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Abstract

In this paper, we construct and analyze a fully discrete method for phase-field gradient flows,
which uses extrapolated Runge—Kutta with scalar auxiliary variable (RK-SAV) method in
time and discontinuous Galerkin (DG) method in space. We propose a novel technique to
decouple the system, after which only several elliptic scalar problems with constant coef-
ficients need to be solved independently. Discrete energy decay property of the method is
proved for gradient flows. The scheme can be of arbitrarily high order both in time and space,
which is demonstrated rigorously for the Allen—Cahn equation and the Cahn-Hilliard equa-
tion. More precisely, optimal L?-error bound in space and gth-order convergence rate in time
are obtained for g-stage extrapolated RK-SAV/DG method. Several numerical experiments
are carried out to verify the theoretical results.
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1 Introduction

Gradient flows become more and more significant in science and engineering. A large class of
mathematical models can be read as PDEs in the form of gradient flows, for instance crystal
growth, liquid crystals, thin films, tumor growth, solidification, interface dynamics, see, e.g.,
[3,5, 6,19, 36, 37]. Generally, we consider a system with the total free energy in the form:

S[u]:%(u,ﬁu)—i—é’l[u], (1.1)

where (-, -) is the standard L? inner product, £ is a symmetric non-negative linear operator,
and &1[u] is nonlinear but with only lower-order derivatives than £, and £1[u] is bounded
from below. A general form of the gradient flow associating with the free energy (1.1) can
be written as

ou 8&

—_— = s and = —, 1.2

2y Gu n= (1.2)
supplemented with suitable boundary conditions and initial data. Here, a non-positive sym-
metric operator G determines the dissipation law of the system, e.g., G = —Z and G = A

leading to the L? gradient flow and the H~! gradient flow, respectively. Since G is non-

positive, the free energy is non-increasing due to the following energy dissipation law

délu]l  (8E Ou
dr Su’ ot

= ) =(n,Gpn) 0.
Various gradient flows are listed in Table 1. Without loss of the generality and to keep the
presentation short, we limit our concentration on the AC and CH equations in this work. The
AC equation was originally introduced by Allen and Cahn in [2] to describe the motion of
anti-phase boundaries in crystalline solids. and the CH equation was introduced by Cahn
and Hilliard in [8] to describe the complicated phase separation and coarsening phenomena
in a solid. In recent decades, the AC and CH equations have become two commonly used
phase-field equations, which have been widely applied to many complicated moving interface
problems in materials science and fluid dynamics through a phase-field approach coupled
with other models, see, e.g., [3, 10, 44]. Efficient and energy stable numerical schemes for
phase-field gradient flows are very prevalent in the last few decades [16, 18, 20, 25, 30, 33,
40], and we refer to [17] for an up-to-date extensive review on this subject. In particular,
inspired by the invariant energy quadratization (IEQ) approach [42, 43], Shen et al. [12,
31, 32] propose the scalar auxiliary variable (SAV) method, which can be implemented
efficiently for a large class of gradient flows. And [11] proposes a new Lagrange multiplier
approach to design unconditional energy stable schemes for gradient flows, which can keep
the original energy dissipating. However, high order (higher than second order) backward
difference formula (BDF) methods based either on the IEQ or the SAV formulations do
not immediately lead to energy-decaying numerical schemes theoretically, even though they
perform very well in numerical simulations. Recently the authors in [1] have break this
barrier. They construct a class of extrapolated and linearized Runge—Kutta (RK) methods
based on the SAV formulation which can be of arbitrarily high order in time for the AC and
CH phase field equations. Also, they have proved that the schemes satisfy a discrete version
of the energy decay property. More recently, highly efficient and accurate scheme just by
BDFs based on a new SAV formulation is proposed in [23].

Moving the concentration from time discretizations to space discretizations, it is well-
known that discontinuous Galerkin (DG) methods are very powerful. The DG method is a
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Table 1 Example of the gradient flows

Type of G Elu]
: _ lop, oo 102
Allen—Cahn (AC) equation G=-1 |Vul|* + (u 1)“ ) dx
o\2 42
1
Cahn-Hilliard (CH) equation G=A f —IVul® + — @? = 1)) dx
o \2 42
1 1
Thin film model G=-T ~1Aul? + — In(1 + |[Vu?) ) dx
2 \2 g2
1 2 2 1 4 1—¢ 2
Phase field crystals Gg=A —|Aul® — |Vul* + -u™ + u” ) dx
o \2 4 2

class of finite element methods, which uses completely discontinuous piecewise polynomials
as basis to approximate solutions. The first DG methods [28] for hyperbolic equations were
introduced by Reed and Hill in 1973, and the local discontinuous Galerkin (LDG) meth-
ods were introduced by Cockburn and Shu [15]. More references on theoretical analysis of
DG/LDG can be found e.g. in [4, 7, 14].

In particular, the DG methods have been also successfully applied for the phase field
problems, see, e.g., [21, 34, 39].

In this paper, we present a fully discrete scheme for a large class of phase-field gradient
flows, which can be of arbitrarily high order both in time and space. The time discretization
is based on the extrapolated RK—SAV method as in [1], and the space discretization is based
on the DG method. We call the scheme as extrapolated RK-SAV/DG method for short. We
show that the scheme satisfies a discrete energy decay property as

Elul 1 rasa] < EMul, 1),
where £ [uf;, rn] is the discrete (modified) energy of the numerical solution. Moreover, we
show the optimal error estimates in space as well as the gth-order convergence rate in time
of the proposed ¢-stage extrapolated RK-SAV/DG method for the AC and CH equations. In
addition, we propose a technique to decouple the system, after which only several elliptic
scalar problems with constant coefficients need to be solved independently.

