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FAST FOURIER-LIKE MAPPED CHEBYSHEV
SPECTRAL-GALERKIN METHODS FOR PDES WITH INTEGRAL

FRACTIONAL LAPLACIAN IN UNBOUNDED DOMAINS\ast 

CHANGTAO SHENG\dagger , JIE SHEN\ddagger , TAO TANG\S , LI-LIAN WANG\dagger , AND

HUIFANG YUAN\P 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In this paper, we propose a fast spectral-Galerkin method for solving PDEs involving
an integral fractional Laplacian in \BbbR d, which is built upon two essential components: (i) the Dunford--
Taylor formulation of the fractional Laplacian; and (ii) Fourier-like biorthogonal mapped Chebyshev
functions (MCFs) as basis functions. As a result, the fractional Laplacian can be fully diagonalized,
and the complexity of solving an elliptic fractional PDE is quasi-optimal, i.e., O((N log2 N)d) with N
being the number of modes in each spatial direction. Ample numerical tests for various decaying exact
solutions show that the convergence of the fast solver perfectly matches the order of theoretical error
estimates. With a suitable time discretization, the fast solver can be directly applied to a large class
of nonlinear fractional PDEs. As an example, we solve the fractional nonlinear Schr\"odinger equation
by using the fourth-order time-splitting method together with the proposed MCF--spectral-Galerkin
method.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . integral fractional Laplacian, Dunford--Taylor formula, mapped Chebyshev func-
tions, biorthogonal basis functions, nonlocal/singular operators
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1. Introduction. Diffusion is the movement of a substance from an area of high
concentration to an area of low concentration, which is a ubiquitous physical process
in nature. The normal diffusion models rooted in Brownian motion have been well-
studied for years. However, numerous experimental and scientific evidence has shown
that many phenomena and complex systems involve anomalous diffusion, where the
underlying stochastic processes are non-Brownian [41, 39, 40]. Notably, the fractional
models have emerged as a powerful tool in modeling anomalous diffusion in diverse
fields (see, e.g., [49, 28, 38, 18, 9, 13, 51, 15] and the references therein) over the past
two decades. The nonlocal operators involved therein typically include the Riemann--
Liouville, Caputo, and Riesz fractional integrals/derivatives, or the fractional Lapla-
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cian. They share some common and interwoven difficulties, e.g., the nonlocal and
singular behaviors, so they are much more challenging and difficult to deal with than
the usual local operators. The recent works [34, 10] provide an up-to-date review in
particular for numerical issues with several versions of the fractional Laplacian. The
interested readers are also referred to [50, 22, 19] for nonlocal and fractional modeling
in many other applications.

A large volume of literature is available for numerical solutions of one-dimensional
spatial and temporal fractional differential equations, which particularly include the
finite difference methods/finite element methods (see, e.g., [20, 23, 27, 31, 32, 57]
and many references therein), and spectral methods (see, e.g., [16, 29, 36]). In this
work, we are mainly interested in the integral fractional Laplaican in multiple dimen-
sions, which is deemed as one of the most challenging nonlocal operators for both
computation and analysis. It is known that for s \in (0, 1), the fractional Laplacian of
u \in S (\BbbR d) (the functions of the Schwartz class) is defined by the Fourier transform

( - \Delta )su(x) := F - 1
\bigl[ 
| \xi | 2sF [u](\xi )

\bigr] 
(x) \forall x \in \BbbR d.(1.1)

Equivalently, it can be defined by the pointwise formula (cf. [42, Prop. 3.3])

(1.2) ( - \Delta )su(x) = Cd,s p.v.

\int 
\BbbR d

u(x) - u(y)

| x - y| d+2s
dy, x \in \BbbR d,

where ``p.v."" stands for the principle value and the normalization constant

(1.3) Cd,s :=
\Bigl( \int 

\BbbR d

1 - cos \xi 1
| \xi | d+2s

d\xi 
\Bigr)  - 1

=
22ss\Gamma (s+ d/2)

\pi d/2\Gamma (1 - s)
.

As a result, to evaluate the fractional diffusion of u at a spatial point, information
involving all spatial points is needed. If u is defined on a bounded domain \Omega , we first
extend it to zero outside \Omega , and then use the above definition.

As many physically motivated fractional diffusion models are naturally set in
unbounded domains, the development of effective solution methods has attracted
much recent attention. In general, the existing approaches can be classified into the
following two categories.

\bullet This first is to approximate the solution by the orthogonal basis functions, and
fully use the analytic properties of the fractional Laplacian performing on the
basis (see, e.g., [17, 37, 55, 54]). Based on some analytic fractional calculus
formulas of generalized Laguerre functions, Chen, Shen, and Wang [17] devel-
oped an efficient spectral method for the one-dimensional fractional Laplacian
on the whole line. Using the property that the Hermite functions are invari-
ant under the Fourier transform, Mao and Shen [37] proposed the Hermite
spectral-Galerkin method in the transformed domain based on the Fourier
definition (1.1). Tang, Yuan, and Zhou [55] explicitly evaluated the Hermite
fractional differentiation matrices and implemented the spectral-collocation
methods based on some elegant analytic tools. The idea was extended to the
rational approximation in [54]. It is noteworthy that due to the singular and
nonseparable factor | \xi | 2s in (1.1), these methods become complicated even
for d = 2, and computationally prohibitive for d \geq 3.

\bullet The second is to use suitable equivalent formulations of the fractional Lapla-
cian to alleviate its notorious numerical difficulties. In Caffarelli and Silvestre
[14], the d-dimensional fractional Laplacian is extended to a d+1 dimensional
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INTEGRAL FRACTIONAL LAPLACIAN 2437

elliptic operator with degenerating/singular coefficients in the additional di-
mension. This groundbreaking extension, together with the follow-up works
for the fractional Laplacian in bounded domains, provides a viable alternative
for its mathematical and numerical treatment (see, e.g., [43, 44, 5] for finite
element methods). On the other hand, the variational form corresponding
to the fractional Laplacian can be formulated as the Dunford--Taylor formula
(cf. [11, Thm. 4.1]): for any u, v \in Hs(\BbbR d) with s \in (0, 1),\bigl( 

( - \Delta )
s
2u, ( - \Delta )

s
2 v

\bigr) 
L2(\BbbR d)

= Cs

\int \infty 

0

t1 - 2s

\int 
\BbbR d

\bigl( 
( - \Delta )(\BbbI  - t2\Delta ) - 1u

\bigr) 
(x) v(x) dx dt,

(1.4)

where \BbbI is the identity operator and Cs = 2 sin(\pi s)/\pi . In particular, for the
fractional Laplacian in a bounded domain \Omega \subseteq \BbbR d, we have\bigl( 

( - \Delta )
s
2 \~u, ( - \Delta )

s
2 \~v

\bigr) 
L2(\Omega )

= Cs

\int \infty 

0

t1 - 2s

\int 
\Omega 

\bigl( 
( - \Delta )(\BbbI  - t2\Delta ) - 1\~u

\bigr) 
(x) v(x) dx dt,

(1.5)

where \~u denotes the zero extension of u. Very recently, the finite element
method with sinc quadrature (in t), was implemented and analyzed in [11, 12]
based on (1.5). For each quadrature node tj , one solves the elliptic problem

(1.6)  - t2j \Delta wj + wj = \~u in \BbbR d, i.e., wj = (\BbbI  - t2j\Delta ) - 1\~u(x),

where the unbounded domain has to be truncated, and the size of the domain
depends on tj . In fact, many sinc quadrature points should be used to resolve
the singularity near t = 0, but the problem (1.6) becomes stiff and sharp
boundary layers at \partial \Omega can occur.

We also remark that direct discretization of the integral fractional Laplacian on
bounded domains based on the definition (1.2), was discussed in some recent works
(see, e.g., [30, 24] for finite difference methods and [2, 1, 4, 5, 21] for finite element
methods).

In this paper, we develop a fast spectral-Galerkin method for PDEs involving an
integral fractional Laplacian in \BbbR d. Consider, for example, the model equation

(1.7) ( - \Delta )su(x) + \gamma u(x) = f(x) in \BbbR d; u(x) \rightarrow 0 as | x| \rightarrow \infty ,

where s \in (0, 1) and \gamma > 0. The efficient spectral algorithm is built upon two essential
components: (i) the Dunford--Taylor formulation (1.4) for the fractional Laplacian;
and (ii) the approximation of the solution by the tensorial Fourier-like biorthogo-
nal mapped Chebyshev functions. As a result, the complexity of solving (1.7) is
O((N log2N)d), where N is the degree of freedom along each spatial dimension. The
integration in t (in (1.4)) can be evaluated exactly by using such a formulation and
basis, so the main computational cost is from the mapped Chebyshev function (MCF)
expansions with FFT. In fact, the framework is also applicable to Hermite functions,
but Hermite approximation is less compelling for at least two reasons: (i) the lack of
FFT; and (ii) slow decay of the solution or the source term. As opposed to the usual
Laplacian, the fractional Laplacian of a function with typical exponential or algebraic
decay will decay algebraically at a much slower rate (see Propositions 4.2--4.3 of this
paper). Thus, the MCF approximation is more preferable. Indeed, ample numerical
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results show that the fast solver for (1.7) has a convergence behavior in agreement
with the theoretical estimate for various decaying exact solutions being tested.

The rest of this paper is organized as follows. In section 2, we first introduce the
MCFs and generate the Fourier-like biorthogonal MCFs in one dimension. In section
3, we describe the fast MCF--spectral-Galerkin method built upon the Dunford--Taylor
formulation of the fractional Laplacian. We conduct the error estimates and provide
ample numerical results to show the convergence order of the solver is in agreement
with the theoretical prediction in section 4. In the final section, we apply the solver
to spatial discretization of the fractional nonlinear Schr\"odinger equation, and also
conclude the paper with some final remarks.

2. Fourier-like MCFs. In this section, we introduce the MCFs, from which we
construct the Fourier-like biorthogonal MCFs as one of the important tools for the
efficient spectral algorithms to be designed in the forthcoming section.

2.1. Mapped Chebyshev functions. Let Tn(y) = cos(n arccos(y)), y \in \Lambda :=
( - 1, 1) be the Chebyshev polynomial of degree n. The Chebyshev polynomials satisfy
the three-term recurrence relation

(2.1) Tn+1(y) = 2yTn(y) - Tn - 1(y), n \geq 1,

with T0(y) = 1 and T1(y) = y. They form a complete orthogonal system in L2
\omega (\Lambda ),

namely,

(2.2)

\int 
\Lambda 

Tn(y)Tm(y)\omega (y) dy =
\pi cn
2
\delta nm with \omega (y) = (1 - y2) - 

1
2

where \delta nm is the Kronecker symbol, and c0 = 2 and cn = 1 for n \geq 1. Recall the
recurrence formulas (cf. [52])

(2.3) yTn(y) = (Tn+1(y) + Tn - 1(y))/2, (1 - y2)T \prime 
n(y) =

n

2
(Tn - 1(y) - Tn+1(y)).

