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ABSTRACT

The Turkel-Zwas-type schemes employ coarse grids to discretize the terms associated with the fast gravity-
inertia waves and use fine grids to treat the terms associated with the slow Rossby waves. The ratio of the coarse
and fine grids is an integer, p > 1, and one can use time steps nearly p times larger than those allowed by the
Courant-Friedrich-Lewy condition for the usual explicit leapfrog scheme. This paper investigates the Turkel-
Zwas-type schemes with three spatial grids—namely, A (unstaggered), B, and C grids (staggered)—for two-
dimensional shallow-water equations. A new method that uses the Laplace transform is introduced to solve the
two-dimenstonal phase solutions. Comparisons of the three grids with coarse and fine-grid resolutions are made.
One realistic model problem is tested to verify the linear analysis results. The test shows that the Turkel-Zwas-
type schemes can be used for a larger time step in some practical simulations.

1. Introduction

In this paper we consider the application of the
transfer function approach to the Turkel-Zwas explicit
large-time-step scheme (see Turkel and Zwas 1979)
for the two-dimensional shallow-water equations. This
scheme employs a coarse grid to discretize the terms
associated with the fast gravity-inertia waves but uses
a fine grid to treat the terms associated with the slow
Rossby waves. The ratio of the coarse and fine grids is
an integer, p > 1, and one can use time steps nearly p
times larger than those allowed by the Courant-Fried-
richs-Lewy (CFL) condition for the usual explicit
leapfrog scheme (for example, see Navon and de Vil-
liers 1987). The analytical method to be used in this
work, that is, the transfer function approach, was in-
troduced by Schoenstadt (1977, 1980) to study the be-
havior of the semidiscrete one-dimensional shallow-
water equations with different finite-difference schemes.
As a useful tool in analyzing numerical schemes, the
transfer function approach leads to important insights
into the differences caused by various discretization
schemes, which do not directly emerge from phase
propagation considerations alone. Neta and Navon
(1989) used this method to analyze the Turkel-Zwas
scheme with different values of p for the one-dimen-
sional shallow-water equations. When p = 1, various
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finite-element and finite-difference schemes for the two-
dimensional equations were analyzed by Foreman
(1984), Neta and DeVito (1988), and Schoenstadt
(1980).

Although there have been several applications of the
transfer function approach for Turkel-Zwas schemes,
most of them have been restricted to unstaggered grid
arrangement (for example, see Navon and de Villiers
1987; Neta 1989; Neta and DeVito 1988; Neta and
Navon 1989). In general, there are five numerical grids,
usually referred to as A-E grids, which are obtained
by appropriate arrangements of the dependent variables
in the horizontal directions (see, e.g., Arakawa and
Lamb 1977). For one-dimensional shallow-water
equations, Winninghoff (1968) and Schoenstadt
(1980) carried out extensive investigations of geo-
strophic adjustment for the five grids. Their results
suggest that the B grid is the most satisfactory one for
the one-dimensional models. For the two-dimensional
shallow-water equations Arakawa and Lamb (1977)
found that, in contrast to the one-dimensional case,
the C grid was the best one among the five grids for
fine-grid resolution. The effect of various grid resolu-
tions for these grids has been investigated recently by
Wajsowicz (1986) and Neta and Williams (1989).
Since the standard Turkel-Zwas scheme uses A grid,
we shall refer to the standard Turkel-Zwas scheme as
the “T-Z-A” scheme.

In this paper we will extend the T-Z-A scheme to
the schemes with B and C grids (i.e., T-Z-B and T-
Z-C schemes) and will consider their applications to
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the two-dimensional shallow-water equations. The
reason that we consider only A-C grids is that in prac-
tice they are the most useful ones, as was indicated by
previous analyses. The main difficulty one will en-
counter in dealing with the analysis for two-dimen-
sional shallow-water equations is how to solve the two-
dimensional phase solutions. Previous techniques to
handle the problem have concentrated on the eigen-
value and eigenvector method (see, e.g., Schoenstadt
1980; Neta and Navon 1989), which seems difficult to
extend to the two-dimensional models. To overcome
the difficulty, Neta (1988 ) employed the Fourier trans-
form to solve the two-dimensional steady-state phase
solutions. In this work we shall show that the use of
Laplace transform can easily solve the steady-state part
and the transient part of the phase solutions. The sta-
bility analysis for these three schemes will be given in
the Appendix. One nonlinear model problem will be
tested to verify the linear analysis results.