The paper is organized as follows. In Sect. 2, we briefly recall the SAV reformulation,
then we combine the extrapolated RK—SAV method and the DG method to obtain the fully
discrete scheme for gradient flows and present the implementation process. The discrete
energy decay property is proved in Sect. 3. Then we show the optimal error estimate for the
AC and CH equations in Sect. 4. In Sect. 5, several numerical experiments are carried out to
validate the theoretical results. Some concluding remarks are given in the finial section.

2 Extrapolated RK-SAV/DG Method

In this section, we present the extrapolated RK—-SAV/DG method for gradient flows. It is
started with rewriting (1.2) into SAV reformulation as in [31, 32]. Then we combine the
extrapolated RK—SAV method [1] in temporal discretization and DG method in space dis-
cretization to obtain the fully discrete scheme for gradient flows, called as extrapolated
RK-SAV/DG method. We provide the detailed implementation process in the last. Periodic
boundary conditions, homogeneous Neumann boundary conditions or homogeneous Dirich-
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let boundary conditions can be applied. Without loss of generality, we only consider the
homogeneous Dirichlet boundary conditions in the analysis.

2.1 Extrapolated RK-SAV Method

The SAV approach first introduces a scalar function only depending on ¢ as

r(t) :=vE&ul+&, 0<t<T,

where & is a positive constant to keep r (¢) being real. Thus, the gradient flow (1.2) is rewritten
as

ou
5 =Gu,
w=Lu+rH@u), 2.1

1
e = E(H(u)’ u),

where
1 8&1
VET+ & du’

Note that the first- and second-order semi-implicit BDF methods schemes can be applied
directly for the above system [32]. More importantly, it can be demonstrated that the energy-
decay property is also preserved for the BDF methods. To obtain higher order temporal
discretizations to preserve energy-decay property, we will use the extrapolated RK-SAV
method. Let N be a positive integer and 7, := nt,n = 0, ..., N, be the uniform partition
of the time interval [0, T'] with time stepsize T := T /N. Furthermore, let ¢,; :==t, + ¢;7,
i=1,...,q,n =0,..., N — 1, denote the inner Runge—Kutta nodes. Thus, the g-stage
Runge—Kutta method, described by the Butcher tableau

Hw) = 2.2)

Definition 1 We call a RK method is algebraically stable if fori, j = 1,...,¢q

— The matrix A = (a,- j) is invertible,

— b >0,¢; #cjfori # j,

— The symmetric matrix M € RY*9 with m;; = b;a;; + bja;; — b;b; is positive semidef-
inite.

Both Gauss type methods and Radau type IIA methods are algebraically stable Runge—Kutta
methods, for further details of the tableau for Gauss and Radau ITA type methods, we refer
to Chapter IV, section IV.5 in [38].

Given internal stages u,1,;,i = 1, ..., q, we denote by u],_,(¢) the Lagrange interpola-
tion polynomial of degree at most ¢ — 1 satisfying

Uy ((th1)) =up—1i, i=1,....q,
and use the abbreviation I u,; := u; _,(t,;), which approximates u(#,;) by the extrapo-
lation method using the values u,—1;, i = 1, ..., q. Similarly, we denote by Inr_lu(t) the
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Lagrange interpolation polynomial in ¢ of degree at most ¢ — 1 interpolating the exact solution
u satisfying

[yf_lu(tl’l—],i) = u(tn—l,i)7 l = 1, e 761-

Providing that the nodal approximations u,, r, and the internal stages u,—1,;,71 = 1,...,q,
are given, applying above g-stage RK to the SAV formulation (2.1) immediately yields

itni = g//«nia in £2,

Mni = Luyi + rpi H(I;_luni)s in £2, (2.3)

Unpi = Up +'CZ‘(;:1 aijﬂnjs in £2,

. 1 .

I'ni = j(H(I;_lquni)» ”'ni)s 2.4)

i =Th +7 Zj:l Aijrnj,

and the numerical solution at time level #,,4 is given by

Upt] '=Up+ 7T Z?zl bitty;, (2.5)
Tl i=Tp + T Z?:] bifp;.

Homogeneous Dirichlet boundary conditions are imposed for u,,; and ;.

2.2 DG Methods

Next we briefly introduce the DG method. Let 7;, = {K} be the triangulation of the domain
£2, and we assume the triangles K to be shape-regular. Thus, the discontinuous finite element
space is defined by

Vi ={veL*(2):v|g € P(K), VK €T},
X ={o € [L2(2)]¢ :0|g € Z(K), VK € T},
where P(K) = Px(K) is the space of polynomial functions of degree at most k > 1 on K
and X (K) = [Py(K)]?. Furthermore, we define the inner product notation as

(w, v)g :/ wvdK, (w,v)aK:f w vds,
K oK

(%P)K:/ q -pdk, <q,p>aK=f q - pds,
K 0K

for scalar variables w, v and vector variables ¢, p, respectively. Naturally, the inner products
on £2 are defined as

(w,v) == (w,v)g =Y (W, vk, (¢.p):=(q pa=y (g Pk
K

K

And the L2 norm, L norm on the domain §2 and the boundary I” are given by the standard
definitions:

lull == llulle =@, w)e, llullpee) =esssup,.colul, llullr =@, wr.

Then we consider the model problem:

—Au = in 2
u=f, in 2, (2.6)
u=0, on 052.