We now define the MCFs as in [26, 45, 48].

Definition 2.1. Introduce the one-to-one algebraic mapping

(2.4) x =
y\sqrt{} 

1 - y2
, y =

x\surd 
1 + x2

, x \in \BbbR , y \in \Lambda ,

and define the MCFs as

(2.5) \BbbT n(x) =
1\sqrt{} 
cn\pi /2

\sqrt{} 
1 - y2 Tn(y) =

1\sqrt{} 
cn\pi /2

1\surd 
1 + x2

Tn

\Bigl( x\surd 
1 + x2

\Bigr) 
for x \in \BbbR and integer n \geq 0.

Remark 2.1. As with the Hermite approximation (cf. [53, 45]), one can incorpo-
rate a scaling factor \nu > 0 to improve the performance of the MCF approximation.
More precisely, using the mapping

x =
\nu y\sqrt{} 
1 - y2

, y =
x\surd 

\nu 2 + x2
, x \in \BbbR , y \in \Lambda , \nu > 0,

the scaled MCFs can be defined as

\BbbT \nu n(x) :=
1\sqrt{} 
cn\pi /2

\nu 1/2\surd 
\nu 2 + x2

Tn

\Bigl( x\surd 
\nu 2 + x2

\Bigr) 
=

1\surd 
\nu 
\BbbT n

\Bigl( x
\nu 

\Bigr) 
.
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Following [46, 47], we examine the collocation/quadrature points mapped from the

Chebyshev--Gauss points
\bigl\{ 
yj =  - cos( (2j - 1)\pi 

2N )
\bigr\} N
j=1

. Note that the mapped points are

distributed in [x1, xN ] with

xN =  - x1 = \nu cot
\pi 

2N
\approx 2\nu 

\pi 
N,

and by the mean value theorem, the stretching of the Chebyshev--Gauss points obeys
the rule

xj+1  - xj =
\nu 

(1 - \xi 2j )
5/2

(yj+1  - yj), \exists \xi j \in (yj , yj+1).

It is seen that the scaling factor offers a flexibility to tune the distribution of points so
that most of then can be distributed in an interval containing the portion of the solu-
tion of physical interest (cf. [53]). In principle, we can choose \nu adaptively depending
on N or time for time-dependent problems (cf. [35]). We remark it is straightforward
to extend the properties and algorithms from the usual MCFs to the scaled MCFs
with a constant scaling factor. For clarity of presentation, we shall not carry the
scaling parameter in the algorithm descriptions and error analysis, but use it in the
numerical experiments.

We have the following important properties of the MCFs, which can be shown
readily by using Definition 2.1 and the properties of Chebyshev polynomials in (2.1)--
(2.3) (also see [48, Prop. 2.4]).

Proposition 2.1. The MCFs are orthonormal in L2(\BbbR ), and we have

Smn = Snm =

\int 
\BbbR 
\BbbT \prime 
n(x)\BbbT \prime 

m(x) dx

=

\left\{                       

1

cn

\Bigl( (4cn - 1  - cn - 2)(n - 1)2

16
+

(4cn+1  - cn+2)(n+ 1)2

16
 - cn

4

\Bigr) 
if m = n,

1
\surd 
cncn+2

\Bigl( (cn  - cn+2)(n+ 1)

8
 - cn+1(n+ 1)2

4

\Bigr) 
if m = n+ 2,

1
\surd 
cncn+4

\Bigl( cn+2(n+ 1)(n+ 3)

16

\Bigr) 
if m = n+ 4,

0 otherwise.

2.2. Fourier-like biorthogonal MCFs in one dimension. Let \BbbP N be the set
of all polynomials of degree at most N , and define the finite-dimensional space

(2.6) \BbbV N :=
\bigl\{ 
\phi : \phi (x) = g(x)\varphi (x) \forall \varphi \in \BbbP N

\bigr\} 
,

where x, y are associated with the mapping (2.4) and

(2.7) g(x) :=

\sqrt{} 
\omega (y)

dy

dx
=

1\surd 
1 + x2

=
\sqrt{} 

1 - y2 := G(y).

Note that we have

(2.8) \BbbV N := span
\bigl\{ 
\BbbT n(x) : 0 \leq n \leq N

\bigr\} 
.

Following the spirit of [47], we next introduce a Fourier-like basis of \BbbV N , which is
orthogonal in both L2- andH1-inner-products. For this purpose, let \bfitS be a square ma-
trix of orderN+1 with entries given in Proposition 2.1, and let \bfitI be the identity matrix
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of the same size. Observe that \bfitS is a symmetric sparse nine-diagonal matrix with five
nonzero diagonals. Moreover, we can show that \bfitS is a positive definite matrix. Indeed,
for any nonzero vector \^\bfitv = (\^v0, . . . , \^vN )t, we define vN (x) =

\sum N
n=0 \^vn\BbbT n(x)(\in \BbbV N ).

One readily verifies that

\^\bfitv t\bfitS \^\bfitv =

N\sum 
m,n=0

\^vm\^vn

\int 
\BbbR 
\BbbT \prime 
n(x)\BbbT \prime 

m(x) dx =

\int 
\BbbR 
(v\prime N (x))2 dx > 0,

which is strictly positive as the space \BbbV N by definition does not contain a nonzero
constant. Thus, \bfitS is a symmetric positive definite matrix, whose eigenvalues are
all real and positive, and the eigenvectors are orthonormal. To this end, let \bfitE =
(ejk)j,k=0,...,N be the matrix formed by the orthonormal eigenvectors of \bfitS , and \Sigma =
diag\{ \lambda k\} be the diagonal matrix of the corresponding eigenvalues. Thus, we have

(2.9) \bfitS \bfitE = \bfitE \Sigma , \bfitE t\bfitE = \bfitI .

We remark that with an even and odd separation, we can work with two sym-
metric positive definite seven-diagonal submatrices to compute the eigenvalues and
eigenvectors of \bfitS , which should be more stable for large N.

Lemma 2.1. Let \bfitE = (\bfite 0, \bfite 1, . . . , \bfite N ) be the matrix of the eigenvectors of \bfitS , i.e.,
\bfitS \bfite p = \lambda p\bfite p for 0 \leq p \leq N. Define

(2.10) \widehat \BbbT p(x) := N\sum 
j=0

ejp\BbbT j(x), \bfite p = (e0p, e1p, . . . , eNp)
t, 0 \leq p \leq N.

Then \{ \widehat \BbbT p\} Np=0 form an equivalent basis of \BbbV N , and they are biorthogonal in the sense
that

(2.11) (\widehat \BbbT p, \widehat \BbbT q)L2(\BbbR ) = \delta pq,
\bigl( \widehat \BbbT \prime 

p,
\widehat \BbbT \prime 
q

\bigr) 
L2(\BbbR ) = \lambda p\delta pq, 0 \leq p, q \leq N.

Proof. In view of the definition (2.10), we infer from the orthogonality of MCFs
and (2.9) that

(\widehat \BbbT p, \widehat \BbbT q)L2(\BbbR ) =

N\sum 
j=0

N\sum 
k=0

ekpejq(\BbbT k,\BbbT j)L2(\BbbR )

=

N\sum 
j=0

N\sum 
k=0

ejq\delta jkekp =

N\sum 
k=0

ekqekp = \bfite 
t
q\bfite p = \delta pq.

Similarly, we can show that

\bigl( \widehat \BbbT \prime 
p,
\widehat \BbbT \prime 
q

\bigr) 
L2(\BbbR ) =

N\sum 
j=0

N\sum 
k=0

ekpejq(\BbbT \prime 
k,\BbbT \prime 

j)L2(\BbbR )

=

N\sum 
j=0

N\sum 
k=0

ejqSjkekp = (\bfitE t\bfitS \bfitE )pq = (\Sigma )pq = \lambda p\delta pq.

This ends the proof.
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3. MCF--spectral-Galerkin method based on the Dunford--Taylor for-
mulation. In this section, we describe the fast MCF--spectral-Galerkin algorithm for
a model elliptic problem with integral fractional Laplacian. We then apply the solver
for spatial discretization of some nonlinear fractional PDEs in the next section.

3.1. Some notation. Denote by S (\BbbR d) the functions of the Schwartz class,
and let S \prime (\BbbR d) be the topological dual of S (\BbbR d). For any u \in S (\BbbR d), its Fourier
transform is given by

F [u](\xi ) =
1

(2\pi )
d
2

\int 
\BbbR d

u(x)e - i\xi \cdot xdx \forall \xi \in \BbbR d.

For real s \geq 0, we define the fractional Sobolev space (cf. [42, p. 530]):

Hs(\BbbR d) =
\Bigl\{ 
u \in L2(\BbbR d) : \| u\| 2Hs(\BbbR d) =

\int 
\BbbR d

(1 + | \xi | 2s)
\bigm| \bigm| F [u](\xi )

\bigm| \bigm| 2d\xi < +\infty 
\Bigr\} 
,(3.1)

and an analogous definition for the case s < 0 is to set

Hs(\BbbR d) =
\Bigl\{ 
u \in S \prime (\BbbR d) : \| u\| 2Hs(\BbbR d) =

\int 
\BbbR d

(1 + | \xi | 2)s
\bigm| \bigm| F [u](\xi )

\bigm| \bigm| 2d\xi < +\infty 
\Bigr\} 
,(3.2)

although in this case the space Hs(\BbbR d) is not a subset of L2(\BbbR d).
According to [42, Prop. 3.4], we know that for s \in (0, 1), the space Hs(\BbbR d) can

also be characterized by the fractional Laplacian defined in (1.2), equipped with the
norm

\| u\| Hs(\BbbR d) =
\bigl( 
\| u\| 2L2(\BbbR d) + [u]2Hs(\BbbR d)

\bigr) 1
2 ,

where [u]Hs(\BbbR d) is the so-called Gagliardo (semi)norm of u, given by

(3.3) [u]Hs(\BbbR d) =
\Bigl( \int 

\BbbR d

\int 
\BbbR d

| u(x) - u(y)| 2

| x - y| d+2s
dxdy

\Bigr) 1
2

.

Indeed, by [42, Prop. 3.6], we have that for s \in (0, 1),

(3.4) [u]2Hs(\BbbR d) = 2C - 1
d,s\| ( - \Delta )s/2u\| 2L2(\BbbR d).

We have the following important space interpolation property (cf. [3, Chap. 1]),
which will be used for the error analysis later on.

Lemma 3.1. For real r0, r1 \geq 0, let r = (1  - \theta )r0 + \theta r1 with \theta \in [0, 1]. Then for
any u \in Hr0(\BbbR d) \cap Hr1(\BbbR d), we have

(3.5) \| u\| Hr(\BbbR d) \leq \| u\| 1 - \theta 
Hr0 (\BbbR d)

\| u\| \theta Hr1 (\BbbR d).

