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Abstract-filly discretized Euler method in time and finite difference method in space are con- 
structed and analyzed for a class of nonlinear partial integro-differential equations emerging from 
practical applications of a wide range, such as the modeling of physical phenomena associated with 
non-Newtonian fluids. Though first-order and second-order time discretizations (based on truncation 
errors) have been investigated recently, due to lack of the smoothness of the exact solutions, the 
overall numerical procedures do not achieve the optimal convergence rates in time. In this paper, 
however, by using the energy method, we prove that it is possible for the scheme to obtain the optimal 
convergence rate O(r). Numerical demonstrations are given to illustrate our result. 

Keywords-Partial integro-differential equations, Euler method, Finite difference method, Con- 
vergence rate. 

1. INTRODUCTION 

Flows of fluids with complex macrostructures cannot be described by the classical Navier-Stokes 

equations [l]. Many model problems exist that are based on linear viscoelasticity, nonlinear elss- 

ticity, and Newtonian or non-Newtonian fluid mechanics or on molecular considerations. Popular 

models essentially fall into two categories: the differential models and the integral models. For a 

general discussion of the mathematical principles governing the formulation of constitutive laws 

and methods, the reader is referred to [l-3]. In this paper, we only deal with a particular case of 

the integral model problems. 

Given any positive number T, we denote the interval [0, l] and the rectangle [0, l] x [0, T] as I 

and IT, respectively. We consider the nonlinear partial integro-differential equation 

Ut + U7.L~ = J ot(t - s)- uzz(x, s) ds, (&t) E IT, (1.1) 

where 0 < a < 1 is a constant, together with the boundary conditions 

u(0, t) = U(1, t) = 0, OstlT, (1.2) 

and the initial condition 

u(z, 0) = uo(5), 2 E I. (1.3) 
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When the second term of the left-hand side of (1.1) is absent, we obtain the linear counterpart 
of equation (l.l), 

‘Ilt = 
s 

et(t - s)-%,,(Z, s) ds, (z,t) E IT, (1.4) 

and it may be considered as an equation intermediate between the standard (parabolic) heat 

equation and (hyperbolic) wave equation [4]. Equations (l.l), (1.4) arise in a number of practical 

applications, for example, in the modeling of physical phenomena associated with non-Newtonian 

fluids [5,6]. In fact, (1.4) can be viewed as a particular case when the Newtonian contribution to 

the viscosity reduces to null in the Boltzmann equation [7] 

s 

t 
Ut - wxx = G(t - s)u,,(x, s) ds. 

--DC) 

Much effort has been devoted during recent years to the numerical investigations of prob- 

lems (l.l)-(1.3) and (1.4), (1.2)-(1.3) (cf., [4,8,9]). By setting a = l/2, Sanz-Serna (41 studied 

a time discretization of the linear model equation (1.4). The method reduces to the backward 

Euler method if the integral term is absent. The integral term is approximated by means of a 

convolution quadrature of Lubich [lO,ll]. Following his approach, Lopez-Marcos [8] studied a 

fully discretized scheme in which again the integral term was treated by means of a convolution 

quadrature of Lubich and the backward Euler approximation. The derivatives in space were ap 

proximated by the central difference approximants. It was found that under certain smoothness 

assumptions, the numerical scheme was of a convergence order r/ lnrj112 + h2, where T and h are 

the time and space step sizes, respectively. 
More recently, Tang [12] further studied the problem (l.l)-(1.3) numerically. Again, a = l/2 

was assumed. The time derivative term was approximated by a Crank-Nicolson time-stepping 

and the integral term was treated by the product trapezoidal method. A convergence rate of 

0(r3/2 + h2) was proved. 

In this paper, we shall investigate an Euler and finite difference approach for the nonlinear 

integro-differential equation problem (1 .l)-( 1.3). ut will be replaced by the backward Euler 

approximation, and the integral term in (1.1) will be calculated by using the Euler product inte- 

gration technique, while the spatial derivatives are to be approximated by conventional central 

difference approximants. Throughout this paper, we assume uc in (1.3) is such that the prob- 

lem (l.l)-(1.3) h as a unique solution in IT. Furthermore, we suppose that u,,,, and ut are 

continuous in IT. We also assume that utt and u Iztt are continuous for 0 I x 5 1 and 0 < t < T, 
and there exists a positive constant Cc such that for z E I and 0 < t 5 T, 

lwt(Gt)l i cot-“, 

(see [S] for these assumptions). 