2. Turkel-Zwas schemes

The two-dimensional shallow-water equations in
Cartesian coordinates can be written as

ou du du oh

—tu—tv—+g—= 2.1
a Tty tEn A 2D
av av dv dh
E+u&+va g—— —fu, (2.2)
oh oh oh du ov
Lty 4to— 2.
” “ax+”ay+h(ax+a) 0, (23)

where u and v are the horizontal components of the
perturbation velocity in the x and y directions, respec-
tively, £ is the perturbed height of the free surface, g is
the acceleration due to gravity, and f'is the Coriolis
parameter assumed constant in the subsequent analysis.
To use the transfer function approach we usually con-
sider the linearized equations with no mean flow in an
infinite region (see, €.g., Navon and de Villiers 1987,
Neta and Navon 1989; Schoenstadt 1980),

du » 0h

——fot+tg—=0, 2.4

o S Lare (2.4)

v oh

—+futg—=0, 2.5

2 Ju gay (2.5)
%+H—+Ha =0, (2.6)
ot oy

where H is the mean height of the free surface. This
model is particularly important in the study of the me-
teorological process called geostrophic adjustment and
has been investigated by several researchers (see, €.g.,
Blumen 1972; Cahn 1945; Neta and Navon 1989;
Schoenstadt 1980). Given a positive constant a, 0
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< «a < |1, the Turkel-Zwas-type schemes for (2.4)-
(2.6) are T-Z-A (with g = 2p):

On ~
a;n = f[(l — &) Vpn + avlrJnn]
£ h 2.7
- q_A;( m+q/2,n m—q/2,n), ( . )
mn -
—at— = —fI(1 — a)up, + aufn,,]
g
- E (hm,n+q/2 - hm,n—q/2)a (28)
Ny H
EY, = - ZIX)‘C(“mﬂ;/Z,n - um—q/Z,n)
H
- 'qK; (vm,n+q/2 - vm,n—q/2); (29)
T-Z-B (with g = 2p — 1):
o 77— _
__u_m_ = f[(l - a)vmn + avfrm]
ot
g - -
~ A (nvgrzn = Bmgr2n),  (2.10)
av
_(fﬂ = _f[(l - a)umn + CXlzfnn]
- q—A; (Romnrarz = Fomngr)s (2.11)
M H _ _
—ﬁ == a{; (ufn+q/2,n - ufn-q/z,n)
H ~x
- aKy_( ;,n+q/2 - vm,n—q/Z); (212)
T-Z-C(withg =2p — 1):
a mn
= fL(1 = @)D + oD
g 2.13
- EA—X (hm+q/2,n - hm-q/Z,n)a ( . )
vV, -
:;m = f[(l - a)umn + autrlnlnz
- — mpgr2)s  (2.14)
qu m,n+q/2 m,n—q/2)> .
Mpn H
5 7Ax (Umsgszn — Um—gr2,n)
- T (vm,n+q/2 - vm,n—-q/Z)a (2‘15)

qAy
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where we have set

_ 1

Y _

Umn = 3 (Umpt1/2 T Umpn—1/2),

1

Umn = E(um+1/2,n + Upm—1/2.1)»

Umn = 7 (Um+1j20 T Um—tjan T Umprry2 T Umno12),

Umn = Z (um+p,n + um—p,n + um,n+p + um,n—p)a

and similarly for v, and where m and # are the indices
of the grid points in the x and y directions, and Ax
and Ay are the grid sizes in the x and y directions,
respectively. It should be pointed out that the T-Z-A
scheme (2.7)-(2.9) is a modified Turkel-Zwas scheme
advocated by Neta (1989).

As discussed in Schoenstadt (1977), the linearized
shallow-water equations can be solved by using spatial
Fourier transforms. Let w be the vector function

w=(u,v, h)’, (2.16)
where w' denotes the transpose of w. The Fourier
transform of w is then given by

+00

wk,l,1) = f w(x, y,t)exp[—i(kx + ly)]dxdy.