@ Springer
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Table 2 Overview of numerical flux choices

ujy T
Central flux {{up}} {mpd) — v [lunl]
Local DG flux (LDG) {up}} + B - [[un]] {mn) = B [nl] — v [[un]]
Interior penalty flux (IP) {up}} {Vup}t — v [lun]]

Let us rewrite the problem as a first-order system:

= Vu, in £2,
—V.pr=f, in §2,
u=20, on 052.

Following Cockburn and Shu [15], we consider the following general formulation: finding
up € Vyand my, € X} such that forall K € 7,

{(nh,a)K = —up, V- po)k + (. ng - po),, Vo € Z(K), 0

(T, Vén)k = (f- )k + (T - prk. dn)y,  You € P(K),
where the ng is the outward normal unit vector to d K and the numerical fluxes u% and 7’

are approximations to u and 7, respectively, on the boundary of K. Some choices of the flux
is present in Table 2. The standard notation is taken as

-4t
() = %

where u can be either a scalar or a vector. The jumps along a normal n is defined as
[ull=n"u +n"u™, [[ull=n"-u" +n" -ut.

Note that there are several alternatives to these three options for the numerical fluxes and we

refer to [4] for a complete discussion of these.

In (2.7), summing up all the elements and eliminating the auxiliary variable mj, we derive
the following formulation:

By (un, ¢n) = (f én), Yo € Vi, (2.8)

where

By (un, ¢n) = (Vup, Vo) — 75 ([[un — ui]]- v} + {7 }) - lgn) dx

- ?gr (1venl {{un — i }} + [[7]] ton)) .

with I and I represents the set of unique edges and the set of unique purely internal edges,
respectively. We call (2.8) as the primal formulation of the method with the bilinear form
B (-p, - p). For details of the formulation we refer to [4, 22].

With the above definitions, we can simplify the notations by defining the discrete Laplacian
Ah : Vh — Vh as

(Aputp, o) = =B (up, dn), You € Vi,

and the L? projection IT, : L* — Vj, as

(TR HE_ul), ¢n) = (HUT_ju)), ¢1), You € Vi,

@ Springer
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and let H,; := HhH(I,f,luﬁ,-)- Hence, G and £ can be defined in the discrete case, corre-
sponding to the non-positive symmetric operate G, and the non-negative symmetric operate
Ly, respectively.

2.3 Fully Discrete RK-SAV/DG Scheme and Decoupled Technique

Now it is ready to introduce the fully discrete extrapolated RK—SAV/DG scheme. For the
system (2.3)—(2.5), the fully discrete scheme reads as fori = 1,...,¢q

<h h

um’ = gh“m”
h h

Mpi = Lnuty; + rni Hyj, (2.9
h _ h q ey

U = Uy + T D5 Gijity;,

S -

Tni = > (Hm, l/lm»), (2.10)

Tni =1n + TZ?:I aij’:nja

and updating uf; 41 and rp41 by

W h ¢ b
{“n+1 =y T ) iy ity

. .11
Fagl = Tn + T Y i_; bifni.

Homogeneous Dirichlet boundary conditions are imposed for uﬁl’i and [LZi.
Note that we need to solve coupled the system (2.9)—(2.11). To enhance the efficiency,

in the following, we intend to decouple the system. Denote U,, := (MZI’ R ufl’q)T, R, =
Futyevrs rnq)T, 1:=(1,..., l)T, and I as g x g identity matrix. From (2.9) we have
(A = GuLu U, = u"t 7' AT1 + BR,, (2.12)

where Bj is the diagonal matrix-valued function
By = Gpdiag(Hy1, ..., Hyg).

Now we decompose 1" '!A~! = T~LAT, where A is a ¢ x ¢ diagonal matrix, and 7T is
nonsingular. The above equation (2.12) can be represented as

T YA = GLyDTU, = ubt'A™"1 + B\ Ry,
(A =Gy DTU, = Tu"'t'A""1 + TByR,.

Then we compute 7'U, by
TU, = (A =Gl D' Tult=' A~ "1 4+ (A — GL, )™ TB R,
and get U,
Up=T YA =G LD ' Tt ' A" "1+ T YA = GuL )™ TBIR,.  (2.13)

For simplicity, we denote g, = T~ (A — GLp )~ 'Tu't='A""1, B, = T71(A —
GnLy 1)~ T By, and rewrite (2.13) as

Up = &n + By R,. (214)
Using the third relation of (2.9) gives
Up=1t"'A" (g, —u"1) + 7 'A7'B,R,. (2.15)
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Substituting (2.15) to the first relation of (2.10) yields
Ry=1t""fo+ 1t "F,R,, (2.16)

where

1 - - T
fu= 5((Hm, A7 g = uf (D) - (Hag A7 (80 —uZl)(q)))

and

1 -1

F, = E(Fij), Fij = (Hni, (A™'Bp)ij) .

Substituting (2.16) into the second relation of (2.10), it follows

Ry =ry1+ Af, + AF,R,. 2.17)
Consequently, we finally derive

Ry = — AFn)_l(rnl + Afu).

Now we have R, then from (2.14), (2.15) and (2.16), we can get U,,, U, and R, instantly,
and update uﬁH and r,4+1 by (2.11).
In summary, we can decouple the scheme (2.9)—(2.11) as the following way:

1. Compute g, and B, from (2.12)—(2.13).

2. Compute f;, and F;, from (2.16).

3. Compute R, from (2.17) and get U, U,, and Rn from (2.14), (2.15) and (2.16). Then
update “Z+1 and r, 41 by (2.11).

Remark 1 1In the above, we treat G, and L, as operators. When computing g, and B, from
(2.12)—(2.13), we only need to solve a few equations like (A — G, L)x = b, which can
be solved efficiently, instead of solving the system (r7'A"' = G,£,Dx = b. And the
coupled system (2.9)—(2.11) has a unique solution (U,, R,) which is obviously seen by these
decoupled elliptic equations.