In particular, for s \in [0, 1], we have

(3.6) \| u\| Hs(\BbbR d) \leq \| u\| 1 - s
L2(\BbbR d)

\| u\| sH1(\BbbR d).

3.2. Dunford--Taylor formulation of the fractional Laplacian. To fix the
idea, we consider

(3.7) ( - \Delta )su(x) + \gamma u(x) = f(x) in \BbbR d, u(x) = 0 as | x| \rightarrow \infty ,

where s \in (0, 1), \gamma > 0, and f \in H - s(\BbbR d).
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A weak form for (3.7) is to find u \in Hs(\BbbR d) such that

\scrB (u, v) =
\bigl( 
( - \Delta )s/2u, ( - \Delta )s/2v

\bigr) 
L2(\BbbR d)

+ \gamma (u, v)L2(\BbbR d)

= [u, v]Hs(\BbbR d) + \gamma (u, v)L2(\BbbR d) = (f, v)L2(\BbbR d) \forall v \in Hs(\BbbR d),
(3.8)

where [u, v]Hs(\BbbR d) induces the Gagliardo (semi)norm in (3.3). Here, we understand

the inner product at the right-hand side as the duality pairing between H - s(\BbbR d) and
Hs(\BbbR d).

By the definitions (1.1) and (3.1), we immediately obtain the continuity and
coercivity of the bilinear form a(\cdot , \cdot ), that is, for any u, v \in Hs(\BbbR d),

| \scrB (u, v)| \lesssim \| u\| Hs(\BbbR d)\| v\| Hs(\BbbR d), | \scrB (u, u)| \gtrsim \| u\| 2Hs(\BbbR d).(3.9)

Then, we derive from the Lax--Milgram lemma (cf. [6]) that the problem (3.8) admits
a unique solution satisfying

\| u\| Hs(\BbbR d) \lesssim \| f\| H - s(\BbbR d).

In view of the definitions in (1.1)--(1.2), we have the equivalent forms of [u, v]Hs(\BbbR d)

as follows:

[u, v]Hs(\BbbR d) =

\int 
\BbbR d

\int 
\BbbR d

(u(x) - u(y))(v(x) - v(y))

| x - y| d+2s
dxdy(3.10)

=

\int 
\BbbR d

| \xi | 2sF [u](\xi )F [v](\xi ) d\xi .(3.11)

It is noteworthy that the direct implementation of a numerical scheme based on
(3.10) (i.e., in physical space) is very difficult. Most of the existing works (see,
e.g., [37, 55, 54]) are therefore mainly based on (3.11) (i.e., in the frequency space).
The Hermite function approaches can take advantage that the Fourier transforms of
Hermite functions are explicitly known. However, in multiple dimensions, the non-
separable/singular factor | \xi | 2s = (\xi 21 + \cdot \cdot \cdot + \xi 2d)

s makes the tensorial approach com-
putationally prohibitive. On the other hand, the fractional Laplacian operator may
become rather complicated when a coordinate transform is applied, so the mapped
Chebyshev approximation cannot be applied in either of the above formulations.

In what follows, we resort to an alternative formulation of the fractional Laplacian
that can overcome these numerical difficulties. According to [11, Thm. 4.1], we have
the following Dunford--Taylor formulation of the integral fractional Laplacian.

Lemma 3.2. For any u, v \in Hs(\BbbR d) with s \in (0, 1), we have\bigl( 
( - \Delta )

s
2u, ( - \Delta )

s
2 v

\bigr) 
L2(\BbbR d)

= Cs

\int \infty 

0

t1 - 2s

\int 
\BbbR d

\bigl( 
( - \Delta )(\BbbI  - t2\Delta ) - 1u

\bigr) 
(x) v(x) dxdt,

(3.12)

where \BbbI is the identity operator and

(3.13) Cs =
2 sin(\pi s)

\pi 
.

Let us denote w = w(u, t) := (\BbbI  - t2\Delta ) - 1u(x). Then there holds

(3.14)  - t2\Delta w + w = u in \BbbR d, so ( - \Delta )(\BbbI  - t2\Delta ) - 1u =  - \Delta w = t - 2(u - w).
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As a result, we can rewrite the weak form (3.8) as finding u \in Hs(\BbbR d) such that

\scrB (u, v) = Cs

\int \infty 

0

t - 1 - 2s(u - w, v)L2(\BbbR d) dt+ \gamma (u, v)L2(\BbbR d)

= (f, v)L2(\BbbR d) \forall v \in Hs(\BbbR d),
(3.15)

where w = w(u, t) solves

(3.16) t2(\nabla w,\nabla \psi )L2(\BbbR d) + (w,\psi )L2(\BbbR d) = (u, \psi )L2(\BbbR d) \forall \psi \in H1(\BbbR d).

It is evident that the well-posedness of (3.15)--(3.16) follows from its equivalence to
(3.8).

3.3. The MCF--spectral-Galerkin scheme and its implementation. De-
fine

(3.17) \BbbV dN = \BbbV N \otimes \cdot \cdot \cdot \otimes \BbbV N ,

which is the tensor product of d copies of \BbbV N defined in (2.6). Here, \BbbV 1
N = \BbbV N , and

denote IdN : C(\BbbR d) \rightarrow \BbbV dN the tensorial mapped Chebyshev interpolation operator.
The MCF--spectral-Galerkin approximation to (3.15)--(3.16) is to find uN \in \BbbV dN such
that

\scrB N (uN , vN ) = Cs

\int \infty 

0

t - 1 - 2s(uN  - wN , vN )L2(\BbbR d) dt+ \gamma (uN , vN )L2(\BbbR d)

= (IdNf, vN )L2(\BbbR d) \forall vN \in \BbbV dN ,
(3.18)

where we find wN := wN (uN , t) \in \BbbV dN such that for any t > 0,

(3.19) t2(\nabla wN ,\nabla \psi )L2(\BbbR d) + (wN , \psi )L2(\BbbR d) = (uN , \psi )L2(\BbbR d) \forall \psi \in \BbbV dN .

Define the d-dimensional tensorial Fourier-like basis and denote the vector of the
corresponding eigenvalues in (2.9) by

(3.20) \widehat \BbbT n(x) = d\prod 
j=1

\widehat \BbbT nj
(xj) x \in \BbbR d, \lambda n = (\lambda n1

, . . . , \lambda nd
)t.

Accordingly, we have

(3.21) \BbbV dN = span
\bigl\{ \widehat \BbbT n(x), n \in \Upsilon N

\bigr\} 
,

where the index set

(3.22) \Upsilon N :=
\bigl\{ 
n = (n1, . . . , nd) : 0 \leq nj \leq N, 1 \leq j \leq d

\bigr\} 
.

As an extension of (2.11), we have the following attractive property of the tensorial
Fourier-like MCFs.

Theorem 3.1. For the tensorial Fourier-like MCFs, we have

(3.23) (\widehat \BbbT p, \widehat \BbbT q)L2(\BbbR d) = \delta pq,
\bigl( 
\nabla \widehat \BbbT p,\nabla \widehat \BbbT q\bigr) L2(\BbbR d)

= | \lambda p| 1 \delta pq,

where p, q \in \Upsilon N and

(3.24) \delta pq =

d\prod 
j=0

\delta pjqj , | \lambda p| 1 = \lambda p1 + \cdot \cdot \cdot + \lambda pd .
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Proof. One verifies by using the orthogonality (2.11) and the definition (3.20)
that

(\widehat \BbbT p, \widehat \BbbT q)L2(\BbbR d) = (\widehat \BbbT p1 , \widehat \BbbT q1)L2(\BbbR ) \cdot \cdot \cdot (\widehat \BbbT pd , \widehat \BbbT qd)L2(\BbbR ) = \delta p1q1 \cdot \cdot \cdot \delta pdqd = \delta pq,

and

(\nabla \widehat \BbbT p,\nabla \widehat \BbbT q)L2(\BbbR d) =
\bigl\{ 
(\widehat \BbbT \prime 
p1 ,

\widehat \BbbT \prime 
q1)L2(\BbbR )(\widehat \BbbT p2 , \widehat \BbbT q2)L2(\BbbR ) \cdot \cdot \cdot (\widehat \BbbT pd , \widehat \BbbT qd)L2(\BbbR )

\bigr\} 
+
\bigl\{ 
(\widehat \BbbT p1 , \widehat \BbbT q1)L2(\BbbR )(\widehat \BbbT \prime 

p2 ,
\widehat \BbbT \prime 
q2)L2(\BbbR ) \cdot \cdot \cdot (\widehat \BbbT pd , \widehat \BbbT qd)L2(\BbbR )

\bigr\} 
+ \cdot \cdot \cdot +

\bigl\{ 
(\widehat \BbbT p1 , \widehat \BbbT q1)L2(\BbbR ) \cdot \cdot \cdot (\widehat \BbbT pd - 1

, \widehat \BbbT qd - 1
)L2(\BbbR )(\widehat \BbbT \prime 

pd
, \widehat \BbbT \prime 

qd
)L2(\BbbR )

\bigr\} 
= \lambda p1\delta p1q1 \cdot \cdot \cdot \delta pdqd + \lambda p2\delta p1q1 \cdot \cdot \cdot \delta pdqd + \cdot \cdot \cdot + \lambda pd\delta p1q1 \cdot \cdot \cdot \delta pdqd
= (\lambda p1 + \cdot \cdot \cdot + \lambda pd)\delta pq = | \lambda p| 1\delta pq.

This ends the proof.

Remarkably, the use of the Fourier-like MCF can diagonalize the integral frac-
tional Laplacian in the Dunford--Taylor formulation.

Theorem 3.2. Using the tensorial Fourier-like MCFs as basis functions, the so-
lution of (3.18)--(3.19) can be uniquely expressed as

(3.25) uN (x) =
\sum 
p\in \Upsilon N

\^fp
\gamma + | \lambda p| s1

\widehat \BbbT p(x), x \in \BbbR d,

where \widehat \BbbT p, \lambda p are defined in (3.20), and

(3.26) \^fp = (IdNf,
\widehat \BbbT p)L2(\BbbR d), p \in \Upsilon N .

Proof. Write

(3.27) uN =
\sum 
p\in \Upsilon N

\^up\widehat \BbbT p(x), wN =
\sum 
p\in \Upsilon N

\^wp\widehat \BbbT p(x),
where wN is the unique solution of (3.19) associated with uN . For clarity, we split the
proof into the following steps.

(i) We first show that wN can be uniquely determined by uN via

(3.28) wN =
\sum 
p\in \Upsilon N

\^up
1 + t2| \lambda p| 1

\widehat \BbbT p(x).
Substituting (3.27) into (3.19), and taking \psi = \widehat \BbbT q in (3.19), we arrive at\sum 
p\in \Upsilon N

\^wp
\bigl\{ 
t2(\nabla \widehat \BbbT p,\nabla \widehat \BbbT q)L2(\BbbR d) + (\widehat \BbbT p, \widehat \BbbT q)L2(\BbbR d)

\bigr\} 
=

\sum 
p\in \Upsilon N

\^up(\widehat \BbbT p, \widehat \BbbT q)L2(\BbbR d) \forall q \in \Upsilon N .