-0

By use of the Fourier transform, (2.4)-(2.6) reduce
to

o N
2~ 15— ikgh, (2.17)
at
ad . s
Frin Si — ilgh, (2.18)
o
—ﬁ = —ikH{ — ilHD, (2.19)
ot
which can be solved with initial conditions
+o0
WO:W(k, 1,0)=f W(X,y,o)
X expl—ilkx + )]dxdy. (2.20)

Similarly, the Fourier transform for the discrete form
is

+o0
w(k,[,1)= f w(x + Ax,y + Ay)

X exp[—i(kx + Iy + kAx + [Ay)dxdy.

SONG AND TANG

225

Applying the Fourier transform to (2.7)~(2.15) gives

Y ]

U b — igth, (2.21)
at

b A

P i~ ignh, (2.22)
EY

%’tf = —iHEG — iHnD, (2.23)

where p, & and 7 are defined according to different
grids; namely,

T-Z-A p=(1—a)+ % (coskp Ax + coslpAy),

£y = sin(kp Ax)
A pr 3
sin(IpA
yy = S0UP2Y), (2.24)
pAy

T-Z-B pp=(1 —a)+ % (coskp Ax + coslpAy),

_ 2 sin(kgAx/2) cos(lAy/2)
B qAx s

_ 2sin(lgAy/2) cos(kAx/2) s (2.25)
qay

nB

kA
T-Z-C pc=(1 — a) cos(-———x) cos(

2 2

kqAx cos lgAy
2 2 )’
_ 2 sin(kgAx/2)
gAXx

_ 2 sin(lgAy/2)
gAy ’

)

+ acos(

C

>

nc (2.26)

continuous p = 1,

(2.27)

3. Phase solutions

In this section, we shall solve (2.21)-(2.23) with
the initial condition (2.20) by using the Laplace
transforms. Let the Laplace transform of w be w;
namely,

wix,y,p)=ALw= f e Pwix,y, t)dt. (3.1)
0

Then (2.21)-(2.23) with (2.20) become

st — do = fp¥ — itgh, (3.2)
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(3.3)
(3.4)

Joil — ingh,
iEHi ~ inH.

STJ_fJ[)

Sil'—il()=“

Rewriting the preceding equations in a matrix form;
that is, AW = wg, with
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A=l fo s ing}, (3.5)
iEH immH s

we find that the solution of (3.2)-(3.4) is W = A~ 'W,.
A direct calculation gives that

. ) s* + gHn® sfo ~ gHEn  —ig(fon + s£)
o= ST+ 09) —(sfp+ gHEn) 57 + gHE? ig(fok —sm) |, (3.6)
iH(fon — s&)  —~iH(fpé +sm) 7+ (fp)?
where w is the positive eigenvalue of A, . 1 sinwt s
L [ 3 2] = , .L"[ 5 2] = coswt,
w=[(fp)* + gH(& + 1] (3.7) stw @ stw ‘
The system (2.21)-(2.23) can be solved by using the I 1] 7 1 1 — coswt
inverse Laplace transform, and the solution can be for- s L s(s?+ )| @
mally written as W = LW = L7 '[A™']W,. Noting
that we obtain from (3.6) that
B ‘ ) sinwt . sinwt | 7
coswt + gHn*S fo — gHtnS —igé—— — igfonS
w
inwt inwt
LAY = | —fp 22 ongnS  coswr+ gHELS  —ign o 4 igfptS |,
w w
inw? inwt
—iHE 2 iHfnS  —iHn o iHfpES  coset + (p)2S
L w w -
where S = (1 — coswr)/w?. The solutions of (2.21)~ gHI? CgHKl  igfl
(2.23) are w2 T2 o
a iy i\ gHKI  gHK>  igfk |[%o
f)) =LA Do) . (3.8) (?S) =1 - w2 w2 2 Vo .
il il() hS hO
- A iHfl iHfk  f*
It is known that each transform field can be written as w2 TS o?
the sum of a steady-state part (denoted by s subscript) (3.10)

and a transient part; see Haltiner and Williams ( 1980).
In the present case the steady part is

gHn®>  gHfn  igfon

(J)z- w2 B 0)2
U\ gHEn  gHE® gt |
Ut =1 — T 2 3 2 Vot .
hs @ w w h()

iHfpn _ iHfp§  (fp)*

OJZ (IJ2 w2

(3.9)

Similarly, we can find that the steady-state solution in
the continuous case is

The preceding steady solutions were also obtained by
Neta (1988) using Fourier transforms.