3 Energy Decay of the Extrapolated RK-SAV/DG Method

In this section we will show that the extrapolated RK-SAV/DG method of the system (2.9)—
(2.11) preserves the discrete energy decay property. We denote the discrete energy of the
numerical solution at #,, by

1
8[u2, ]l = E(uﬁ, ﬁth) + I’,% — &,

r2

. . . h
, ;. — & does not coincide with &y (uy,).

also referred as the modified energy, since in general

Remark 2 (ufl, L uZ) is defined by Bj,, for example if £L = —A + B1, with § being a positive
constant, then (u", L,u"y = By, u) + g, u"). Thus we have (u", £,u") > 0. Here,
the constant 8 can be viewed as a stabilization term to produce more regular solutions. More
discussions about 8 can be found in [32].
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Theorem 1 (Discrete energy decay property) Let the Runge—Kutta method be algebraically
stable, i.e., satisfy Definition 1, and assume that the values u,—1;,i = 1,...q, and (u,, rp)
are given. Then the extrapolated RK—SAV/DG method (2.9)—(2.11) preserves the energy
decay property in sense of

Elul Ly, rngr] < EMult 1yl 3.1)
Proof According to the first relation of (2.11), we have

(uz+l’£hu2+l) (u +Zbum’£h(un +‘EZb um)>

i=1

q
= (uh Lot +2er (sl aily) + 2 7 by (il iy ),
i,j=1
since (u [,hu )= (Llhu uﬁi). Substituting u,’; = uZi -7 Z‘}:l a,-jb'tﬁj (the third relation
in (2.9)) into the second term on the right-hand side of the last relation gives

q q
h h h  h h -h -h
(un+] ’ Ehun—&-l) = (un’ Mn) +2t Zbi Uy — T Zaijunj’ [’huni
i=1 =1
+12 Z biby (il £l )

i,j=1

Hence,
q q
h h h h 2
(un-H’ [’hun+]) = (un’ ﬁhun) +2t Zbi ( Upi» ﬁhum) -7 Z mij ( Uyis ﬁhun})
i=1 i j=1
with m;; = b;a;j + b; aj, bibj, i,j =1,...,q. Using the positive semi-definiteness of
matrix M = (m;;) and (i), Lpii);) > O yields
q
(s Loalr) = (ks Loal) +2 Dby (uls Laitly) (3.2)
i=1

Similarly, we can obtain

Tuyl =Ty +T2brm< nu',‘>- 3.3)
From the first and second relation in (2.9), we can derive that
il i) = (1 Gamly ) (3.4)
('um’ Zz) = (uz’ [/hb"]nli) + Tni ( ni s dh‘) . 3.5
Combining with (3.2)—(3.5) yields
1 1 4
5 (e Lutdhg ) ity = 5 (e o) 40+ D7 by (sl Galy )
i=1

This completes the proof of (3.1), since b; > Ofori =1,..., ¢, and (/Lﬁi, Qhuﬁi) <0. O
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4 Error Analysis for the Extrapolated RK-SAV/DG Method

In this section, we follow [1] with the elliptic projection technique [26, 29, 35] to establish
the optimal error estimates of the extrapolated RK-SAV/DG method for the AC and CH
equations. We assume that the values W), i=1,..., q, u" (1) and r (#;) have been given
or approximated accurately.

4.1 Preliminaries

First, the local truncation errors €,;, €41, dni and dy, 41 for the semi-discrete extrapolated
RK/SAV scheme are defined by fori =1, ...,q,

i = Gl
M = —Dwy 1o H (L7 uh;) “.D

* ok q A .
Uy, = Uy +TZ./-=1 AijUy; ~+ €ni,

r= L (H (1) i),

"2 i 4.2)
r;l(i = rr‘; +T 23:1 aij’:,:,‘ +dni7
Wi =+ T Y b 4 e 3
’"r:-H = rr‘: +T Z?:l bi’;,:,' +dpy1,
where H (u) is defined by (2.2), and
uy = utn), 1y =rtn), up = ulty) =ulty +¢;7), 1y =71tni) =1ty + ¢;7).

Lemma 1 (Consistency estimate, [1]) If the exact solutions u and r of AC equation are
sufficiently smooth, then the following consistency estimate holds

q
lentill @y + ldnril + D (lenill g1y + lduil) < CTIT (4.4)

i=1
In space discretization, following [4, 9, 22], we have some knowledge about the bilinear
form By, (up, ¢n) and the error estimates of the elliptic problem (2.6):

e Coercivity:
By (91 1) = Cellgnlipg.  Yén € Vi,
with the natural DG norm :
IglldG = IVSI* + I~ 2LUgNIF + 1~ 2plT,, b =T/T:.
e Continuity:
By (un, ¢n) < Crllunllvglignllve,  Yén € V.

e Galerkin orthogonality: let # be the smooth solution satisfies (2.6), and all numerical
fluxes in Table 2 are consistent, from which

By (u, ¢n) = (f,dn),  Véu € Vi,

then we have the Galerkin orthogonality

Br (u —up, pp) =0, Vo, € V.
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e Error estimate of the elliptic problem (2.6): supposing the solution u of (2.6) is sufficient
smooth, 1, is the numerical solution of (2.8), then there are the error estimates as follows

lu — upll < CH*Y, Jlu — upllpg < Ch*, (4.5)

where C only depends on [[u| gr+1(oy. and || - pllg=(s2) is the Sobolev norm [13].

