dimensional diffusion equation
x+1
5
with the exact solution
sinh(x +1)//e) x+1
u(x) = sinh2/&) 2
The solution has a boundary layernat 1 of width O(,/¢).

—EUyy tU=—

xel, u(£l) =0, (6.4)

In Table 1, we list the maximum pointwise error obtained by using the conventional Chebyshev—
Galerkin method (CCGM), our proposed Legendre—Galerkin method (PLGM)di¢),= 1 in (2.9))
and Chebyshev—Galerkin method (PCGM) (i®(y) = (1 — y®~%2 in (2.9)). This example is of
Helmholtz type and the results in Section 4.1 should apply. In fact, the numerical results confirm that
the Galerkin-spectral method (2.9) is more efficient than the conventional ones for solving problems with
boundary layers. Since =1, it follows from Theorem 4.2 that spectral accuracy can be obtained for
N > ¢~ Y43 with § > 0. For the values of used in Table 1, the corresponding values of* are 100,
178, 316, 562 and 1000, respectively. The errors listed in Table 1 confirm the theoretical prediction.

Example 6.3. The second example is the one-dimensional convection equation
1
—8uxx+ux=—§, xel, u(£l) =0, (6.5)
with the exact solution
exp(x+1)/e)—1 x+1
u(x) = — .
exp2/e) — 1 2
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Table 1
Maximum pointwise errors for Example 6.2
N e=108 e=10"° e=10"10 e=10"1 e=10"1
CCGM 512 7T9E-8 6.4E—4 4.6E-2 6.7E—1
1024 65E—8 24E-4 35E-2
2048 62E—6 7.2E-5 6.4E-3
PLGM 64 45E-3 39E-2 14E-1
128 13E-5 4.5E—4 4.7E-3 23E-2 6.4E-2
256 30E-12 6.6E-9 2.2E-6 11E-4 15E-3
PCGM 64 67E-4 49E-3 3.6E-2
128 18E-6 7.5E-5 17E-4 3.8E-3 7.6E-3
256 10E-12 11E-10 72E-7 54E-5 4.1E-4
Table 2
Maximum pointwise errors for Example 6.3
N e=10"% £=10"° e=10" e=10" e=108
CLGM 512 22E-7 18E-1
1024 13E-9 9.5E-4 8.9E-1
2048 42E-8 5.1E-2 o)
PLGM 64 32E-3 16E-1
128 97E-6 3.8E-3 3.3E-2 o
256 21E-12 14E-6 16E-3 27E-2 o)
512 685E-12 24E-7 5.1E-4 35E-2
BLRCC 64 Q1.0E-2)
128 Q(1.0E-5) O(1.0E-1)
256 Q(1.0E-12) O(1.0E-3)

The solution has a boundary layemat 1 of width O(¢).

In Table 2 we list the maximum pointwise error obtained by using the conventional Legendre—Galerkin
method (CLGM) and the Legendre—Galerkin method (2.9) (PLGM). Table 2 also includes the results
given by the boundary layer resolving Chebyshev-collocation method (BLRCC, cf. [29]). Again it is
observed that the Galerkin-spectral method proposed in this work is much more accurate than the
conventional spectral method. It is also noted that the PLGM is even more accurate than the BLRCC.
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Table 3
Maximum pointwise errors for Example 6.4;is the number of the basis functions used
in each coordinate direction

N e=108 e=10"° e=10"10 e=10"1
CLGM 128 38E-1
256 21E-2 27E-1
512 66E—7 80E-3 19E-1
PLGM 64 Q9E-3 5.7E-2
128 26E-5 6.2E—4 7.2E-3 25E-2
256 35E-11 15E-8 4.8E—6 24E-4

However, it is clear that more points are required for this problem than the previous example. This
confirms the theoretical predictions in Theorems 4.2 and 4.3.

It should be pointed out that for a fixéd, the computational complexities of the conventional methods
and the methods proposed in this work can be made essentially the same (see [25,26]).

Example 6.4. The last example is a two-dimensional diffusion equation:

{—8Au+2u:F, (x1,x2) € 2 =17 ulyo =0, (6.6)
F(x1,x2) = —3((x1 + Dw(x2) + (x2 + Dw(xy)) '
with
sinh((x +1)//e) x+1
w(x) = — .

sinh(2//¢) 2
This equation has the exact solutio(xy, x2) = w(x1)w(x2) which has boundary layers of width(Q’)
at(x; =1, xo) and(xq, xo = 1).

In Table 3, we list the maximum pointwise error obtained by the CLGM and PLGM. Observations
similar to those for the 1-D problem, Example 6.2, are made for this 2-D example. The computational
complexities of our Galerkin methods (2.9) and the conventional methods are also essentially the same
in 2-D.