4. Numerical comparisons

Throughout this section the parameter « in (2.7)-
(2.15) is set to be /3. Before presenting the numerical
results; we shall introduce some physical parameters
that will be used in the following. The Rossby radius
of deformation is basically the horizontal scale at which
rotation effects become as important as buoyancy in
the rotating fluid called “atmosphere.” For the atmo-
sphere the Rossby radius of deformation is defined as
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\ = (gh)'”? (9.8 X10%)'7

~ 3.13 X 10° m,
7 107

(4.1)

where g is the acceleration of gravity and 4 is the depth
of the fluid. Wavenumbers in the x and y directions,
k and [, are defined in the region

kis k < ki T < 1 ™
i~ TaT ' Ta
where d = Ax = Ay. (Here, without loss of generality
we assume that a square grid is used.) The ratio of the
grid size to Rossby radius of deformation, R = d/]\,
called “grid resolution,” plays an important role in the
present problem. Since the Rossby radius is fixed [see
(4.1)], a small ratio corresponds to a small-scale length
while a large ratio corresponds to a large-scale length.
Dispersion is the interference of Fourier modes that
comes about if the wavenumbers k and / and the fre-
quency w [see (3.7)] are related nonlinearly. In general,
the dispersion relation for a partial differential equation
is a polynomial in k and /, while a discrete model
amounts to a trigonometric approximation. It has been
noted that even if the CFL condition is satisfied, nu-
merical schemes may be unstable due to the dispersion
(see, e.g., Trefethen 1982). The analytic and discrete
dispersion relations are given by (3.7) and (2.24)-
(2.27). Figure 1 shows a comparison of the dependence
of w/fin (kd/ =, ld/x) € [0, 1] X [0, 1] for the case
R = 0.5. This figure contains the analytic solution and
the numerical solutions for p = 1, 2, and 3. It can be
seen from Fig. 1 that, in the case p = 1, T-Z-C is
clearly better than T-Z-A and T-Z-B when compared
with the analytic solution, which is in good agreement
with Arakawa and Lamb (1977). When p = 2 and 3,
Fig. 1 suggests that T-Z-B is better than T-Z-C in the
sense that the contour curves given by T-Z-B are closer
to the analytic solution than those obtained by T-Z~
C. Moreover, it is observed from Fig. 1 that T-Z-C is
slightly better than T-Z-A. Figure 2 gives a comparison
of w/ ffor the case R = 2, which corresponds to a coarse-
grid resolution. For this case, T-Z-C is clearly worse
than the A and B grids, even when p = 1. Figure 2 also
indicates that T-Z-B is better than T-Z-A.
Furthermore, we compare the height fields for the
continuous and the discrete models, using the same
methodology as in Arakawa and Lamb (1977) and
Schoenstadt (1980). An initial distribution given by

(4.2)

uo(x, y,0) =0,
VO:

'U()(X, V, O) = .
0, otherwise,

ho(x’ Yy, 0) = 05 (4'3)

is considered. Transforming the preceding functions
into the phase space gives

—d<x, y<d,
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DISPERSI@N., R=.5

(ANALYTIC)
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(R) (B, P=1)
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[2.80

Nz

] 1 ] 1

®

DISPERSI@N, R=.S

)

FIG 1. Contours of w/f as a function of kd/n and ld/= for R
= 0.5. The first row gives the analytic solution. The second to fourth
rows are numerical solutions using the Turkel-Zwas scheme with A,
B, and C grids with p = 1, 2, and 3, respectively.

220 = 0,

Do = 4V sin(¢d) sin(nd) ,
£ n

il() = Q.

Substituting the foregoing equations into (3.8) gives

h = —4iHV,

2

7 Sinwt N fo&(1 — coswt)
w w

sinéd sinnd

4.4
£ (4.4)
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FiG. 2. Same as Fig. | except that R = 2.