4.2 Error Estimate
Theorem 2 (Error estimate for the AC equation) We assume that Runge—Kutta method is
algebraically stable with g > 2, and that the following conditions hold:

— the exact solution of the AC equation is sufficiently smooth;
— the starting approximations (“81" roi) are sufficiently accurate such that

Hu(zl)_u7H2+|r<t1)_r1|2+ri(|\u(r0i>—u8,- 2+|V(10i)—1’0i)|2)

i=1
< Co(@™ + h*%2),

for some constant Cq independent of t, h;
. . . . . h
— fori =1,...,q, starting approximations satisfy ||u(l0i) — ug; ”LOO(Q) <1

Then the discrete solution to (2.9)—(2.11) for the AC equation satisfies the following error
estimate with sufficiently small time step T and mesh grid size h:

2
h 2
nEN < H”(tn+1) — Uy H + |r(ta1) — ol

l<n<N-1
q
h
+7 Z <H’4(tni) — Uy,
i=1

Proof We first define the elliptic projection Pu € V}, of a smooth solution u:

By (u—Pu,¢p) =0, Ve, €V,

(4.6)

2
+ [r(tni) — r,,,-)|2)> < C(22 4 p2*+2),

and from (4.5) we have |lu — Pu|| < Ch¥*1,
For the AC equation G = —Z, we have from (4.1)—(4.3) that for any ¢fl’ € Vp, and
i=1,...,q,

(éniv @) = =B (eni. o) — (”niH (Iryu) + e (HUTyuy) = HUY ) d’l)’
eni=en+t lel':] aijénj + &nis

4.7
i = % (HUF_yuhy) = HUZ_quly), i) + % (H (L yt): éni) (4.8)
i = 1 + T 202y @ijinj + di
entl =y + T Y i biéni + Ent1, (4.9)
Ml = en 4+ T Y1y bitii + duy1,

with the boundary conditions e,; = 0, and the following notations:
-h

ek h " h . ek
Cn = Uy — Uy, Cpi = Uy — Uy, Cpi = Upp — Uy,

R * .ot— * . W .r— X - .
Npn =1, —TIn, Nni = Tpi — Tnis Nni =Ty — Tni-
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Furthermore, we have
en = uy —Pul +Pey, eni =u,; —Pu);, +Pey, é, =i, —Pil,; + Pey;.
Let 1 <m < N. In the following, we assume that for n < m the error function satisfies
len—t1,illL=y <1, i=1,...,q. (4.10)

We will prove that above inequality holds also for » = m + 1 by mathematical induction.
From the first relation of (4.9) we have

q
Pey i1 =Pey + 17 Y biPéyi + Py (4.11)

i=1

Taking the square of LZ-norm of both sides of (4.11) gives

q
Pe, + T Z biPép;

i=1

2 q
IPen 111> = +2 <P8n+1, Pe, + T ZbiPém) + IPen1 17

i=1

(4.12)

Next we approximate the first two terms on the right-hand side of (4.12). For the first term,

we find

2 q q

= [Pey|* + 27 Y b;(Péni, Pen) + 7> Y bibj(Péyi, Péyj).
i=1 i,j=1

q
Pe, + 1 Z b;Pé,;

i=1

(4.13)

Noticing that from the second relation of (4.7), there is

q
Peni = Pey + 7 Z a;jjPéyj + Pey;. (4.14)
j=1
Replacing Pe,, in the second term of (4.13) by Pe,,; — Z';zl a;jjPe,j — Pey; gives

q 2

Pe, + T Z biPép;

i=1

q q
= [Pey|® +21 Y b; (Péni. Peni — Peni) — 1% Y m;j(Péyi, Péyj).
i=1 i,j=I

Using the positive semidefinite of the matrix M yields
2 q
< Penll® + 27 Y bi(Péni. Peni — Peyi). (4.15)

i=1

q
Pe, + T Z biPép;

i=1

To estimate (Pé,;, Pey;), inserting qﬁfll = Pe,,; into the first relation of (4.7) gives
(i Peni) = —Beni, Pens) = (mai H (1l ) + iy (HUT_un) = HUTyul) ) Peni ).
Applying Cauchy-Schwarz inequality, there is

(Péni, Peyi) < — (ity,; — Pity;, Peyi) — By (Peyi, Pepi)

2 ), |1 2
+ Clnpil” + C max [le,—1,ilI” + —|Pey|l
1<i<q 4

1
<CH**2 = By(Pens, Pe) + Cliail* + € max llew—1]1* + 5 [Peui .
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which gives
(Péy;, Peyi) + By (Pey;, Pey;)

1 1
< —[IPeuill> + Clnnil*> + C max |lep_1.i11*> + = [Peni|* + ChZ*+2,
2 1<i<q 2

where we have used the following inequality from [1], when (4.10) holds

and the Galerkin orthogonality and elliptic projection:

miH a3y (HUE ) = HUE ) )| < ol € max e

By, (Peyi, Peni) = Bi(eni, Peni), ||y, — Piiy; || < Ch**.