By the orthogonality (3.23), we obtain\sum 
p\in \Upsilon N

\^wp
\bigl\{ 
t2| \lambda p| 1 + 1

\bigr\} 
\delta pq =

\sum 
p\in \Upsilon N

\^up\delta pq \forall q \in \Upsilon N ,

which implies (3.28), as

\^wp =
\^up

1 + t2| \lambda p| 1
\forall p \in \Upsilon N .
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(ii) We next prove the integral identity\int \infty 

0

t1 - 2s | \lambda p| 1 - s1

1 + t2| \lambda p| 1
dt =

\pi 

2 sin(\pi s)
=

1

Cs
.(3.29)

Indeed, using a change of variable y = t
\sqrt{} 
| \lambda p| 1, we find readily that\int \infty 

0

t1 - 2s | \lambda p| 1 - s1

1 + t2| \lambda p| 1
dt =

\int \infty 

0

y1 - 2s

1 + y2
dy =

\pi 

2 sin(\pi s)
,

where we used the known formula (3.30) below with \mu = 2 - 2s and \nu = 2. According
to [25, pp. 325, 918, 905], we have for \nu \geq \mu \geq 0 and \nu \not = 0,\int \infty 

0

x\mu  - 1

1 + x\nu 
dx =

1

\nu 
B
\Bigl( \mu 
\nu 
, 1 - \mu 

\nu 

\Bigr) 
=

1

\nu 
\Gamma 
\Bigl( \mu 
\nu 

\Bigr) 
\Gamma 
\Bigl( 
1 - \mu 

\nu 

\Bigr) 
=

\pi 

\nu sin(\pi \mu /\nu )
,(3.30)

where we used the properties of the Beta and Gamma functions

B(x, y) =
\Gamma (x)\Gamma (y)

\Gamma (x+ y)
, \Gamma (1 - x)\Gamma (x) =

\pi 

sin(\pi x)
.

(iii) Finally, we can derive (3.25) with the aid of (3.28)--(3.29). It is evident that
by (3.27)--(3.28),

(3.31) uN  - wN = t2
\sum 
p\in \Upsilon N

| \lambda p| 1
1 + t2| \lambda p| 1

\^up\widehat \BbbT p(x).
Thus, substituting (3.31) into (3.18) with vN = \widehat \BbbT q, we obtain from (3.23) and (3.29)
that

\scrB N (uN , \widehat \BbbT q)
=

\sum 
p\in \Upsilon N

\^up

\biggl\{ 
Cs

\int \infty 

0

t1 - 2s

\int 
\BbbR d

| \lambda p| 1
1 + t2| \lambda p| 1

\widehat \BbbT p(x)\widehat \BbbT q(x)dxdt+ \gamma (\widehat \BbbT p, \widehat \BbbT q)L2(\BbbR d)

\biggr\} 

=
\sum 
p\in \Upsilon N

\^up

\biggl\{ 
\delta pq Cs

\int \infty 

0

t1 - 2s | \lambda p| 1
1 + t2| \lambda p| 1

dt+ \gamma \delta pq

\biggr\} 
=

\sum 
p\in \Upsilon N

\^up
\bigl( 
| \lambda p| s1 + \gamma 

\bigr) 
\delta pq = (IdNf,

\widehat \BbbT q)L2(\BbbR d),

which implies

(3.32) \^up =
(IdNf,

\widehat \BbbT p)L2(\BbbR d)

\gamma + | \lambda p| s1
\forall p \in \Upsilon N .

Thus, we obtain (3.25)--(3.26) immediately.

Remark 3.1. It is crucial to use the Fourier-like MCFs as the basis functions for
both uN and wN , so that we can take advantage of the biorthogonality and explicitly
evaluate the integration in t. In other words, under the Fourier-like basis, the stiffness
matrix of the linear system of (3.18)--(3.19) becomes a diagonal matrix of the form

(3.33) \widehat \bfitS :=
\bigl( 
\Sigma \otimes \bfitI \otimes \cdot \cdot \cdot \otimes \bfitI + \bfitI \otimes \Sigma \otimes \bfitI \otimes \cdot \cdot \cdot \otimes \bfitI + \cdot \cdot \cdot + \bfitI \otimes \cdot \cdot \cdot \otimes \bfitI \otimes \Sigma 

\bigr) s
,

where \Sigma is defined in (2.9) and \otimes denotes the tensor product operator as before.
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Remark 3.2. The precomputation of the Fourier-like MCF basis functions (in one
dimension) by solving the eigenvalue problem (2.9) requires O(N3) operations by a
direct solver, but O(N2) for a suitable iterative solver. The main cost of solving
the system (3.32) is devoted to the evaluation of the right-hand side and uN from
the coefficients \{ \^up\} , which can be carried out by the FFT related to Chebyshev
polynomials.

4. Error estimates and numerical examples. In this section, we derive some
relevant MCF approximation results, which are useful for the error estimates of the
proposed MCF--spectral-Galerkin scheme.

4.1. Approximation by MCFs. Consider d-dimensional L2-orthogonal pro-
jection: \pi dN : L2(\BbbR d) \rightarrow \BbbV dN such that

(4.1)

\int 
\BbbR d

(\pi dNu - u)(x)v(x) dx = 0 \forall v \in \BbbV dN .

We intend to estimate the projection error in the fractional Sobolev norm, i.e.,
\| \pi dNu - u\| Hs(\BbbR d). For this purpose, we introduce some notation and spaces of functions.

For notational convenience, the pairs of functions (u, \u u) and (U, \u U) associated
with the mapping (2.4) have the relations

u(x) = U(y(x)), \u u(x) =
u(x)

g(x)
=
U(y)

G(y)
= \u U(y),(4.2)

where as in (2.7), g(x) = (1 + x2) - 1/2 =
\sqrt{} 

1 - y2 = G(y). Define the differential
operators

Dxj
u := \partial xj

\bigl\{ 
(1 + x2j )

1
2u

\bigr\} dxj
dyj

= a(xj)\partial xj

\bigl\{ 
(1 + x2j )

1
2u

\bigr\} 
= \partial yj

\u U,

Dkj
xj
u = a(xj)\partial xj

\Bigl\{ 
a(xj)\partial xj

\Bigl\{ 
\cdot \cdot \cdot 

\Bigl\{ 
a(xj)\partial xj

\Bigl\{ 
(1 + x2j )

1
2u

\Bigr\} \Bigr\} 
\cdot \cdot \cdot 

\Bigr\} \Bigr\} 
= \partial kjyj

\u U

(4.3)

for kj \geq 1, 1 \leq j \leq d, where a(xj) = dxj/dyj = (1+x2j )
3
2 . Correspondingly, we define

the d-dimensional Sobolev space

(4.4) Bm(\BbbR d) =
\bigl\{ 
u : Dk

xu \in L2
\varpi k+1(\BbbR d), 0 \leq | k| 1 \leq m

\bigr\} 
, m = 0, 1, 2, . . . ,

where the differential operator and the weight function are

(4.5) Dk
xu = Dk1

x1
\cdot \cdot \cdot Dkd

xd
u, \varpi k(x) =

d\prod 
j=1

(1 + x2j )
 - kj .

It is equipped with the norm and seminorm

\| u\| Bm(\BbbR d) =
\Bigl( \sum 

0\leq | k| 1\leq m

\bigm\| \bigm\| Dk
xu

\bigm\| \bigm\| 2
L2

\varpi 1+k (\BbbR d)

\Bigr) 1
2

,

| u| Bm(\BbbR d) =
\Bigl( d\sum 
j=1

\bigm\| \bigm\| Dm
xj
u
\bigm\| \bigm\| 2
L2

\varpi 
1+mej

(\BbbR d)

\Bigr) 1
2

,

(4.6)

where ej = (0, . . . , 1, . . . , 0) is the jth unit vector in \BbbR d.
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Theorem 4.1. If u \in Bm(\BbbR d) with integer m \geq 1, then we have

(4.7) \| \pi dNu - u\| Hs(\BbbR d) \leq cNs - m| u| Bm(\BbbR d), 0 \leq s \leq 1,

where c is a positive constant independent of N and u.

Proof. In view of (3.6), it is necessary to estimate the projection errors in the L2-
and H1-norms. According to [48, Thms. 3.1--3.2], we have

(4.8) \| \pi dNu - u\| L2(\BbbR d) \leq cN - m| u| Bm(\BbbR d)

and

(4.9) \| \nabla (\pi dNu - u)\| L2(\BbbR d) \leq cN1 - m| u| Bm(\BbbR d).

Using Lemma 3.1 and (4.8)--(4.9), we arrive at

\| \pi dNu - u\| Hs(\BbbR d) \leq cNs - m| u| Bm(\BbbR d), s \in [0, 1].

This ends the proof.

We now turn to the error estimate for the interpolation operator. Let \{ yj , \rho j\} Nj=0

be the Chebyshev--Gauss quadrature nodes and weights on \Lambda = ( - 1, 1). Denote the
mapped nodes and weights by

(4.10) xj =
yj\sqrt{} 
1 - y2j

, \omega j =
\rho j

1 + y2j
, 0 \leq j \leq N.

Then by the exactness of the Chebyshev--Gauss quadrature, we have\int 
\BbbR 
u(x)v(x) dx =

\int 
\Lambda 

U(y)V (y)(1 - y2) - 
3
2 dy =

\int 
\Lambda 

\u U(y) \u V (y)(1 - y2) - 
1
2 dy

=

N\sum 
j=0

\u U(yj) \u V (yj)\rho j \forall \u U \cdot \u V \in \BbbP 2N+1,

(4.11)

which, together with (2.6), implies the exactness of the quadrature

(4.12)

\int 
\BbbR 
u(x)v(x) dx =

N\sum 
j=0

u(xj)v(xj)\omega j \forall u \cdot v \in \BbbV 2N+1.

We now introduce the one-dimensional interpolation operator IN : C(\BbbR ) \rightarrow \BbbV N such
that

(4.13) INu(xj) = u(xj), 0 \leq j \leq N.