I%zz(X, tjl 5 cot-* (1.5) 

As mentioned before, first-order and second-order time discretizations (based on truncation 

errors) have been investigated in [4,8,12]. Due to lack of smoothness of the exact solution, (1.5), 

the optimal convergence rate in each case cannot be attained. However, it will be shown that the 

present scheme achieves the optimal convergence rate in time, which holds for all (Y E (0,l). 

2. NUMERICAL SCHEME 

Given positive integers M, N. We define the grid & = {(x,, tn) : xm = mh, t, = no; 
m=O,l,... ,M,n=0,1,... ,N}, where h = l/M and r = T/N are the spatial and time steps, 

respectively. Denote wz as a lattice function defined on f~. We introduce the finite differences, 

say, with respect to the variable x, 

A+wn = wn ?I 

z m m+l -‘W?nr 
A-wn = wn - wn 

zm In m--l7 A,w; = w& -w;_,; (2.1) 
S2Wn = A+A-w” = wn 2m ZZzm m+1 - 2w; + w;_i. (2.2) 
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Let 9 = (v?,v,“, . . . ruz_l)T, Wn = (WY, Wg, . . . ,zo&_~)~ E W”-‘. Throughout this paper, 
whenever symbols such as wt, wk app ear in the discussion, we shall understand that ~0” = 
w& = 0. We further define 

?Jpwq = (V~w~,v;w&. . . ,t&_lW&_l) 
T 

; 

M-l 

(up, wq) = c h&w%, 
m=l 

llwnll = XGGT, 

where h > 0 is the spatial step of the grid. It can be proved [13] that 

(w:+1 + w; + w;_~) A,w; = w;A,w& + A, (w;,>~ ; 

(wnAwn + Am, w”) = 0; 

M-l 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(@Jn,wn) = - (A:w”, A;wn) = - c h (A;c+u;) (Aiw;). 
m=l 

(2.7) 

To study the stability and convergence of the finite difference schemes for problem (l.l)-(1.3) 
using the energy method, one of the key ingredients is to obtain the nonnegative property of 
the associated quadratic forms. Lop&-Marcos [S] shows that the quadratic form, based on the 
method of Lubich, is nonnegative. His result is obtained by employing the frequency domain 
techniques and can be viewed as a discrete analog of the result due to Nohel and Shea [14]. 
However, the kernel function appeared on the right-hand side of (1.1) is no longer of a convolution 
form, and therefore, the nonnegative character of the corresponding quadratic form needs to be 
reestablished. 

LEMMA 2.1. Given any n E Z+. For any v f R”, we have 

71 i-l 

=s 

t,+1 

(h - sy Vjuj+l”i ds 2 0. 

i=l j=O tj 

PROOF. Note that 

We have 

(1 -t)-” = g-l)~(-$P. 
k=O 

Due to the fact that (-l)k(-F) > 0, Ic = O,l,. . . , (2.8) is obvious if 

t~“-kSktIj+lvi ds > 0 - , k E (0) u Z+. 

To prove the above inequalities, we define 

i-l i-l 
yi = c s ti+l i=1,2 ,...,n, 

Jdl t, 

s”vj+l ds = ~u~+~v~+~, 
3=0 

where 

s ti+1 tk+l _ Qc+l 

dj+l = skds = 3+1 3 
k+l 

> 0, j=O,l ,_..,i-1. 
t, 

(24 
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Let ys = 0; from the above equations, we obtain the recurrence yi = wivi + yi-1, i = 1,2,. . . . It 

follows that 

t~a-kSkvj+lv~ ds = t;ff-kg& 
i=l 

= 2 tya-kYF - Y&-l 
z 

i=l Wi 

> 2 p-k Y: - y?-1 
2 

i=l 
2Wi 

p-k 
z--. 

Wi 
(2.9) 

Let 

f(e) = gk+l - (( - qk+l, E 2 1, k > 0. 