The errors listed in Tables 1-3 are measured disaretemaximum norm. It would be useful to see
what happens to the error away from the points at which the error is sampled in the table. To this end,
we plot in Figs. 7 and 8 the numerical error of Example 6.2 with 108 and N = 128, and the error of
Example 6.3 withe = 10° and N = 256, respectively. In these two figures, we choose the following set
of paints

S={-1+0.01j |0< j <200

and use the idea of interpolations as described in Step 2 of the last subsection to obtain approximate
values on the above set of points. Fig. 9 shows the error of Example 6.4 wittD-8 and N = 128. The
interpolation values used for the MATLAB plot are obtained on the following point set

S ={(xi,y;) =(—1+0.04i, -1+ 0.04j) | 0< i, j <50}.
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Maximum Error
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x axis

Fig. 7. Error of Example 6.2 far = 10~ and N = 128, obtained by using the Legendre—Galerkin method (2.9).

Maximum Error
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10°
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Fig. 8. Error of Example 6.3 far = 10~° and N = 256, obtained by using the Legendre—Galerkin method (2.9).

It may not come as a surprise to find the major portion of the errors in the three figures all located near
the boundaries, and as a result it would appear natural to move more points into the boundary layers.
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Fig. 9. Error of Example 6.4 for = 108 and N = 128, obtained by using the Legendre—Galerkin method (2.9).

7. Concluding remarks

In this section, we make a number of remarks on the numerical methods and the theoretical results

obtained in this work.

1. The proposed Galerkin-spectral methods involve some suitable transformation functions. In
practical computations, these functions may also involve a free parameter. One family of such
transformations is

y
ngk(y)=—1+x/(1—n2)kdn, k>1 and Kzl;,
e f,l(l— 772)k d’?

which is exactly (4.7). Another family is proposed in [29] that is of forra: g, (y), where
go(y) =y,

g (y) = sin(%gkl(y)>, k>1

Numerical experiments suggest tthat 1 or 2 is sufficient to speed up the spectral convergence.

2. Although it may be possible to fully resolve the boundary layer for a specified problem by
applying a suitable stretching transformation in theory, in practice it is essentially impossible to
resolvearbitrarily thin boundary layers with a non-adaptivendependent coordinate stretching.
Consequently, the methods studied in this papemat@appropriate if one is interested details
of arbitrarily thin boundary layers. To fully resolve an arbitrarily small boundary layetsjiform
meshes such as Shishkin’s grid [27] and Schwab and Suri’s grid [24] should be employed.

3. On the other hand, spectral methods have the advantage thatisfreasonably large, then
exponential rate of convergen@an be obtained. For singularly perturbed problems, very large
(unpractical)N is required in order to gain this spectral accuracy. The goal of this work is to show
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that spectral methods plus coordinate stretching allow us to use reasonably large number of basis
functions to gain the exponential rate of convergence. In solving singularly perturbed problems
with conventional spectral methods, spectral accuracy can only be obtainedNvke®@(s 7).

Our main effort is to make thig smaller, say from% to ‘—11 or less for Helmholtz type equations,

by using appropriate coordinate stretching. If one is interested in seeing the exponential rate of
convergence with practical number of basis functions then the Galerkin-spectral methods studied
in this work should be one of the good choices.

4. Another objective of this work is to give a theoretical interpretation of the high accuracy behavior
of the Galerkin-spectral method involving coordinate transformations. The error analysis is quite
difficult, partly because the transformed equation is highly degenerate. Ideally, the error bounds
should be derived in maximum-norms rather than the present energy-norms that may not truly
resolve very thin boundary layers. However, there are still some technical difficulties in obtaining
the error estimates with max-norm. Therefore the relation between the proved and the observed
facts could be purely intuitive.

Acknowledgements

The authors would like to thank Dr. Ningning Yan of the Chinese Academy of Sciences for providing
part of the numerical results. Thanks also to the referees for valuable suggestions which lead to an
improved presentation of this paper. The research of the second author was supported by RGC Gran
of the Hong Kong Research Grants Council and FRG Grant of the Hong Kong Baptist University.

References

[1] U. Asher, R.M. Mattheij, R.D. Russell, Numerical Solution of Boundary Value Problems for Ordinary
Differential Equation, Prentice-Hall, Englewood Cliffs, NJ, 1988.

[2] C. Bernardi, Y. Maday, Properties of some weighted Sobolev spaces and applications to spectral approxima-
tions, SIAM J. Numer. Anal. 26 (1989) 769-829.

[3] J.P. Boyd, Chebyshev and Fourier Spectral Methods, Lecture Notes in Engineering, Springer, Berlin, 1989.