Applying Cauchy-Schwarz inequality for t Z?: 1 bi (Pé,;, —Pey;) yields

q
—T ) bi (Péyi, Peyi) < C(|tPéyil|> + [IPeyi /7).

i=1
It is apparent from Lemma 1 that
IPeni /Tl = 791Pepi /791> < T(lleni /T4 + Neni /79T — Peyi /T77 ) < C19.
And from (4.11), there is
[TPéni > < ClIPes||* + Cl[Pensr||* + C2472 (4.16)

so we can derive
q
—T ) bi (Péni, Peyi) < Ctl|Pepyr | + C|[Pe, ||* + CTH.
i=1
Using the estimates of (Pé,;, Pey;) and t Z?:] b; (Pé,;, —Pe,;), we can rewrite (4.15)
into
2 q
‘ +1 ) biB(Peyi, Peyi) — CT[Peyi |

i=1

q
Pe, + 1 Z biPén;
i=1

q
< (1 4+ CDPey > + 7 Y bi(lIPeni > + Clnuil®)
i=1

+Ct max |le,_1;|> + Ct(h*F2 4 £29). 4.17)
1<i=q

Now we estimate 2 (Pei1, Pey + 7 Y0, biPéy; ) + |Pey1 |1, which is the remaining term
of the right hand side (4.12). From (4.11) we can find

q
2(Pe,i1, Pen + T ) biPén) + [Petil® = 2(Peyy1, Penir) — [Peny |1
i=1
By Cauchy-Schwarz inequality, we find

(Pey i1, Peyt1) < TlPenit [IPenr1 /Tl < CT(lIPeniil® + [Peyr/Tl?).
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Thus there is the following estimate

q
2(Peni1,Pey + 7 ) biPéni) + [Peural® < Ct|[Peypa|* + CTH . (4.18)
i=1
Combining (4.12) with (4.17) and (4.18) gives

q
T
IPenstI® + 5 3 biBu(Peni, Peni)

i=1

q
< (14 CO)[Penll* + C Y (IPenill* + i l* + llew—1.i1%)
i=1

+Ct (W2 4 £29) (4.19)

Similarly, from (4.8) we can infer that

q
T
1> <(+ COlinl> + 7 3 biBy(Peni, Peni)

i=1

p (4.20)
+Ct Y (IPewi 7 + nuil® + lew—1.1%) + CT(W*+2 4 £29),
i=1
It is apparent from (4.19) and (4.20) that
T q
IPen 112 + s I + 4 Eb,-sh@em-, Pe,;)
1=
q
< (14 Ct) (IPenll* + 11a1*) + €T Y (IPenill* + Imnil* + len—1.1°)
i=1
+Ct(h*+? 4 %), 4.21)

We now approximate the term Ct ?:1 (IPeni |12 + |1 |?) on the right-hand side. To this
end, multiplying (4.14) by Pe,; and using the Cauchy-Schwarz inequality yield

q q q
> IPesill* < CllPen > + CT Y aij(Pénj. Peyi) + C Y [IPeni >, (4.22)
i=1 i,j=1 i=1

Similarly, substituting d)ﬁ = Pe,; in the first relation of (4.7) gives
. 1 1 1
(Péni, Peyj) < EBh(Peni» Pe,i) + EBh(Penjv Pe,j) + E”Peni 1>+ Clini?
1
+C max flen—1il” + S [[Pe;|I* + Ch*+2,
1<i<q 2

which leads to
q

D aij(Péyj, Peni)

i,j=1

q
< C Y (Bu(Peni. Peni) + [IPeni > + 11nil* + lea—1i1%) + CH* 2. (4.23)
i=1
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Combining (4.23) with (4.22) and (4.16) leads to

q q
> IPenill < CliPeylI* + CT Y (Bu(Peni. Peni) + [Penill* + il + lea—1.i17)

i=1 i=1
+Cr (W2 4 %), (4.24)

Similarly, from (4.8) we can prove

q q
D lmil* <Clnal® + €t Y (Br(Peni, Peyi) + IPei |1 + i I* + lew—1.:11%)

i=1 i=1

+ Ct (W2 4 %),

(4.25)

Summing up (4.24)~(4.25) and noting that the term Ct Y_7_, (|[Pe,;[|*> + |1,/1?) on the right-
hand side can be absorbed by the left-hand side, for sufficiently small 7. It follows that

q q
(IPewi > + [mni1*) < € (IPenll* + 11a1*) + CT Y _ biBu(Peni, Pen)
=1 \ =l (4.26)
+Ct Y lenrill® + Cr(h®F2 4179,
i=1
where we use the positivity of the weights by, .. ., b,. Substituting this inequality into (4.21)

yields

q
T
IPenstI? + mng1l? + - 3 biBu(Peni, Peni)
i=1

q
< (14 C17) (IPen ) + [nal*) + C17> Y biBBy (Peni, Peni)

i=1

q
+C1T Y llen1ill® + Crr (B4 + %),
i=1

with some constant C;. Multiplying (4.26) by 2C t and adding to the above inequality gives

q q
T
IPenstll® + [mas1]? +2C1T Y (IPenill* + mnil®) | + = biBy(Pen;, Peyi)
4

i=1 i=1

q
< (14 Co7) (IIPen I + [nal*) + C2t> Y biBB (Peni, Peni)

i=1

q
+(C1+ Car)T Y [Py lI> + Cot (h*F2 + 729),
i=1
where the elliptic projection property [le,—1,;ll < [[Pe,—1ll + ChF+1 s applied and the
constant C; is independent of t. The term Cyt2 ?:1 bi By, (Peyi, Pe,;) can be absorbed by
the left-hand side with sufficiently small t if C; + C>t < 2Cj. Therefore, the inequality
above reduces to

q q
T
IPeni1l* + gt +2C1T Y (PewiI* + 1mnil®) | + < Y biBBy(Peni. Peni)
i=1 8 i=1
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q
< (1+Q2C1 + C)7) [nPenn2 +lml? +2C1T Y (IPey—1ill* + |nn1,,-|2)}
i=1

By Gronwall’s inequality, we obtain

q q
T
max (||Pen+1||2 + 1> 4+ 2C1T Y (IPenill* + |nm»|2>> + g 2 biB(Peni, Peni)