LY

1

We obtain from (4.4) that
VOH w/d f"/d [17 sinwt?

w w

h=

2

N fo&(1 — COSwl)]

—-w/d w/d

S‘“;d SN G (Ex + my)didn,

where 7, £, p, and w are given in section 2 for the
schemes T-Z-A, T-Z-B, T-Z-C, and the continuous
case. Specially, in the continuous case (p = 1, £ = k,
and 5 = /), we have

VOH ”/"J‘ [ sinwt fk(l—coswt)
7 Jingdema| @ w?

S";de s_n;___ld sin(kx + ly)dkdl.

(4.5)

h=

(4.6)
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We have calculated / by using the Simpson’s quad-
rature rule in the region [0, w/d] X [0, 7 /d], with 200
grid points in each direction. The height fields at the
corner point x = y = d are plotted forp = 1, 2, and 3
in the time period of 80 h. It can be seen from Figs. 3
and 4 that, when p = 1, T-Z-C is the most accurate
approximation to the analytic solution. Figure 3 shows
that for the case R = 0.5, the solutions of the A grid
are less accurate than those obtained by T-Z-B and
T-Z-C. For the coarse-grid resolution, as shown in
Fig. 4, T-Z-C is clearly worse than T-Z-A and T-Z-
B when p > 1.

The preceding results lead to the following compar-
ison results:

p>1,R=05
T-Z-B < T-Z-C < T-Z-A

p>1,R=2
T-Z-B < T-Z-A < T-Z-C.

The “<" symbol stands for superiority. In particular,
we find from the linear analysis that if the grid size is
smaller than the Rossby radius of deformation, then
the unstaggered grid, T-Z-A, is less appropriate than
the staggered B and C grids. This will be verified in the
next section by considering a realistic problem.

5. A realistic model problem

In this section we shall apply the Turkel-Zwas
schemes to a realistic model. Over recent years there
has been a great interest in modeling California coastal
flow because of its importance to societal implications
and its computational difficulty of complex geometry.
The complex geometry, especially the steep topogra-
phy, severely restricted the time step by the CFL con-
dition in numerical simulation. It is advantageous to
use the Turkel-Zwas schemes so that a larger time step
can be used.

The region we shall be concerned with is an irregular
domain of approximately 1000 km in along-channel
length and 700 km in cross-shelf extent; see Fig. 5. The
coastal wall is irregular in shape, featuring a set of capes
and bays. The underlying bottom topography is
smoothed from the realistic region with minimum
depth value of 90 m near the coastline and maximum
depth value of 4600 m in the deep adjacent ocean. The
computational domain is discretized into 98 X 65 grid
cells and maps to the physical domain by the orthog-
onal coordinate transformation

1
(ds): = (;)d&, (5.1)

(ds), = (i)dn, (5.2)
n

where ¢ and 75 are the eastward and north-
ward coordinates, respectively, and m(§, ») and
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Height field, R=5, p=1

analytic
a-grid

c-grid i

0 10 20 30 40 50 60 70 80
8 Height field, R=.5, p=2
T analytic 1
-grid
6 T g B
S5t c-grid 4

o i
-1 i A —_ X —_
4] 10 20 30 40 50 60 70 80
8 ~r- T ~ —r
T analytic 7
6k a-gn.d :
o, Degrid
5k c-grid 4
al J
3t 4

0 10 20 30 40 50 60 70 80

FIG. 3. Time variation of the height perturbation at x = y = d for
the shallow-water equations with the initial condition Eq. (4.3) for
R=0S5:(ayp=1,(b)yp=2,and(c)p=3.

n( &, n) are the scale factors that relate the differential
distances (Af, Ayn) to the actual (physical) arc
lengths.
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Under this horizontal curvilinear coordinate system,
the shallow-water equations can be written as [ see, €.g.,
Arakawa and Lamb (1977)]

Height field, R=2, p=1

8 - T - T — T

7k ————  analytic b

2 . " N . . . "
0 10 20 30 40 50 60 70 80

Height field, R=2, p=2

7+ ———  analytic b

5k c-grid 4

7L ———  analytic 1
""""""" a-grid

T begrid

5k c-grid B

4t J

3t B

FIG. 4. Same as Fig. 3 except that R = 2.
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FI1G. 5. California coastal region and curvilinear grid.