With a little abuse of notation, we define the d-dimensional grids by xj =
(xj1 , . . . , xjd), j \in \Upsilon N , where \{ xjk\} dk=1 are the mapped Chebyshev--Gauss nodes, and
the index set \Upsilon N is given in (3.22) as before. We now consider the d-dimensional
MCF interpolation: C(\BbbR d) \rightarrow \BbbV dN ,

(4.14) IdNu(xj) = I
(1)
N \circ \cdot \cdot \cdot \circ I(d)N u(xj), j \in \Upsilon N ,

where I
(k)
N = IN , 1 \leq k \leq d, is the interpolation along the xk-direction.
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In the error analysis, we also need the L2-estimate of the d-dimensional MCF
interpolation. For a better description of the error, we introduce a second seminorm
of Bm(\BbbR d) for m \geq 1 as follows:

[[u]]Bm(\BbbR d) :=

\biggl\{ 
| u| 2Bm(\BbbR d) +

d\sum 
j=1

\sum 
k \not =j

\bigm\| \bigm\| Dm - 1
xk

Dxj
u
\bigm\| \bigm\| 2
Ld

\varpi 
1+(m - 1)ek+ej

(\BbbR d)

\biggr\} 1
2

,(4.15)

where the weight function \varpi and | u| Bm(\BbbR d) are defined in (4.5) and (4.6) as before.
We have the following L2-estimates of the interpolation.

Theorem 4.2. For u \in Bm(\BbbR d) with the integer m \geq 2, we have

(4.16) \| IdNu - u\| L2(\BbbR d) \leq cN - m[[u]]Bm(\BbbR d),

where c is a positive constant independent of N and u.

Proof. Let ICN : C(\Lambda ) \rightarrow \BbbP N be the Chebyshev--Gauss interpolation operator.
According to [45, Lem. 3.6], we have that for any v \in L2

\omega (\Lambda ) and v
\prime \in L2

\omega  - 1(\Lambda ) with

\omega (y) = (1 - y2) - 
1
2 ,

(4.17) \| ICNv\| L2
\omega (\Lambda ) \leq c

\bigl( 
\| v\| L2

\omega (\Lambda ) +N - 1\| (1 - y2)
1
2 v\prime \| L2

\omega (\Lambda )

\bigr) 
,

where c is a positive constant independent of N and v. Moreover, by [45, Thm. 3.41],
we have the one-dimensional Chebyshev--Gauss interpolation error estimates,

(4.18) \| (ICNv  - v)\prime \| L2
\omega  - 1 (\Lambda ) +N\| ICNv  - v\| L2

\omega (\Lambda ) \leq cN1 - m\| (1 - y2)
m
2 v(m)\| L2

\omega (\Lambda ).

In view of (2.4), we have

(4.19) \| IdNu - u\| L2(\BbbR d) =
\bigm\| \bigm\| IC,dN (U/G) - (U/G)

\bigm\| \bigm\| 
L2

\omega (\Lambda d)
=

\bigm\| \bigm\| IC,dN
\u U  - \u U

\bigm\| \bigm\| 
L2

\omega (\Lambda d)
,

where G(y) =
\prod d
j=1G(yj) and I

C,d
N := I

C,(1)
N \circ \cdot \cdot \cdot \circ IC,(d)N with I

C,(k)
N = ICN .

For clarity, we only prove the results with d = 2, as it is straightforward to
extend the results to the case with d \geq 3. By virtue of the triangle inequality, (4.17)
and (4.18), we obtain that for m \geq 2,

\| IC,2N
\u U  - \u U\| L2

\omega (\Lambda 2) \leq \| IC,(1)N
\u U  - \u U\| L2

\omega (\Lambda 2) +
\bigm\| \bigm\| IC,(1)N \circ 

\bigl( 
I
C,(2)
N

\u U  - \u U
\bigr) \bigm\| \bigm\| 
L2

\omega (\Lambda 2)

\leq cN - m\| (1 - y21)
m
2 \partial my1

\u U\| L2
\omega (\Lambda 2) + c

\Bigl\{ 
\| IC,(2)N

\u U  - \u U\| L2
\omega (\Lambda 2)

+N - 1
\bigm\| \bigm\| (1 - y21)

1
2 \partial y1

\bigl( 
I
C,(2)
N

\u U  - \u U
\bigr) \bigm\| \bigm\| 
L2

\omega (\Lambda 2)

\Bigr\} 
\leq cN - m

\Bigl\{ \bigm\| \bigm\| (1 - y21)
m
2 \partial my1

\u U
\bigm\| \bigm\| 
L2

\omega (\Lambda 2)
+
\bigm\| \bigm\| (1 - y22)

m
2 \partial my2

\u U
\bigm\| \bigm\| 
L2

\omega (\Lambda 2)

+
\bigm\| \bigm\| (1 - y21)

1
2 (1 - y22)

m - 1
2 \partial y1\partial 

m - 1
y2

\u U
\bigm\| \bigm\| 
L2

\omega (\Lambda 2)

\Bigr\} 
.

(4.20)

Note that in the above derivation, we can switch the order of I
C,(1)
N and I

C,(2)
N , so we

can add the term
\bigm\| \bigm\| (1 - y21)m - 1

2 (1 - y22)
1
2 \partial m - 1
y1 \partial y2

\u U
\bigm\| \bigm\| 
L2

\omega (\Lambda 2)
in the upper bound. Then,

we derive from (4.2), (4.3), and (4.20) that for m \geq 2,

\| IC,2N
\u U  - \u U\| L2

\omega (\Lambda 2) \leq cN - m
\Bigl\{ \bigm\| \bigm\| (1 + x21)

 - m+1
2 (1 + x22)

 - 1
2Dm

x1
u
\bigm\| \bigm\| 
L2(\BbbR 2)

+
\bigm\| \bigm\| (1 + x21)

 - 1
2 (1 + x22)

 - m+1
2 Dm

x2
u
\bigm\| \bigm\| 
L2(\BbbR 2)

+
\bigm\| \bigm\| (1 + x21)

 - 1(1 + x22)
 - m

2 Dx1
Dm - 1
x2

u
\bigm\| \bigm\| 
L2(\BbbR 2)

+
\bigm\| \bigm\| (1 + x21)

 - m
2 (1 + x22)

 - 1Dm - 1
x1

Dx2u
\bigm\| \bigm\| 
L2(\BbbR 2)

\Bigr\} 
\leq cN - m[[u]]Bm(\BbbR 2).
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It is straightforward to extend the above derivation to d \geq 3. This completes the
proof.

To conduct error analysis for the proposed MCF scheme, we assume that the error
for solving the elliptic problem (3.19) is negligible (or, equivalently, the quadrature
errors in evaluating the fractional Laplacian in the scheme can be ignored), so formally,
we have wN = (\BbbI  - t2\Delta ) - 1uN . It is noteworthy that the analysis of such an error is
feasible for the finite element approximation of the fractional Laplacian in a bounded
domain based on the Dunford--Taylor formulation in a bounded domain, though the
proof is lengthy and much involved (see [11]). However, the analysis is largely open
in this situation, mainly because the spectrum estimate of the fractional Laplacian
operator in \BbbR d appears unavailable, as opposed to the bounded domain case (see [11]).

Proposition 4.1. Assume that the elliptic problem (3.19) in the scheme (3.18)
can be solved exactly. Then we have the estimate for u \in Bm1(\BbbR d) with integer
m1 \geq 1, and f \in Bm2(\BbbR d) with integer m2 \geq 2,

\| u - uN\| Hs(\BbbR d) \leq cNs - m1 | u| Bm1 (\BbbR d) + cN - m2 [[f ]]Bm2 (\BbbR d), s \in (0, 1),(4.21)

where c is a positive constant independent of u, f , and N.

Proof. Under this assumption, we find from Lemma 3.2 that the scheme (3.18)
can be written as finding uN \in \BbbV dN such that

\scrB (uN , vN ) = (IdNf, vN ) \forall vN \in \BbbV dN .

Then by (3.8) and (3.9), we infer from a standard argument that

\| u - uN\| Hs(\BbbR d) \leq c(\| \pi dNu - u\| Hs(\BbbR d) + \| IdNf  - f\| L2(\BbbR d)).

Thus, the estimate (4.21) follows from Theorems 4.1 and 4.2 immediately.

Remark 4.1. In what follows, we shall validate the above assumption through
several numerical tests. Indeed, we shall observe that the errors of solving (3.19) are
insignificant, and the order of the numerical errors agrees with the estimated order.

4.2. Useful analytic formulas. We first derive analytical formulas for the frac-
tional Laplacian of some functions with typical exponential or algebraic decay, upon
which we construct the exact solutions to test the accuracy of the proposed method,
and to validate the assumption in Proposition 4.1. Moreover, we reveal that the frac-
tional Laplacian has a very different property from the usual Laplacian. For example,
the image of an exponential function decays algebraically (see Proposition 4.2 below),
as opposed to the usual one.

We have the following exact formulas for the Gaussian function and rational
function, whose derivations are sketched in Appendices A and B, respectively.

Proposition 4.2. For real s > 0 and integer d \geq 1, we have that

(4.22) ( - \Delta )s
\bigl\{ 
e - | x| 2\bigr\} =

22s\Gamma (s+ d/2)

\Gamma (d/2)
1F1

\Bigl( 
s+

d

2
;
d

2
; - | x| 2

\Bigr) 
.

Moreover for noninteger s > 0 and | x| \rightarrow \infty , we have the asymptotic behavior

(4.23) ( - \Delta )s
\bigl\{ 
e - | x| 2\bigr\} =  - 22s sin(\pi s)

\pi 

\Gamma (s+ d/2)\Gamma (1 + s)

| x| d+2s

\bigl\{ 
1 +O(| x|  - 2)

\bigr\} 
.
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Proposition 4.3. For real s, r > 0, and integer d \geq 1, we have

(4.24) ( - \Delta )s
\Bigl\{ 1

(1 + | x| 2)r
\Bigr\} 
=

22s\Gamma (s+ \gamma )\Gamma (s+ d/2)

\Gamma (\gamma )\Gamma (d/2)
2F1

\Bigl( 
s+ r, s+

d

2
;
d

2
; - | x| 2

\Bigr) 
.

Moreover for noninteger s > 0 and | x| \rightarrow \infty , we have the asymptotic properties for
r \not = d/2,

(4.25) ( - \Delta )s
\Bigl\{ 1

(1 + | x| 2)r
\Bigr\} 
\sim 1

(1 + | x| 2)s+\mu 
, \mu = min\{ r, d/2\} ,

while for r = d/2,

(4.26) ( - \Delta )s
\Bigl\{ 1

(1 + | x| 2)r
\Bigr\} 
\sim ln(1 + | x| 2)

(1 + | x| 2)s+d/2
.

4.3. Numerical results. We apply the MCF--spectral-Galerkin method to solve
the model problem (3.7) in various situations.

Example 4.1 (accuracy test). We first consider (3.7) with the following exact so-
lutions:

ue(x) = e - | x| 2 , ua(x) = (1 + | x| 2) - r, r > 0, x \in \BbbR d.(4.27)

In view of (4.22) and (4.24), the source terms fe(x) and fa(x) are, respectively, given
by

fe(x) = \gamma e - | x| 2 +
22s\Gamma (s+ d/2)

\Gamma (d/2)
1F1

\Bigl( 
s+

d

2
;
d

2
; - | x| 2

\Bigr) 
,

fa(x) = \gamma (1 + | x| 2) - r + 22s\Gamma (s+ r)\Gamma (s+ d/2)

\Gamma (r)\Gamma (d/2)
2F1

\Bigl( 
s+ r, s+

d

2
;
d

2
; - | x| 2

\Bigr) 
.