It is easy to show that f is a positive valued increasing function since that f(1) = 1 and f’(c) = 

(k + l)(<” - (< - l)k) > 0 for [ > 1, k 2 0. Thus, we find that 

ty-k (iT)--” k+l 1 
z = & ((i7)k+l _ ((i _ l)?)k+l) = 7a+2k+l (ikfl _ (i _ l)k+l)ia+k 

Wi 

k+l 1 
= 7a+2k+lia+k 

f(i) ’ 
i = 1,2,..., 

and this indicates that tiQek /wi is a nonincreasing function of i, i E Z+. Subsequently, from (2.9) 

we obtain 
71 i-l 

=I 
tj+1 tia-"skvj+lvi da > 0, k=O,l,.... 

i=l j=O h 

The proof is then completed. I 

Let the approximation to u”, = u(xm,t,), where u is the exact solution of (l.l)-(1.3), be 
denoted by LJG which is computed from the difference equation 

n-1 

A,U; + & (U;_, + U; + U:+r) A,U; - ; c c,z,i 6: U$? = 0, 
2=0 (2.10) 

m= 1,2,..., M-l; n=1,2 )..., N, 

together with the boundary and initial conditions 

u,” = U$ = 0, O<n<N, 

u” = (u,“,u,“, . . . , u&_JT, 

where 

s 

t,+1 
C n,i = 

t* 
(t, - s)+ ds = & ((tn - ti)lba - (tn - ti+l)‘-“) . 

Let the local truncation error a: be defined by 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

llm<M-1, l<n<N. 

We have the following lemma. 
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LEMMA 2.2. Given any n E iZ+, n 2 N. For any fixed (u, 0 < Q < 1, we have 

pqm = 0 (T * tna + h2) ) 

2 7- ,,dqoo = 0 (7- + h2) ) 
n=l 

(2.15) 

(2.16) 

as 7, h -+ 0. 

PROOF. Recall condition (1.5). We have, by using Taylor expansion, that 

& (4-S& + & (u:)~) - u (x,, tn) ux (zm, ha) = 0 (h2) . (2.18) 

On the other hand, we have, for any s E [ti,ti+l], 0 5 i 5 N - 1, that 

- uxx (xm, &+1) + uxx (xm, b+1> - ‘II,, (xm, s> 
= 0 (T + h2). 

Further, we have 

1 
n-l 

- 
h2 c 

Cn,i 62 Uz,+l - 

i=o 

1 
n-l 

ES 

ti+1 
=- 

h2 i=o ti 
(t, - s)-” (@_~f$ - h2uZZ (x,,s)) ds 

= 0 (T + h2) 1” (t, - s)-” ds = 0 (T + h2) . 

Combining (2.17), (2.18) and (2.19), we obtain immediately that 

(2.19) 

e2 = 0 (T a t,” + h2) , 

which gives (2.15). For (2.16), we observe that for any n, N E Z+, n < IV, 

due to the fact that the function [-” is strictly decreasing for < > 0. This, together with (2.15), 
yields (2.16). The proof of the lemma is thus completed. I 

3. CONVERGENCE ANALYSIS 

Let Cl, C2, Cs and C be positive constants which are independent of 7, h, m and n. We have 

the following theorem. 

THEOREM 3.1. Suppose that the solution of (1.1)-(1.3) satisfies the smoothness requirements 

stated in Section I, and (Cr’, U1,. . . , U”) are solutions of (2.10)~(2.12). As 7, h tend to zero 
independently, for any fixed cr, 0 < cy < 1, we have 

o<mnN \jU” - unll = 0 (/IU” - ~‘11 + 7 + h2) . 
- - (34 
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PROOF. Let ek = Uz - r.&, with U& = u(zcm,tn) and UE being the solution of (2.10)-(2.12). 

Subtraction of (2.14) from (2.10) yields 

where 

l<m<M-1, l<n<N, 

B (w;) = h-l (uJ;_, + w; + @,+r) A,w$ llm<M-1, l<n<N. 

Multiplying both sides of (3.2) by rhe$ and summing in m, we have 

(eR, en) - (en-‘, e”) = 5 (B(P) - B(u”),e”) 

n-l 

+ fj ~G,i(6~eif',en) +~(o”,e”) 
a=0 

n-l 

= i (B(P) - B(un), en) - $ c c,,i (Azei+‘,A$e”) 
a=0 

+ 7 (on, en), l<n<N, (3.3) 

in which relation (2.7) is used to get the second term of the right-hand side of (3.3). It follows 

then from (3.3) that 

llenll’ = (en-l, en) + i {B(Un) - B(C), en) 

n-l 

I 5 (Ilen-l II2 + ~~en~~“) + i (B(V) - B (tP) , en) 