1<n<m X ;
i=1 i=1

q
<C [nPeln2 +Iml* +2C1t Y (IPeoi* + |nol~|2)} + C(h*F2 4 £20),

i=1
Using the elliptic projection property of P yields
lens1ll < Ny gy = Pus | + [Pensyi |l < CH! + [[Pepsall.
It is easy to see that
lem1ll + lm+1] < CUHH 429,
lem | + Inmil < CT=3 (24 + B+,

Moreover, using inverse inequality gives

_d _d _1
lemillLoo(2y < Ch™2 |lemill < Ch™ 2772 (¢4 4+ hFF),

By noting that 1 <d <3,¢g > 2 and k > 1, we then obtain
llemill L2y < 1,

for sufficiently small t and & (the smallness is independent of m). This completes the math-
ematical induction on (4.10). Consequently, the error estimate (4.6) follows as (4.51) and
(4.51)hold forall 1 <m < N — 1. ]

Remark 3 One can also use the LDG method for space discretization and the optimal error
estimate in space can be achieved with Cartesian meshes similar as in [21, 27]. Again, the
energy decay property of can be preserved by using the LDG method for both Cartesian
meshes and triangle mesh. One major advantage of the LDG method is that it can be imple-
mented easily for the case with variable coefficient like Gu = V - (¢ V).

Theorem 3 (Error estimate for the CH equation) We assume that Runge—Kutta method is
algebraically stable with g > 2, and that the following conditions hold:

— the exact solution of the CH equation is sufficiently smooth;
— the starting approximations (uéi, roi) are sufficiently accurate such that

2 q

h 2 h

Hu(fl) —uj HB +lrt) —nl"++ -21 (Hu(tm) — up;
=

2 2
5 + |r(toi) — 7o) )

< Co(% + 1),

for some constant Cg independent of t, h;

— fori =1,...,q, starting approximations satisfy ”u(to,-) - u&. HLOO(_Q) <1
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Then the discrete solution to (2.9)—(2.11) for the AC equation satisfies the following error
estimate with sufficiently small time step T and mesh grid size h:

2
h H 2
max u(t, —u —+ |r (1 —r
1Sn%l(\\ (1) = |+ 10 Go) = s

q
+7 Z <”u(tni) - uf;l'

i=1

2
_— |r(tni) — rni)|2)> < C(™ + ),

where the energy-norm || - ||g := ~/Bu(-, -) is equivalent to the semi-H"' norm for smooth
functions.

The basic idea and technique involved for the proof of the above theorem are very similar
as ones in Theorem 2. The main difference is to replace the || - || by the energy norm || - ||5.
Thus, the optimal L? estimate for the CH equation can be obtained by Sobolev inequality. A
specific point is given below: as the error function of the CH equation is similar to (4.7)-(4.9),
we just need to rewrite the first relation of (4.7) in the following form

(@nis ¥ = =Bn(enis i),
(el &) = B (enis @) + (nui H (1l ) + g (HUZ i) = HUTqul)) o 61 ).
where the e,’fi =W = /,LZi. Comparing to Theorem 2, the critical difficulty in the proof

of Theorem 3 is to bound the term By, (Pé,;, Pe,;). Similar as in [26], we use Lax-Milgram
theorem to define an invertible operator 7 : V, — Vj, as

B (@n, TYn) = (@n, Y1), You € Vy.

Then we take test function 1/’,? = JPé,; and ¢,’l' = Pé,,; to get the estimate of By, (Péy;, Pey;).
We close this section by pointing out that in Theorem 3 the error estimate is optimal in
sense of the energy norm.

5 Numerical Examples

In this section, we present several numerical examples to illustrate the accuracy and the
energy decay property of the extrapolated RK—-SAV/DG method for the AC and the CH
equations. In the following, we choose Gauss type RK methods for temporal discretization
and the interior penalty (IP) flux, which leads to IPDG for the space discretization.

We first take £L = —A + = and
e

B [ 2
Eilu]l = —E(u, u) + 5 4—‘92(14 — 1)~ dx,
in the original energy (1.1). Note that this modification does not affect the implementation
process and the error analysis described above.

Example 1 We consider the following one-dimensional AC equation

1
i — Dt + — (¥ —u) = g(x, 1), (x,1) € (0,27) x (0, 1),
&

with two types of initial values and boundary conditions as follows

Casel: up(x) = sin(x) with u = 0 on 02, 5.1)
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Table 3 (Example 1) max|<g<p llu(ty) — u" ”LZ(.Q) for the Gauss type RK3 by 4-point extrapolation for
Dirichlet boundary condition Case I and Neumann boundary condition Case II, respectively

T =1/40 T =1/60 T=1/80 T =1/100 T=1/120

Case I 3.8841e-08 6.6875e-09 1.9359¢-09 7.6193e-10 3.5904e-10
- 4.3388 4.3090 4.1790 4.1268

Case II 3.8835e-08 6.6879e-09 1.9372e-09 7.5448e-10 3.5387e-10
- 4.3383 4.3069 4.2260 4.1524

Case II: ug(x) = cos(x) with d,u = 0 on 952. 5.2)

We first choose €2 = 1 and test the time accuracy for the numerical methods. The source
terms g(x, t) are chosen such that the exact solutions for (5.1)—(5.2) are respectively

Case I: u(x,t) = e 'sin(x), and Casell: u(x,t) = e ' cos(x).