(4.28)

Now, we intend to use the error estimates in Propositions 4.2 and 4.3 to analyti-
cally calculate the expected order of convergence by the MCF scheme, and then verify
the convergence order numerically. For this purpose, we consider a generic function
of algebraic decay as follows:

(4.29) w(x) =
1

(1 + | x| 2)\mu 
, x \in \BbbR d, \mu > 0.

Using (4.3) and (4.15), we obtain from direct calculation that

Dxjw(x) = (1 + x2j )
3
2 \partial xj

\bigl\{ 
(1 + x2j )

1
2w(x)

\bigr\} 
= (1 + x2j )(1 + | x| 2) - \mu  - 1( - 2\mu xj(1 + x2j )

+ xj(1 + | x| 2)) \sim | xj |  - 2\mu +3
\prod 
l \not =j

| xl|  - 2\mu 
(4.30)

and, similarly,

Dxk
Dxj

w(x) \sim | xk|  - 2\mu +3| xj |  - 2\mu +3
\prod 
l \not =j

| xl|  - 2\mu ,

D2
xk
Dxj

w(x) \sim | xk|  - 2\mu +5| xj |  - 2\mu +3
\prod 
l \not =j,k

| xl|  - 2\mu .
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By an induction argument, we can show

Dm - 1
xk

Dxj
w(x) \sim | xk|  - 2\mu +2m - 1| xj |  - 2\mu +3

\prod 
l \not =j,k

| xl|  - 2\mu , j \not = k,

Dm
xk
w(x) \sim | xk|  - 2\mu +2m+1

\prod 
l \not =k

| xl|  - 2\mu .
(4.31)

Thus, for j \not = k, we have

Ikj(x) := | Dm - 1
xk

Dxjw(x)| 2\varpi 1+(m - 1)ek+ej (x)

\sim | xk|  - 4\mu +2m - 2| xj |  - 4\mu +4
\prod 
l \not =j,k

| xl|  - 2\mu  - 2,(4.32)

and for 1 \leq k \leq d,

Ikk(x) := | Dm
xk
w(x)| 2\varpi 1+mek(x) \sim | xk|  - 4\mu +2m

\prod 
l \not =k

| xl|  - 2\mu  - 2.(4.33)

Then by (4.6), (4.15), and (4.33), we find that if m < 2\mu  - 1
2 , then

| w| 2Bm(\BbbR d) =

d\sum 
k=1

\int 
\BbbR d

Ikk(x)dx <\infty ,

[[w]]2Bm(\BbbR d) = | w| 2Bm(\BbbR d) +

d\sum 
j=1

\sum 
k \not =j

\int 
\BbbR d

Ikj(x)dx <\infty .

(4.34)

For the exact solution ue(x) = e - | x| 2 , we have from (4.23) and (4.28) that
fe(x) \sim (1 + | x| 2) - s - d/2. Therefore, in this case, the error is dominated by the MCF
interpolation approximation of fe(x). Therefore, using (4.34) with \mu = s + d/2, we
conclude from Proposition 4.2 that the expected convergence is O(N - (2s+d)+1/2+\varepsilon )
for small \varepsilon > 0. Remarkably, the numerical results in Figures 1(a), (c), (e) almost
agree with the theoretical prediction (see the dashed reference lines). Indeed, it is
very different from the usual Laplacian (see Proposition 4.2); we do not expect the
exponential convergence, but algebraic decay of the errors.

We now turn to the second case with the exact solution ua(x) = (1 + | x| 2) - r,
where we take r = 2.3 in the numerical tests. As r > d/2, we derive from Proposition
4.3 that fa(x) \sim (1 + | x| 2) - s - d/2. Then by (4.34) and Proposition 4.2, we have the
convergence behavior

\| ua  - uN\| Hs(\BbbR d) = O(Ns - m1) +O(N - m2), m1 < 2r  - 1

2
, m2 < 2s+ d - 1

2
.

This implies the convergence order O(N - min\{ 2r - s,2s+d\} + 1
2+\varepsilon ). Indeed, we observe

from Figures 1(b), (d), (f) a good agreement again. For example, for d = 3 and
r = 2.3, we have the rate O(N - 3.1+\varepsilon ) for s = 0.3, while the rate O(N - 3.4+\varepsilon ) for
s = 0.7. Interestingly, there is a preasymptotic range where one observes a sub-
geometric convergence from Figures 1(d), (f) for d = 2, 3, but after the preasymptotic
range, the convergence rates become algebraic as predicted. Such a phenomenon has
been also observed for the Laguerre function approximation (cf. [45, p. 277]).
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Fig. 1. Decay of Hs-errors of the MCF scheme with \gamma = 1 and the scaling factor \nu = 2.5 for
Example 4.1 with exact solutions in (4.27). Here s = 0.3, 0.7 and r = 2.3. The dashed reference
lines are expected orders predicted by Proposition 4.1.

Example 4.2 (effect of the scaling factor). It is known that, with a proper choice
of the scaling parameter, the accuracy of the spectral method on the unbounded
domain can be improved. In this example, we first show the influence of the scaling
factor \nu on the accuracy.

We plot in Figure 2(a) the maximum error in the log-log scale of our MCF algo-
rithm with different scaling parameters \nu . We observe from Figure 2(a) that for the
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Fig. 2. (a) Maximum error for the exact solution u(x) = (1 + x2) - 2.3 with different scaling
factors \nu , and s = 0.3, 0.7. (b) A comparison of the maximum error between our method and
Hermite--Galerkin method [37] for the exact solution u(x) = (1 + x2) - 2.3 with s = 0.3, 0.7, \nu = 1.

same N and s, the approximations with \nu = 4 provide more accurate results than the
approximations with \nu = 1; and for any fixed s, the two error curves are nearly paral-
lel, which implies a proper scaling can improve the accuracy, but does not change the
convergence order. In Figure 2(b), we compare the maximum errors of our algorithm
using MCFs as basis functions with the Hermite spectral method in [37], for which we
take r = 2.3. As we can see from Figure 2(b), the convergence rates of our approach
are faster than that of the Hermite spectral method in [37].

Example 4.3 (accuracy for given source term f(x)). Here, we further compare our
MCF method with the Hermite function approximation in [37], where the tests were
provided for given source terms with unknown solutions.

We compute the reference ``exact"" solutions with large N = 600. In Figures 3(a)--
(c), we compare the L2-errors of our algorithm with the Hermite spectral method
in [37] in one and two dimensions. It is noteworthy that the algorithm in [37] is
computationally prohibitive for d = 3. In all cases, our approach outperforms the
Hermite method in both accuracy and efficiency. We report in Figures 3(d)--(f) the
maximum pointwise errors against various N 's with d = 2, 3. The MCF method
performs consistently well.

We also tabulate in Table 1 the L2-errors and the convergence orders of two
methods (see Tables 2 and 3 in [37] for the data on the Hermite method). Here,

f(x) = (1 + x)e - 
x2

2 , s = 0.6, 0.9, and \nu = 2.5. Observe that the MCF method
possesses higher convergence rates.

Example 4.4 (multiterm fractional equations). Consider the three-dimensional
multiterm fractional Laplacian equation

(4.35)

J\sum 
j=1

\rho j( - \Delta )sju(x) = f(x) in \BbbR 3, u(x) \rightarrow 0 as | x| \rightarrow \infty .

In Figure 4(a), we plot in log-log scale the maximum errors of (4.35) against

various N , where we take u(x) = (1 + | x| 2) - 3\pi 
4 , J = 4, s1 = 0.77, s2 = 0.33, s3 =

0.21, s4 = 0, and \rho 1 = 1, \rho 2 = 2, \rho 3 =
\surd 
2, \rho 4 = 1. In Figure 4(b), we plot in log-

log scale the maximum errors of (4.35) against various N , where we take f(x) =
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Fig. 3. (a)--(c) A comparison of L2-errors between our method and the Hermite--Galerkin
method in [37] for different source functions f(x). (d)--(f) The maximum errors for different source
functions f(x) with d = 2, 3. In the tests, we take \gamma = 1, \nu = 2.5.

(1 + x1 + 2x22 + 3x23)e
 - | x| 2

2 , J = 4, s1 = 0.76, s2 = 0.41, s3 = 0.23, s4 = 0, and
\rho 1 = 2, \rho 2 = 1, \rho 3 = 0.5, \rho 4 = 1. We observe the algebraic decay of the errors, and the
method is as accurate and efficient as the previous cases.

5. MCF approximation of nonlinear fractional Schr\"odinger equations.
In this section, we apply the fast algorithm to some nonlinear PDEs involving the
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Table 1

A comparison of the L2-error for f(x) = (1 + x)e - 
x2

2 .

s = 0.6 s = 0.9
N Hermite [37] Order MCF Order Hermite [37] Order MCF Order
80 2.77e-04 6.29e-05 2.06e-05 2.21e-06
100 2.21e-04 1.01 4.38e-05 1.61 1.53e-05 1.32 1.35e-06 2.20
120 1.84e-04 1.02 3.26e-05 1.61 1.20e-05 1.33 9.10e-07 2.19
140 1.57e-04 1.03 2.56e-05 1.57 9.80e-06 1.33 6.51e-07 2.18
160 1.36e-04 1.03 2.08e-05 1.52 8.20e-06 1.34 4.86e-07 2.18
180 1.21e-04 1.04 1.75e-05 1.49 7.00e-06 1.34 3.75e-07 2.20
200 1.08e-04 1.04 1.49e-05 1.49 6.08e-06 1.34 2.96e-07 2.24
220 9.79e-05 1.05 1.29e-05 1.52 5.35e-06 1.34 2.38e-07 2.29
240 8.93e-05 1.06 1.12e-05 1.58 4.76e-06 1.35 1.94e-07 2.35
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(a) d = 3 with given exact solution
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Fig. 4. (a) The maximum error for (4.35) with u(x) = (1 + | x| 2) - 
3\pi 
4 and \nu = 2.5. (b) The

maximum error for (4.35) with f(x) = (1 + x1 + 2x2
2 + 3x2

3)e
 - | x| 2

2 and \nu = 2.5.

fractional Laplacian. As an example, we consider the nonlinear fractional Schr\"odinger
equation (fNLS) (cf. [33])

i\psi t =
1

2
( - \Delta )s\psi + \gamma | \psi | 2\psi , x \in \BbbR d, t \in (0, T ],

\psi (x, 0) = \psi 0(x), x \in \BbbR d, | \psi | \rightarrow 0 as | x| \rightarrow \infty ,
(5.1)

where i2 =  - 1, \psi (x, t) is a complex-valued wave function, the parameters \gamma is a real
constant, and \psi 0 is given. It is noteworthy that the mass is conserved (cf. [7, 33]):

(5.2) M(t) =

\int 
\BbbR d

| \psi (x, t)| 2dx =M(0), t > 0.