S(Hu\ _(f . 91 _ 91\ Hoh
at \ mn mn dn dnm n o¢
_[8(Hu \, 9 (Hv
d\ n m\ m
s B g v I (53)
A mn
d(Hv\_ (S ., 81 _ 81\, Hoh
ot \mn mn ot n onm m dn
_[2(Hu ), o (H
g\ n m\ m
+ B v (54
mn mn

a( h 0 U d v

—|—|+=|H-)+—[H—]=0,

at(mn) 82( n) Bn( m)
where D, and D, are the diffusive terms, and 7, and 7,
are the components of wind stress acting on the surface

in the £ and % directions, respectively. The driving force
is provided by an along-coastal equatorward wind,

(5.5)

-sin(%) (dyn cm™2),

TEZO, Ty =

where L, is the width of the computational domain.
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The equations (5.3)~(5.5) are discretized by use of
the Turkel-Zwas-type schemes as described in section
2. We use a leapfrog scheme for the time integration.
The coastal wall and the offshore boundary are treated
as closed boundaries. The flow is periodic in the along-
coastal direction. The orthogonal curvilinear grid, gen-
erated by a software package developed by Wilkin and
Hedstrom (1991, personal communication ), is shown
in Fig. 5. With this grid, the CFL conditions with C
grid can be calculated by (A.17) in the Appendix. The
contours of the CFL condition as a function of the
depth H and grid size A¢ for T-Z-C with p = 1 are
plotted in Fig. 6. It is observed from Fig. 6 that the
minimum time step allowed is 17.5 s, while the max-
imum is about 142.5 s. This implies that the time step
is severely restricted by the CFL condition in the in-
terior deep ocean where the depth H is about 4600 m.
By a simple calculation we can see that the minimum
value 17.5 s comes from

California Coast
CFLy(P = 1)

CONTOUR FROM 17.5 TO 142.5 BY 5

FIG. 6. Contours of the CFL condition as a function of the depth &

and grid size At for the T-Z~C scheme with p = 1.
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California Coast

ZETA(DAY = 2.0)

I!{_;I

CONTOUR FROM -.0105 TO .0075 BY .001

FIG. 7. Contours of height perturbation # calculated by T-Z-C
with p = 2 after 2 days. Solid and dashed lines stand for above and
below rest sea level, respectively.

A 70 000/65
2(2gH)Y? 7 2(2 X 9.8 X 4600)"/2

~ 17.5s.

Therefore, the Turkel-Zwas-type schemes need only
to be used in the interior ocean where boundary con-
ditions can be avoided.

On the other hand, we notice that the grid size Af
~ 1.1 X 104, which is less than the Rossby radius of
deformation; see (4.1). In other words, we are using a
fine-grid resolution; that is, R < 1. The linear analysis
carried out in the last section suggests that in this case
the unstaggered Turkel-Zwas scheme T-Z-A is not as
good as the T-Z-B and T-Z-C schemes. This is con-
firmed by our numerical experiments. For example,
we find that with T-Z-B and T-Z-C a time step Atf of
24 s can be used to obtain stable numerical solutions
up to 48 h. To see this we plot the contours of the
perturbed height and velocity field obtained using the
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T-Z~C scheme with p = 2 and A¢ = 24 s in Figs. 7
and 8. It is seen from Figs. 7 and 8 that smooth results
for the perturbed height and the velocity are obtained.
However, the T-Z-A scheme with the same values of
p and At produces noisy solutions even after only 12 h.
Although the calculated velocity field (see Fig. 9) seems
reasonably smooth, unstable results for the perturbed
height are observed in Fig. 10. This suggests that in
order to obtain stable solutions up to two days with
the unstaggered Turkel-Zwas scheme, a smaller time
step than that allowed by T-Z-B and T-Z-C should
be employed. This is due to the following two reasons.
First, as mentioned in the last section, even if the CFL
condition is satisfied, numerical schemes may be un-
stable due to the dispersion. It is seen in the last section
that the dispersion error of the T-Z~A scheme is larger
than that of the T-Z-B and T-Z-C schemes for the
case R < 1. Next, in the case when the curvilinear
coordinates are used the metric coefficients m(£, )
and n(£, n) cannot be evaluated analytically. The stag-
gered schemes average the metric coefficients m (&, n)
and n(¢, n), especially when p > 1, which enables us

California Coast

BT VELOCITY(DAY = 2.0

e e e e

X 5 U U
T

]
7

@.698E~02
——>
MAXIMUM VECTOR

F1G. 8. Velocity field calculated by T-Z-C with p = 2 after 2 days.