- $ g c+ (Afei+‘, Azen) + T (on, en), l<n<N. 
a=0 

Thus, we have 

l[enl12 - llen-1112 5 5 (B (P) - B (un) , en) - E n$ c+ (Azei+‘, Ase”) 
2=0 

+ 27 (8, en> , l<n<N. (34 
Following the discussion of Lop&-Marcos [S], we can show that the modulus of the first term 

of the right-hand side of the above inequality can be bounded by Cl7 11 en 11. For the last term 

of (3.4), making use of the fact that I]~111 5 ~ljutll = IIuIII, we find that 

W?en) 2 lbnlloa lIenIll 5 lbnllmk (3.5) 

where A = rnaxsln<N lIenIl. Substituting the above estimates into (3.4) and summing up over n, 
- we obtain that 

i=o i=l 

_ $ 2 E ci,j (Azej+l, &$e”) 

i=l j=O 

= lle”l)2 + Cl7 2 lleil12 + 7h 2 (Ioilloo 
i=l i=l 

‘* +l j=O m=l 
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We observe that, due to Lemma 2.1, 

(tg - s)-~ (Azej,+’ ) (Azek) ds 2 0. 

It follows then 

lIenIl I 

I 

i=l i=l 

lIeoIl A + Cl72 lIeill + C2 (7 + h2) A 
i=l 

= CIT$ lleil[2 + C3 (lleOlj + 7 + h2) 4 ll?ZlN. 

An application of the Gronwall lemma to the above inequality yields that 

lle”l12LC(lle0/l+T+h2)A, lln<N. 

The above relation implies that A2 5 C( lIeoIl +r+h2)A, which is equivalent to A = 0( llU” - u”ll+ 

r + h2). Hence, the convergence result is proved. I 

REMARK 3.1. A graded mesh, in which 

it,= $ 'T, ( > OLnLN, 

and y 2 1 is the grading exponent, can be also introduced to overcome the difficulties in achieving 

the optimal convergence rate of the numerical method in practical computations. Following [15], 

it can be proved that for suitable values of y, the optimal order of convergence of the numerical 
scheme can be achieved. 

4. NUMERICAL EXAMPLES 

Viscoelastic fluids have intermediate properties, and this is reflected in the mathematical nature 

of their governing equations. To illustrate, we consider the Boltzmann’s problem 

ut = I ot(t - s)-Quzz(x, s) ds, (%t) E IT, (4.1) 

U(0, t) = U(1, t) = 0, OltlT, (4.2) 

+, 0) = d(z), 2 E I, (4.3) 

where 4(O) = 4(l) = 0 and the stress-relaxation modulus G(t - s) = (t - s)-~, 0 5 a < 1, 

has a singularity at the origin. Alternatively, equation (4.1) can be written in terms of the 
displacement w , 

J 
t 

wtt = dt - s) [w&, t) - %5(X, s)l ds, (x9 t) 6 IT, 
0 

rather than the velocity U. Here, g = -G’ is the memory function. If g is smooth, the term 

containing w,, would be viewed as that of the highest order. Since that we are integrating 
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with respect to s, the term involving ‘w,, is considered a lower order term. The equation would 
therefore be classified as hyperbolic. Intermediate possibilities arise in the equation due to the 

singularity of our memory function at the origin. One has to differentiate between an integrable 

singularity and a nonintegrable singularity in order to determine the types of the equations. The 

linear problem is no longer simple in the sense. 

Linear problems with singular memory functions not only lead to interesting mathematical 

analysis, but they can also be motivated physically. Historically, Boltzmann was among the 

pioneers to attempt fitting data with a singular memory function. Modern measurements of 

oscillatory shear moduli at high frequency and of wave speeds suggest that certain fluids have 

singular or almost-singular memory functions. The molecular theories in which molecules as 

chains of beads and springs or rods lead to singular memory functions in the limit of an infinite 

number of beads in the molecule [l]. A nonlinear extension of (4.1) is the well-known K-BKZ 

equation. 

CASE A. Let a = l/2 and let 4(z) = sin(rz). The solution of the problem (4.1)-(4.3) can be 

written as 
‘LL(z,t) =E(7r ‘j2t3j2 sin(7rz), ) (5, t) E IT, (4.4) 

where E(c) = C~=O_,(-l)“r(3k/2+1)-1~” is the entire function [4]. The estimate of Theorem 3.1 

is the best possible in space since central difference approximations yield a convergence order of at 

most two. The purpose of the examples is to verify that the error bound for the time discretization 

is the optimal one. 

From the numerical scheme (2.10)-(2.12), we obtain the system of linear equations of the form 

AU” = b-l, l<nIN, (4.5) 

where b”-l E lIXMml is independent of U* and A E R.(“-l)x(M-l) is of a tridiagonal form, in 

which the diagonal entries are 1 + 2rcn,+l/h2 and the subdiagonal entries are --~c~,~-~/h~. 