Here we take 8 = 0, & = 0 and implement the DG method with polynomial degree k = 3
and mesh size & = 27/360. The L? errors of the numerical solutions at time 7 = 1 are
demonstrated in Fig. 1. Optimal convergence rates in time are observed. As mentioned in [1,
41], if we use (g + 1)-point extrapolation, with an internal node of the Runge—Kutta method
as an additional interpolation point for the nonlinear term, then the scheme is of (¢ + 1)th
order in the time for AC equation. And we give a numerical test in Table 3.

Secondly, we set g(x, t) = 0 and consider the same initial value

up(x) = 0.5sin(x) + 0.1 * Rand(x), (5.3)

with homogeneous Dirichlet and Neumann boundary conditions respectively. We illustrate
the energy decay property of the 3-stage extrapolated RK—SAV/DG method in Fig. 1. Here we
take B = 0, & = 0,2 = 0.01, and implement the DG method with polynomial degree k = 2
and mesh size h = 7 /20. The first stages u&., i=1,...,qand uﬁ’ are derived by ETDRK4
method [24]. The time step is T = 1/400 and the final time is 7 = 0.1. The numerical
results show that the discrete energy decays, which are consistent with our theoretical result
in Theorem 1.

Example 2 We consider the following one-dimensional CH equation

it — Oyy <—8xxu + 8%(”3 — u)) =g(x,t), (x,1)€(0,2m)x(0,1),

with periodic boundary condition and the initial value as follows
ug = sin(x).

We first choose ¢2 = 1 and test the accuracy of the numerical methods by choosing the
source term g(x, #) such that the exact solution is

u(x,t) = e 'sin(x).

We test the 2-stage extrapolated RK—-SAV/DG method for time accuracy. Here, we take
B =0, & = 100 and implement the DG method with polynomial degree k = 3 and mesh
size h = 27r/80. The L? errors of the numerical solutions at time 7' = 1 are presented in Fig.
2. To test the space accuracy, we choose 8 = 2, & = 1000 and use the time step 7 = 10~*
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Fig.1 (Example 1) 1D AC equation. Upper: error of time discretization, (left) Dirichlet boundary condition;
(right) Neumann boundary condition. Bottom: discrete energy evolution, (left) Dirichlet boundary condition;
(right) Neumann boundary condition

with 3-stage extrapolated RK-SAV/DG method and apply the DG method with polynomial
degree k = 2. The L? errors of the numerical solutions at time 7 = 0.3 are presented in
Fig. 2. Again, optimal convergence rates in both time and space are observed.

In the second part, we set g(x, ) = 0 and consider the initial value as in (5.3)

with periodic boundary conditions. The energy decay property of the 2-stage extrapolated
RK-SAV/DG method is demonstrated in Fig. 2. The first stages “81' i=1,...,qand u}l’ are
derived by ETDRK4 method. Here we set &2 = 0.01, B =2, & = 1000 and implement
the DG method with polynomial degree k = 2 and mesh size 1 = 7/20. The time step is
7 = 1/500 and the final time is 7 = 0.1.

Example 3 We consider the following two-dimensional AC equation

1
du— Au+ — @ —u)y=g(x,y.0), x,y.1€(0,2m)* x (0, 1), (5.4)
&

here we just consider Dirichlet boundary condition and the initial value give by

up(x,y) = sin(x) sin(y), with u =0 ondf2.
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Fig. 2 (Example 2) 1D CH equation: left: time accuracy; middle: space accuracy; right: discrete energy
evolution

Table 4 (Example 3) space accuracy for 2D AC equation with k = 3

h 7/10 7/15 7/20 7/30 7/40
L2- error 2.4858¢-05 4.8768e-06 1.5389¢-06 3.0330e-07 9.5880e-08
order - 4.0169 4.0094 4.0054 4.0031

We first set €2 = 1 and test the accuracy of the numerical method by choosing the source
term g(x, y, t) such that the exact solution is

u(x, v, t) = e 'sin(x) sin(y).

Weset 8 = 0, & = 0and use the time step T = 10~ with 3-stage extrapolated RK—-SAV/DG
method and test space accuracy by applying the DG method with polynomial degree k = 3.
The L? errors of the numerical solution at time 7 = 0.5 are presented in Table 4, which are
consistent with the analysis. In this example, we omit the time accuracy test.

To show the energy decay property, we set g = 0 in Eq. (5.4) and consider the initial value
and boundary condition given by

u = 0.4 xRand(x, y) +0.25, with u =0 onds2.

We present the discrete energy decay property for the 2-stage extrapolated RK-SAV/DG
method in Fig. 3 . Here we set 2 =0.01, B =0, & = 0 and implement the DG method
with polynomial degree k = 2 and mesh size 1 = m/10. The time step is 7 = 1/500 and the
final time is 7 = 0.1.

We close this section by pointing out that although all numerical examples are carried
out by the Gauss type RK methods other relevant RK methods such as the Radau IIA type
methods also work well.

6 Conclusion

In this work, we developed an extrapolated RK-SAV/DG method for solving phase-field
problems. The novelty of this method is that the corresponding fully discrete system requires
only solving a system of linear equations at each time level. A strategy is proposed to decouple
the system, which results in solving several scalar elliptic problems independently. We have
proved the optimal error bound of the fully discrete scheme for the AC and CH equations.
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Fig.3 (Example 3) Discrete energy for 2D AC equation with 2=001,7t=1 /500

Moreover, it can be shown that the scheme preserves the discrete energy decay property at
all time levels.

On the other hand, as mentioned in [1], if we use (¢ + 1)-point extrapolation, with an
internal node of the Runge—Kutta method as an additional interpolation point for the nonlinear
term, then the scheme is of (¢ + 1)th order in the time for AC equation. We test the 4th-order
by using Gauss type RK3 with the 4-point extrapolation.
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