232
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F1G. 9. Velocity field calculated by T-Z-A with p = 2 after 0.5 days.

to obtain smoother results. It should be pointed out
thatif m(¢, n) and n(§, 1) can be calculated analytically,
which is the case when spherical coordinates are used,
the T-Z-A scheme may produce reasonable results (see
Navon and Yu 1991). 4

The numerical calculations also suggest that in or-
der to obtain sinooth solutions up to 48 h, the largest
time steps that can be used for the T-Z-C scheme
with p = 1, 2, and 3 are 16, 24, and 28 s, respectively,
which are less than those predicted by (A.17). One
of the reasons is again due to the dispersion. In par-
ticular, although the Turkel-Zwas-type schemes with
p > 3 allow large time steps they are not suitable in
practical calculations due to unacceptable dispersion
errors (see Figs. 1 and 2). Moreover, the CFL con-
dition (A.17)is obtained by assuming that the solution
domain is infinite. In the case that a finite domain is
used, only half side of the derivatives on the boundary
is imposed when the Turkel-Zwas-type schemes are
used. This also yields smaller time steps in practical
calculations.
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6. Conclusions

In this work, we have extended the standard Turkel-
Zwas scheme to staggered schemes that use B and C
grids. The transfer function approach has been applied
to the Turkel-Zwas-type schemes for the two-dimen-
sional shallow-water equations. The two-dimensional
phase solutions are solved by using the Laplace trans-
form. The linear analysis and a realistic problem suggest
that for p > 1 the staggered Turkel-~Zwas schemes, T-
Z~-B and T-Z-C, are more appropriate than the un-
staggered Turkel-Zwas scheme if the numerical grid
size is smaller than the Rossby radius of deformation.
The linear analysis also suggests that if the numerical
grid size is greater than the Rossby radius, then T-Z-
B is more appropriate than T-Z~A, and T-Z-A is more
appropriate than T-Z-C.

The main advantage of the standard Turkel-Zwas
scheme is that it allows time steps nearly p times larger
than those given by the CFL condition for the usual
explicit leapfrog scheme. It can be seen from the Ap-

California Coast, A-grid
ZETA(DAY =

0.5)

r‘,‘._\.

CONTOUR FROM -.003875 T0 .001875 BY .00025

F1G. 10. Contours of height perturbation 4 calculated by T-Z-A
with p = 2 after 0.5 days. Solid and dashed lines stand for above and
below rest sea level, respectively.
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pendix that when p becomes larger the time steps al-
lowed by T-Z-B and T-Z-C are nearly the same as
those given by T-Z-A. In other words, the staggered
Turkel-Zwas schemes preserve the main advantage of
the standard Turkel-Zwas scheme. One nonlinear
model problem is tested to venify the linear analysis
results. The test shows that the Turkel-Zwas-type
schemes can be used for a larger time step in some
practical simulations.

Further research is to investigate conservation of
three discretized integral invariants for the staggered
Turkel-Zwas schemes—that is, the conservation of to-
tal mass, total energy, and potential enstrophy. As was
suggested by Navon and de Villiers (1987), these
properties are important for long-term integrations and
medium-range forecasts.
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APPENDIX
Stability Analysis

For the sake of simplicity, we set f= 0 in (2.1)-
(2.3). In the stability analysis we usually consider con-
stant coefficients; that is, the coefficients u#, v, and A
are replaced by 1y, vo, and Ao, respectively. Using the
vector notation (2.16), we write (2.1)-(2.3) into the
following matrix form:

0 g v, 0 0
9 Uo F 0 P
——w=(0 Ug 0)"w—+(0 Vo g)—-w

o /’lo 0 u dx 0 /’lo Vo 9y
(A.1)
Setting
Vie 0 0
z=1 0 VYV 0 ]w, (A2)
0 o Vg
we obtain from (A.1) that
o0z
Y Giz], (A3)
where the operator G is defined by
Uo 0 Vgho 9
G= 0 -u Ix
Veho 0  up *
Vo 0 0 3
+1 0 Vo Vghe a (A.4)
0 Vghe o Y
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Consider the leapfrog scheme for (A.3):
" = 2K - 2AIG*[29), (A.5)

where G* is a discretized approximation for G. The
stability condition for (A.5) is equivalent to that for

M =z — AlG*[zF], (A.6)

since (A.5) can be split into (A.6) and a backward
Euler scheme that has no stability restriction. There-

fore, the stability condition for (A.6) is
AlG*|| < 1, (A7)

where | || is a norm. For convenience, the norm in
(A.7)is chosen as the /, norm. We define the following
difference operators to approximate d/dx:

Umtp — Um—p

oku, =
X “*m 2pd )
=y i d
Sy w. = Umiq/2 — Um—gq/2
px¥m — ’
qd
Um+g/2 — Um—g/2
6pxum =

qd ’

where g = 2p — 1. Approximations for /9y can be
defined in a similar way. Using the preceding notations
we obtain the forms for G* with respect to T-Z-A, T-
Z-B, and T-Z-C as

u05 )l( + anjl, 0
T-Z-A: uO(S)H— 1)05}1,

Vgho %
0 Vehodt |
V gho 6%

Vghoéf, u05)1(+'l)05)l,
T~-Z-B:
MOSJ‘}X + UQS)‘C); B 0 B bg}lo§ﬁx
0 Uod 1 x + Vod | Vghod ;
_ 5 y <y py_
L ghO5 zx bghoﬁ ;y u()(S 1x + 005 fy
T-Z-C:
uo51x + anly 0 Vg}'lo apx
0 U051x + Uo5ly vghoapy >
h ghO 6px @pr u061x + voaly
TABLE Al. Parameters «, and 3,.
%p By
i sin(pkd) i sin(pid)
T-Z-A -—-———pd -——pd
T-7-B isin[(p — 1/2)kd] cos(ld/2) isin[(p — 1/2)Id] cos(kd/2)
(p—1/2)d (p—1/2d
T-z_c sl — 1/Dkd] Lsinl(p ~ 1/2)ld]
(p—1/2)d (p—1/2)d
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where coarse grids are employed to discretize the terms
associated with the fast gravity—inertia waves, and fine
grids are used to deal with the slow Rossby wave terms.
Taking Fourier transform for G* gives

G* = 7G*
[ Ugery + Vo 0

L ghOap

= 0 oo, + Vo, V ghoB, )
Vghoo, VghoB, Uy + Vo
(A.8)

where «, and 8, correspond to the Fourier transforms
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of the difference operators in the x and y directions,
respectively. The eigenvalues of G* are

Ao = ooy + Vo,
Aet = ooty + VB * [gho(a + B7)]'/2.
This leads to
IG*Il < luoo| + [voBil| + [ghola + B7)1'/2.
(A.11)

The parameters ), and 3, are listed in Table Al.
Using Table Al, together with (A.7) and (A.11),
gives the following stability conditions:

(A9)
(A.10)

At D

T-Z-A: —< s A.12
d " plugl + plvo| +(28ho)'"? (A-12)
At ’ p—1/2

T-Z-B: —< - - ) .1

. d ~ qluysingd| + g|vg cosB| + [gho(singd + cos?0)]'/? (A.13)

At -1/2

T-Z-C: p—1/ (A.14)

where in (A.13) g =2p — 1 and # = kd/2. Since |up|
+ |vo| < (gho)'’?, the following simple stability con-
ditions are obtained:

At D
T-Z-A: 22 .
d = (2gho) ™ (A1)
M poip
T-2-B: < [gho(sin’gf + cos?0)]'/*’ (A-16)
T-Z-C: A‘ —1/2 (A.17)

(2gh )

It can be observed from (A. 15 )-(A.17) that for larger
values of p the stability conditions of T-Z-B and T-
Z-C are nearly same as that of T-Z-A.
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