U” = (sin(hr),sin(2hr). . . ,sin((M - l)hr) T is the initial condition. This linear system can be 

solved by a procedure using the standard decomposition method. However, on the other hand, 

we observe that in our case, the inverse of A can be computed in an explicit way; that is, 

A-’ = PHP, (4.6) 

where P = (a sin(ijQr/M))c=t is a (M - 1) x (A4 - 1) symmetric matrix and H is a diagonal 

matrix which takes the form 

-1 M-1 

U . k=l 

The equality (4.6) p rovides an explicit way to compute the numerical solution of (4.5). 

Note that llwll I Ilwll,~~ for w E lR ~4-l . In Table 1, we list the errors in the infinite- 

norm and computed rates of convergence when algorithms employing (4.6) and uniform stepsizes 
h = r = l/N = l/M are adopted. In the calculation, we take the solutions at T = 0.6. Figure 1 

plots the result of the computed rates of convergence against N. The numerical results reflect 

a convergence rate x 1 in time, which is in good agreement with the theoretical prediction in 

Section 3. 

CASE B. Let cr be 0.1~ and 0.2n, respectively. Note that (4.4) is no longer valid in the case; 

we choose the numerical solution when h = r = l/N = l/M = l/320 are used as the “exact 

solution” for computing the rate of convergence. 
Let 4(z) = sin(27rz - 4) + 1 and let N = M = 10,20,40,80 and 160, respectively. We 

compute the corresponding numerical solutions of (2.10)-(2.12) using the uniform stepsizes. The 



N Error Rate 

5 0.120627 

10 0.663920x10-’ 0.861472 

20 0.335817x 10-l 0.983335 

40 0.167036x10-’ 1.007513 

80 0.823511 x lo-’ 1.020303 

160 0.404303x 10-Z 1.026352 

320 0.198471 x 10-Z 1.026507 

‘.500 

Optimal Convergence 

Table 1. The numerical error and estimated rate of convergence. 

2 1.000 1.000 E 

2 0.875 0.875 ;: 8 e, 
f 
E 

2 
0.750 ‘J 0.750 % 

z 0.625 w 
0.625 

0.500 10 100 0.500 

N 

Figure 1. Estimated rate of convergence (a = 0.5, T = 0.6). 

numerical solutions are taken at T = l/N, 0.1, 0.2, . . . , 1 and the estimated rates of convergence 
are computed through the formula 

(4.7) 

where uT, u,/2 are numerical solutions using time steps I- and r/2, respectively, and u is the 

exact solution of the problem. The solutions are plotted in Figures 2 and 3, where the curves 

marked with circles, squares, diamonds and triangles are for estimated rates of convergence when 

N = M = 20,40,80 and 160, respectively. Because the numerical solution when N = 160 can 

be a “too good” approximation to the “exact solution,” the heights of the curves marked with 

triangles in both figures are higher than 1. Note that the maximum rate of convergence in time is 

at most 1 due to the forward difference approximation adopted, so the actual rate of convergence 

should be close to 1 in the case. Thus, we again conclude that the rate of the numerical scheme 

is approximately 1, though slight oscillations are observed in Figure 2. 

CASE C. We now choose different values of the parameter a in the computation. Again, in order 

to estimate the rate of convergence, we choose r = h = l/N = l/M = l/320 and compute the 

numerical solutions with a = 0.01, 0.1, 0.2, . . . ,0.9,0.99, as the “exact solutions” for comparison. 
Next, for Y- = h = l/N, N = M = 20,40,80 and 160, we compute solutions of the numeri- 

cal scheme (2.10)-(2.12) with the same values of Q mentioned above, respectively. Finally, we 
compare the solutions obtained with the “exact solutions” and compute the rate of convergence 

using (4.7). The initial function 4 is the same as in Case B, and the solutions are taken at 

T = 0.5. The computed results are plotted in Figure 4, where the curves marked with squares, 

diamonds and triangles are for computed rates of convergence when N = 40,80 and 160 are used, 

respectively. The computed result when N = 160 again seems to be better than expected due 
to the fact that the numerical solution when h = 7 = l/160 is “too good” in approximating 
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Figure 2. Estimated rate of convergence (a = 0.1~). 
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Figure 3. Estimated rate of convergence (a: = 0.27r). 
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Figure 4. Estimated rate of convergence (T = 0.5). 

the “exact solution.” Hence, the rate of convergence should be 1, and this again leads to the 
conclusion that the rate of convergence of the method is approximately 1. 
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