5.1. The scheme. We adopt the time-splitting technique, and start with rewrit-
ing the fNLS (5.1) as follows:

(5.3) i\psi t = A\psi +B\psi ,

where

A\psi = \gamma | \psi (x, t)| 2\psi (x, t), B\psi =
1

2
( - \Delta )s\psi (x, t).

The notion of time splitting is to solve the following two subproblems:

(5.4) i
\partial \psi (x, t)

\partial t
= A\psi (x, t) = \gamma | \psi (x, t)| 2\psi (x, t), x \in \BbbR d,
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and

(5.5) i
\partial \psi (x, t)

\partial t
= B\psi (x, t) =

1

2
( - \Delta )s\psi (x, t), x \in \BbbR d.

The essence of the splitting method is to solve the two subproblems iteratively at each
time step.

(i) We first consider the subproblem (5.4). Multiplying (5.4) by \=\psi (x, t), we find
from the resulting equation that | \psi (x, t)| is invariant in t (see, e.g., [7]). More precisely,
for t \geq ts (ts is any given time), (5.4) becomes

(5.6) i
\partial \psi (x, t)

\partial t
= \gamma | \psi (x, ts)| 2\psi (x, t), t \geq ts, x \in \BbbR d,

which can be integrated exactly, i.e.,

(5.7) \psi (x, t) = e - i\gamma | \psi (x,ts)| 2(t - ts)\psi (x, ts), t \geq ts, x \in \BbbR d.

(ii) We now turn to the subproblem (5.5). Remarkably, the Fourier-like basis
can diagonalize the operator B so that e - iB\Delta t\psi can be efficiently evaluated (which is
crucial for the final scheme to be time reversible and time transverse invariant). More
precisely, we seek \psi N (x, t) \in \BbbV dN as an approximate solution to (5.5), such that

(5.8) i
\bigl( 
\partial t\psi N , v

\bigr) 
L2(\BbbR d)

=
\bigl( 
B\psi N , v

\bigr) 
L2(\BbbR d)

=
1

2

\bigl( 
( - \Delta )s\psi N , v

\bigr) 
L2(\BbbR d)

\forall v \in \BbbV dN .

Using the Fourier-like MCF basis, we write

(5.9) \psi N (x, t) =
\sum 
k\in \Upsilon N

\^\psi k(t)\widehat \BbbT k(x), x \in \BbbR d.

Substituting it into (5.8), and taking the inner product with \widehat \BbbT m(x), we deduce from
(3.2) that

(5.10) i
\partial \^\psi m(t)

\partial t
=

1

2
| \lambda m| s1 \^\psi m(t), m \in \Upsilon N .

Then, we derive from (5.10) that the solution for (5.8), i.e., the numerical solution of
(5.5), is given by

\psi N (x, t) = e - iB(t - ts)\psi N (x, ts) =
\sum 
k\in \Upsilon N

e - 
i
2 | \lambda k| s1(t - ts) \^\psi k(ts)\widehat \BbbT k(x), t \geq ts.(5.11)

With the exact solution (5.7) and the approximate solution (5.11) for two sub-
problems (5.4) and (5.5), respectively, we now describe the implementation of the
fourth-order time-splitting (TS4) method for solving (5.1). Let \{ xp\} p\in \Upsilon N

be tensorial
grids as in (4.14), and tn = n\Delta t be the time-stepping grids. Let \psi np be the approxima-
tion of \psi (xp, tn), and denote by \bfitpsi n the solution vector with components \{ \psi np \} p\in \Upsilon N

.
For notational convenience, we define the solution map related to (5.11):

\scrT N [\omega ;\bfitPsi p](x) =
\sum 
k\in \Upsilon N

e - i\omega | \lambda k| s\Delta t \^\Psi k \widehat \BbbT k(x),(5.12)

where \{ \^\Psi k\} are the MCF expansion coefficients computed from the sampling of \Psi \in 
\BbbV dN on the grids \{ xp\} , and \omega > 0 is some weight.

D
ow

nl
oa

de
d 

10
/2

7/
20

 to
 1

58
.1

82
.1

0.
16

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INTEGRAL FRACTIONAL LAPLACIAN 2457

Table 2
Time discretization errors for the TS4 method (5.13) at T = 2 with N = 300.

\Delta t 1/10 1/20 1/40 1/80 1/160 1/320

max-error 1.059e-02 1.092e-03 8.747e-05 5.782e-06 3.641e-07 2.301e-08
order  - 3.2 3.6 3.9 4.0 3.9

L2-error 2.557e-03 2.235e-04 1.616e-05 1.084e-06 6.553e-08 4.435e-09
order  - 3.5 3.7 3.9 4.0 3.9

Following [7], we carry out the TS4 method for the fNLS (5.1), from time t = tn
to t = tn+1, as follows:

(5.13)

\left\{             

\psi 
(1)
p = e - 2i\omega 1\gamma \Delta t| \psi n

p | 2\psi np , \psi 
(2)
p = \scrT N [\omega 2;\bfitpsi 

(1)
p ](xp),

\psi 
(3)
p = e - 2i\omega 3\gamma \Delta t | \psi (2)

p | 2\psi 
(2)
p , \psi 

(4)
p = \scrT N [\omega 4;\bfitpsi 

(3)
p ](xp),

\psi 
(5)
p = e - 2i\omega 3\gamma \Delta t| \psi (4)

p | 2\psi 
(4)
p , \psi 

(6)
p = \scrT N [\omega 2,\bfitpsi 

(5)
p ](xp),

\psi n+1
p = e - 2i\omega 1\gamma \Delta t | \phi (6)

p | 2\psi 
(6)
p \forall p \in \Upsilon N ,

where the weights are given by (cf. [56, 7])

(5.14)
\omega 1 = 0.33780 17979 89914 40851, \omega 2 = 0.67560 35959 79828 81702,

\omega 3 =  - 0.08780 17979 89914 40851, \omega 4 =  - 0.85120 71979 59657 63405.

To show the stability of the fourth-order splitting method, we further define

(5.15) \| \psi n\| 2N =
\sum 
j\in \Upsilon N

| \psi nj | 2\omega j :=
N1\sum 
j1=0

\cdot \cdot \cdot 
Nd\sum 
jd=0

\psi (xj1 , . . . , xjd)\omega j1 \cdot \cdot \cdot \omega jd ,

where \psi nj = \psi n(xj), and \{ xj , \omega j\} j\in \Upsilon N
are the corresponding tensorial nodes and

weights as in (4.10). Following [7, Lemma 3.1], we can show the following property.

Theorem 5.1. The TS4 has the normalization conservation, i.e.,

(5.16) \| \psi n\| 2N =
\sum 
j\in \Upsilon N

| \psi nj | 2\omega j =
\sum 
j\in \Upsilon N

| \psi 0(xj)| 2\omega j = \| \psi 0\| 2N , n \geq 0.

5.2. Numerical results. In the computation, we take d = 2, and the initial
condition to be

\psi 0(x1, x2) = sech(x1)sech(x2) exp(i(x1 + x2)), (x1, x2) \in \BbbR 2.(5.17)

In order to test the fourth-order accuracy in time of the TS4 method, we compute
a numerical solution with focusing case \gamma =  - 1, s = 0.7, a very fine mesh, e.g.,
N = 300, and a very small time step \Delta t = 0.0001, as the exact solution \psi . Let \psi \Delta t

be the numerical solution with N = 300 and time step size \Delta t. Table 2 lists the
maximum error and L2-error at T = 2 for different time step size \Delta t. The results in
Table 2 demonstrate the fourth-order accuracy in time of the TS4 method (5.13).

In Figure 5, we plot the maximum errors and L2-error versus space discretiza-
tion N and time discretization \Delta t. They indicate that the numerical errors decay
algebraically as N increases/or \Delta t decreases.

In Figures 6(a)--(b), we depict the modulus squared of the numerical solution
with defocusing case (\gamma = 1) obtained by TS4. Here, we take N = 200, T = 1, 2, and
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(a) Errors vs. N
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T=2, γ=-1, s=0.7, L∞-Error
T=2, γ=-1, s=0.7, L2-Error

(b) Errors vs. \Delta t

Fig. 5. (a) The numerical error of (5.17) with s = 0.7, \gamma =  - 1, T = 2. (b) The numerical
error of (5.17) with s = 0.7, \gamma =  - 1, T = 2.

(a) T = 1, s = 0.3 and \gamma = 1 (b) T = 2, s = 0.3 and \gamma = 1

(c) T = 1, s = 0.3 and \gamma =  - 1 (d) T = 1, s = 0.7 and \gamma =  - 1

Fig. 6. Profiles of the modulus square of the numerical solutions at different times and with
different fractional orders.

different values of fractional order s = 0.3. We observe that the solution diffused as
expected. On the other hand, the blowup of the solution might happen for focusing
case \gamma =  - 1 (cf. [33]). In Figures 6(c)--(d), we plot the profiles of the modulus square
of the numerical solution at T = 1 with N = 200 and s = 0.3, 0.7. We can observe
the expected blowup phenomenon.
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5.3. Concluding remarks. We developed a fast spectral-Galerkin method us-
ing the mapped Chebyshev functions as the basis for PDEs involving the integral
fractional Laplacian in \BbbR d. The fast solver is integrated with two critical components:
(i) the Dunford--Taylor formulation for the fractional Laplacian; and (ii) Fourier-like
biorthogonal MCFs as basis functions. The fast spectral algorithm could achieve
a quasi-optimal computational cost. Different from the existing works on bounded
domains (cf. [11, 12]), the integration in t is evaluated explicitly, and the fractional
Laplacian can be fully diagonalized under (i) and (ii). Indeed, the existing approaches
for the fractional Laplacian in unbounded domains are either too complicated or com-
putationally prohibitive even for d = 2. However, the fast solver works for any dimen-
sion, and can be easily incorporated with, e.g., the hyperbolic cross and sparse grids
(cf. [48]) when the dimension is high.

The proposed method can be extended to invert the operator \BbbD s := ( - \Delta + \theta \BbbI )s
with s \in (0, 1) and \theta > 0. In fact, one can verify readily that the Dunford--Taylor
formulation in Lemma 3.2 takes the form\bigl( 

\BbbD 
s
2u,\BbbD 

s
2 v

\bigr) 
L2(\BbbR d)

= Cs

\int \infty 

0

t1 - 2s

\int 
\BbbR d

\bigl( 
( - \Delta + \theta \BbbI )

\bigl( 
\BbbI + t2( - \Delta + \theta \BbbI )

\bigr)  - 1
u
\bigr) 
(x) v(x) dx dt.

Then the fast algorithm in Theorem 3.2 can be extended to this case straightforwardly.