[4] C. Canuto, Spectral methods and a maximum principle, Math. Comp. 51 (1988) 615-629.

[5] C. Canuto, M.Y. Hussaini, A. Quarteroni, T. Zang, Spectral Methods in Fluid Dynamics, Series of
Computational Physics, Springer, Berlin, 1988.

[6] J.R. Cash, M.H. Wright, A deferred correction method for nonlinear two-point boundary value problems,
SIAM. J. Sci. Comput. 12 (1991) 971-989.

[7] H. Eisen, W. Heinrichs, A new method of stabilization for singular perturbation problems with spectral
methods, SIAM J. Numer. Anal. 29 (1992) 107-122.

[8] L. Greengard, Spectral integration and two-point boundary value problem, SIAM J. Numer. Anal. 28 (1991)
1071-1080.

[9] W.-Z. Huang, D.M. Sloan, A new pseudospectral method with upwind features, IMA J. Numer. Anal. 13
(1993) 413-430.

[10] E. Kalinay de Rivas, On the use of nonlinear grids in finite-difference equations, J. Comput. Phys. 10 (1972)
202-210.
[11] R.B. Kellogg, A. Tsan, Analysis of some difference approximations for a singular perturbation problem

without turning points, Math. Comp. 32 (1978) 1025-1039.



W. Liu, T. Tang / Applied Numerical Mathematics 38 (2001) 315-345 345

[12] H.-O. Kreiss, N.K. Nichols, D. Brown, Numerical methods for stiff two-point boundary value problems,
SIAM J. Numer. Anal. 23 (1986) 325-368.

[13] J.-Y. Lee, L. Greengard, A fast adaptive numerical method for stiff two-point boundary value problems, SIAM
J. Sci. Comput. 18 (1997) 403-429.

[14] M. Lentini, V. Peyrera, An adaptive finite difference solver for nonlinear two-point boundary problems with
mild boundary layers, SIAM J. Numer. Anal. 14 (1977) 91-111.

[15] W.B. Liu, J. Shen, A new efficient spectral Galerkin methods for singular perturbation problems, J. Sci.
Comput. 11 (1996) 130-145.

[16] W.B. Liu, T. Tang, A new boundary layer resolving spectral method, in: AMS Proceedings of the Conference
on Mathematics of Computation 1943-1993, AMS, 1993.

[17] Y.Y. Liu, The pseudospectral Chebyshev method for two-point boundary value problems, M.Sc. thesis,
Department of Mathematics and Statistics, Simon Fraser University, Burnaby, B.C., Canada, 1992.

[18] R.M.M. Mattheij, G.W. Staarink, An efficient algorithm for solving general linear two point BVP, SIAM J.
Sci. Statist. Comput. 5 (1984) 745-763.

[19] J.J.H. Miller, R. O'Riordan, G.I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems,
World Scientific, Singapore, 1996.

[20] L.S. Mulholland, W.-Z. Huang, D.M. Sloan, Pseudospectral solutions of near-singular problems using
numerical coordinate transformations based on adaptivity, SIAM J. Sci. Comput. 19 (1998) 1261-1289.

[21] S.A. Orszag, M. Israeli, Numerical simulation of viscous incompressible flows, Ann. Rev. Fluid Mech. 6
(1974) 281-318.

[22] H.-G. Roos, M. Stynes, L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations,
Springer, Berlin, 1996.

[23] A.H. Schatz, L.B. Wahlbin, On the finite element method for singularly perturbed reaction—diffusion problems
in two and one dimensions, Math. Comp. 40 (1983) 47-89.

[24] C. Schwab, M. Suri, The andhp versions of the finite element method for problems with boundary layers,
Math. Comp. 65 (1996) 1403-1429.

[25] J. Shen, Efficient spectral-Galerkin method I: Direct solvers for the Helmholtz equation and the biharmonic
equation using Legendre polynomials, SIAM J. Sci. Comput. 15 (1994) 1489-1505.

[26] J. Shen, Efficient spectral-Galerkin method II: Direct solvers of second- and fourth-order equations using
Chebyshev polynomials, SIAM J. Sci. Comput. 16 (1995) 74-87.

[27] G.1. Shishkin, Grid approximation of singularly perturbed elliptic and parabolic equations, Second Doctoral
Thesis, Keldysh Institute of Applied Mathematics, USSR Academy of Sciences, Moscow, 1990.

[28] M. Stynes, E. O'Riordan, A finite element method for a singularly perturbed boundary value problem, Numer.
Math. 50 (1986) 1-15.

[29] T. Tang, M.R. Trummer, Boundary layer resolving pseudospectral method for singular perturbation problems,
SIAM J. Sci. Comput. 17 (1996) 430—-438.