Appendix A. Proof of Proposition 4.2. The results with d = 1 were derived
in [55], so it suffices to prove them for integer d \geq 2. Note that

F
\bigl\{ 
e - | x| 2\bigr\} (\xi ) = 1

(2\pi )d/2

\int 
\BbbR d

e - | x| 2e - ix\cdot \xi dx

=
1

(2\pi )d/2

\int 
\BbbR 
e - x

2
1e - ix1\xi 1dx1 \cdot \cdot \cdot 

\int 
\BbbR 
e - x

2
de - ixd\xi ddxd =

1

2d/2
e - 

| \xi | 2
4 ,

where we used the identity (cf. [25, p. 339]):\int 
\BbbR 
e - x

2

e - ix\xi dx =
\surd 
\pi e - 

\xi 2

4 .

Thus from the definition (1.1), we obtain

( - \Delta )s
\bigl\{ 
e - | x| 2\bigr\} (x)

= F - 1
\Bigl\{ 
| \xi | 2sF

\bigl\{ 
e - | x| 2\bigr\} (\xi )\Bigr\} =

1

2d/2(2\pi )d/2

\int 
\BbbR d

| \xi | 2se - 
| \xi | 2
4 eix\cdot \xi d\xi 

=
2d

2d/2(2\pi )d/2

\int 
\BbbR d

+

| \xi | 2se - 
| \xi | 2
4 cos(x1\xi 1) cos(x2\xi 2) \cdot \cdot \cdot cos(xd\xi d)d\xi .

(A.1)

We proceed with the calculation by using the d-dimensional spherical coordinates:

\xi 1 = r cos \theta 1, \xi 2 = r sin \theta 1 cos \theta 2, \cdot \cdot \cdot , \xi d - 1 = r sin \theta 1 \cdot \cdot \cdot sin \theta d - 2 cos \theta d - 1,

\xi d = r sin \theta 1 \cdot \cdot \cdot sin \theta d - 2 sin \theta d - 1, r = | \xi | ,
(A.2)

so we can write

( - \Delta )s
\bigl\{ 
e - | x| 2\bigr\} (x) = 1

\pi d/2

\int \infty 

0

r2s+d - 1e - 
r2

4 \scrI (r;x)dr,(A.3)

D
ow

nl
oa

de
d 

10
/2

7/
20

 to
 1

58
.1

82
.1

0.
16

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2460 C. SHENG, J. SHEN, T. TANG, L.-L. WANG, AND H. YUAN

where

\scrI (r;x)

=

\int 
[0,\pi 2 ]d - 1

cos
\bigl( 
rx1cos \theta 1

\bigr) 
cos

\bigl( 
rx2sin \theta 1cos \theta 2

\bigr) 
\cdot \cdot \cdot cos

\bigl( 
rxd - 1sin \theta 1 \cdot \cdot \cdot sin \theta d - 2cos \theta d - 1

\bigr) 
\cdot cos

\bigl( 
rxd sin \theta 1 \cdot \cdot \cdot sin \theta d - 2sin \theta d - 1

\bigr) 
(sin \theta 1)

d - 2(sin \theta 2)
d - 3 \cdot \cdot \cdot (sin \theta d - 2) d\theta 1d\theta 2 \cdot \cdot \cdot d\theta d - 1.

We first integrate \scrI (r;x) with respect to \theta d - 1. To do this, we recall the integral
formula involving the Bessel functions (cf. [25, p. 732]): for real \mu , \nu >  - 1 and
a, b > 0, \int \pi 

2

0

J\nu (a sin \theta )J\mu (b cos \theta ) sin
\nu +1 \theta cos\mu +1 \theta d\theta =

a\nu b\mu J\nu +\mu +1

\bigl( \surd 
a2 + b2

\bigr) 
(a2 + b2)(\nu +\mu +1)/2

.(A.4)

Then using the identity cos z =
\sqrt{} 
\pi z/2J - 1/2(z) and (A.4) (with a = rxd - 1sin \theta 1

\cdot \cdot \cdot sin \theta d - 2, b = rxd sin \theta 1 \cdot \cdot \cdot sin \theta d - 2 and \mu = \nu =  - 1/2), we derive\int \pi 
2

0

cos
\bigl( 
rxd - 1sin \theta 1 \cdot \cdot \cdot sin \theta d - 2cos \theta d - 1

\bigr) 
cos

\bigl( 
rxd sin \theta 1 \cdot \cdot \cdot sin \theta d - 2sin \theta d - 1

\bigr) 
d\theta d - 1

=
\pi 

2
J0

\bigl( 
r sin \theta 1 \cdot \cdot \cdot sin \theta d - 2

\sqrt{} 
x2d - 1 + x2d

\bigr) 
.

Substituting the above into \scrI (r, x), and applying the same argument to \theta d - 2, \theta d - 3, . . . , \theta 1
iteratively d - 2 times, we obtain

(A.5) \scrI (r;x) =
\Bigl( \pi 
2

\Bigr) d
2

(r| x| )1 - d
2 J d

2 - 1(r| x| ).

We proceed with the integral identity (cf. [25, p. 713]): for real \mu + \nu >  - 1 and
p > 0,

(A.6)

\int 
\BbbR +

J\mu (bt)e
 - p2t2t\nu  - 1dt =

b\mu \Gamma ((\mu + \nu )/2)

2\mu +1p\nu +\mu \Gamma (\mu + 1)
1F1

\Bigl( \mu + \nu 

2
;\mu + 1; - b2

4p2

\Bigr) 
.

Then, substituting (A.5) into (A.3) and using (A.6) (with \mu = d/2  - 1 and \nu =
2s+ d/2 + 1), we derive

( - \Delta )s
\bigl\{ 
e - | x| 2\bigr\} =

| x| 1 - d
2

2d/2

\int \infty 

0

r2s+
d
2 e - 

r2

4 J d
2 - 1(r| x| )dr

=
22s\Gamma (s+ d/2)

\Gamma (d/2)
1F1

\Bigl( 
s+

d

2
;
d

2
; - | x| 2

\Bigr) 
.

This yields (4.22). The asymptotic behavior (4.23) follows from the property (cf. [8,
p. 278]):

(A.7) 1F1(a; b; z) =
\Gamma (b)

\Gamma (b - a)
( - z) - a

\bigl\{ 
1 +O(| z|  - 1)

\bigr\} 
.

Then (4.23) follows. This completes the proof.

Appendix B. Proof of Proposition 4.3. The identity with d = 1 can be
found in [54], so we assume that d \geq 2. Using the d-spherical coordinate system in
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(A.2), we obtain from (A.5) that

F
\Bigl\{ 1

(1 + | x| 2)\gamma 
\Bigr\} 
(\xi )=

1

(2\pi )d/2

\int 
\BbbR d

e - ix\cdot \xi 

(1 + | x| 2)\gamma 
dx

=
2d

(2\pi )d/2

\int 
\BbbR d

+

cos(x1\xi 1) cos(x2\xi 2) \cdot \cdot \cdot cos(xd\xi d)
(1 + | x| 2)\gamma 

dx

=
\Bigl( 2

\pi 

\Bigr) d
2

\int \infty 

0

rd - 1

(1 + r2)
\gamma \scrI (r; \xi ) dr = | \xi | 1 - d

2

\int \infty 

0

r
d
2

(1 + r2)
\gamma J d

2 - 1(r| \xi | )dr.

Recall the integral formula (cf. [25, p. 686]): for  - 1 < \nu < 2\mu + 3
2 and a, b > 0,

(B.1)

\int \infty 

0

x\nu +1

(x2 + a2)\mu +1
J\nu (bx)dx =

a\nu  - \mu b\mu 

2\mu \Gamma (\mu + 1)
K\nu  - \mu (ab),

where K\nu (x) is the modified Bessel function of the second kind. Note that K - \nu (x) =
K\nu (x). Then letting \mu = \gamma  - 1 and \nu = d/2 - 1 in (B.1), we obtain

F
\Bigl\{ 1

(1 + | x| 2)\gamma 
\Bigr\} 
(\xi ) =

| \xi | \gamma  - d
2

2\gamma  - 1\Gamma (\gamma )
K\gamma  - d

2
(| \xi | ).

We also use the integral formula (cf. [25, p. 692]): for real a > 0, real b, and \nu  - \lambda +1 >
| \mu | , \int \infty 

0

x - \lambda K\mu (ax)J\nu (bx)dx

=
b\nu \Gamma 

\bigl( 
(\nu  - \lambda + \mu + 1)/2

\bigr) 
\Gamma 
\bigl( 
(\nu  - \lambda  - \mu + 1)/2)

2\lambda +1a\nu  - \lambda +1\Gamma (\nu + 1)

\times 2F1

\Bigl( \nu  - \lambda + \mu + 1

2
,
\nu  - \lambda  - \mu + 1

2
; \nu + 1; - b2

a2

\Bigr) 
.

(B.2)

Once again, using the d-spherical coordinate system (A.2), (A.5), and (B.2) (with
\lambda =  - 2s - \gamma , \mu = \gamma  - d/2, and \nu = d/2 - 1), we have

( - \Delta )s
\Bigl\{ 1

(1 + | x| 2)\gamma 
\Bigr\} 
=

1

(2\pi )
d
2 2\gamma  - 1\Gamma (\gamma )

\int 
\BbbR d

eix\cdot \xi | \xi | 2s+\gamma  - d
2K\gamma  - d

2
(| \xi | ) d\xi 

=
2d

(2\pi )
d
2 2\gamma  - 1\Gamma (\gamma )

\int 
\BbbR d

+

cos(x1\xi 1) cos(x2\xi 2) \cdot \cdot \cdot cos(xd\xi d)| \xi | 2s+\gamma  - 
d
2K\gamma  - d

2
(| \xi | ) d\xi 

=
2

d
2 - \gamma +1

\pi 
d
2\Gamma (\gamma )

\int \infty 

0

r2s+\gamma +
d
2 - 1K\gamma  - d

2
(r)\scrI (r, x) dr

=
2 - \gamma +1

\Gamma (\gamma )
| x| 1 - d

2

\int \infty 

0

r2s+\gamma K\gamma  - d
2
(r)J d

2 - 1(r| x| )dr

=
22s\Gamma (s+ \gamma )\Gamma (s+ d

2 )

\Gamma (\gamma )\Gamma (d2 )
2F1

\Bigl( 
s+ \gamma , s+

d

2
;
d

2
; - | x| 2

\Bigr) 
.

This completes the derivation of (4.24).
According to [8, p. 76], the asymptotic behavior of the hypergeometric function

for large | x| (unless a - b is an integer) is

(B.3) 2F1(a, b; c;x) = \lambda 1| x|  - a + \lambda 2| x|  - b +O(| x|  - a - 1) +O(| x|  - b - 1),
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where \lambda 1 and \lambda 2 are constants; if a - b is an integer, z - a or z - b has to be multiplied
by a factor ln(x). Then we have the asymptotic behavior of ( - \Delta )s

\bigl\{ 
1

(1+| x| 2)\gamma 
\bigr\} 

as

| x| \rightarrow \infty in (4.25)--(4.26).
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