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Abstract

Tang, T., A finite difference scheme for partial integro-differential equations with a weakly singular kernel,
Applied Numerical Mathematics 11 (1993) 309-319.

A finite difference method for the numerical solution of partial integro-differential equations is considered. In
the time direction, a Crank-Nicolson time-stepping is used to approximate the differential term and the
product trapezoidal method is employed to treat the integral term. An error bound is derived for the
numerical scheme. Due to lack of smoothness of the exact solution, the overall numerical procedure does not
achieve second-order convergence in time. But the convergence order in time is shown to be greater than one,
which is confirmed by a numerical example.
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1. Introduction

This paper is concerned with the Crank-Nicolson method for the partial integro-differential
equation

u,=Bu+ft(t—s)_1/2u”(x, s)ds, (1.1)
0
subject to the boundary condition
u(0,t)y=u(l,¢t)=0, >0, (1.2)
and the initial condition
u(x, 0)=uy(x), 0<x<1, (1.3)
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where B in (1.1) is a linear or nonlinear differential operator. In the practical applications, we
often have

Bu=—uu,, (1.4)
or, with x > 0 a constant,
Bu=pu,,. (1.5)

The problem (1.1)-(1.4) (hereafter referred to as Problem I) can be found in the modeling of
physical phenomena involving viscoelastic forces, e.g., [5,10]. It has been pointed out by
Sanz-Serna [14] that (1.1) and (1.4) give a simple model equation that combines the Eulerian
derivative u, + uu, with a viscoelastic effect, just as Burgers’ equation provides a simple model
for the study of more realistic situations involving Eulerian derivatives and viscous forces.
Problem I has been recently considered numerically by several researchers [1,3,6,14]. The
method implemented by Christie [3] treats the weakly singular integral kernel in (1.1) by means
of the product trapezoidal technique (see, e.g., [11, Chapter 8]). The Crank—Nicolson method
has been employed by this author for time-stepping but it has been observed that the overall
procedure does not achieve second-order convergence in time.

The problem (1.1)—(1.3) and (1.5) (hereafter referred to as Problem II) can be found in the
modeling of heat flow in materials with memory, e.g. [4,7], and in linear viscoelastic mechanics,
e.g., [2,12]. In linear viscoelastic problems, the integral term in (1.1) represents the viscosity part
of the equation, and p in (1.5) is a Newtonian contribution to the viscosity. It can be seen that
in (1.1) the kernel function has a weak singularity at the origin. This is particularly interesting
in viscoelasticity, because it might smooth the solution when the boundary data is discontinuous
[12]. Numerical investigations for Problem II have been given by several authors (see, e.g.,
[8,9,15]), but most of them considered smooth integral kernels only.

In this paper, we shall construct a finite-difference scheme for (1.1), based on the Crank-
Nicolson method and the product trapezoidal technique, and present convergence analysis for
the scheme. Throughout this paper, we assume that u, in (1.3) is such that the problem
(1.1)-(1.3) has a unique solution in [0, 1] X [0, T']. Furthermore, we suppose that u,, . and u,
are continuous in [0, 1] X [0, T]. We also assume that u,,, u,,,, and u_,,, are continuous for
0<x<1land0<¢<T,and that there exists a positive constant C, such that for 0 <x < 1 and
O0<t<gT,

|utt(x’ t)[ < COt_1/27 |u”¢(x7 t)l < C(]t_3/2,
|t (X, £) ] < Cot ™12

(see [6] for these assumptions).

The remainder of the paper is organized as follows. In Section 2 we introduce a numerical
scheme for solving Problems I and II, which is based on the Crank-Nicolson method in time
and central differences in space. The product trapezoidal technique is used to approximate the
integral term. The convergence properties of the numerical scheme are investigated in Section
3. Numerical results are presented in the final section.

(1.6)

2. Numerical scheme

We introduce a grid x;=jh, j=0, 1,...,J, with h=1/J and J a positive integer. The
steplength in time is denoted by k, k = T/N with N a positive integer, and a subscript n refers
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to the time level ¢, =nk, n=0, 1,..., N. Moreover, we let Luvip= (n+3)k, 0<n<N-1.
We first consider the approximation of an integral term with a similar type as that in (1.1). For
any fe CN[0, TD N C3(0, TD satisfying f"(t) =0(t"'/?) and f"(t)=0(t"%?) as t >0+,
we will approximate I(f, ¢) = [{(t —s)~'/?f(s) ds numerically. It is easy to see that

I(f, tyeryo) =3[ 1(f, 1) HI(f, t, )] + O(K2t%%), n>1 (2.1)
and

I(f, t,5) = 31(f, t;) + O(k'/?). (22)
Since ¢;3/2 <2321 342 for n > 1, (2.1) and (2.2) yield that

I(f’ tn+1/2)=3[1(f’ tn)+1(f’ tn+1)] +O(k t;3{2)’ n>0' (23)

We now use the product trapezoidal technique to approximate the integrals I(f, z,), 1 <n <N.
For f(z,—0) with 8 €[r}, t;, ], 0<j<n— 2, we have

,+1 -0 0—1
f(ty—0) = Fltng) + =5 F(taejor) + R, (24)
and with 9 €[¢,_,, t,], we obtain
t, — 0—t,_
f(t,=8)= Tf(tl) + (1) + O(K*?), (2.3)

where in (2.4) the remainder term R,; can be bounded by O(kZt,!/?)) = O(k*"?), since

0 <j<n -2 implies that n —j — 1 > 1. Further, using (2.4) and (2.5), we have

ln n! b1,
I(f, 1) = [0 (1, = 6) do = X ["0712f(1, ~ 6) do
j=0"%
~ ti,,—0 —t;
=,§0f- 1/2[’_k__f(tn_j)+ k “f(ty_;j_1)| 6 +R,,, (2.6)
with
n—1
IRl < T [*7'07120(k>2) db = O(k>?). (2.7)
j=07%

It follows by using integration by parts that

il [t —0 0—t
Zoft 0 Uz[%——f(tn_j)-f- p ’f(t,,_,._l)] de
J= J

(tny) = ftuj1)

X dé

=2 Z [tjl-{%f i 1)—t1/2f( )] g j‘./+1 1/2f

=A,f(t,) + Z o f(tup)s (2.8)

p=0
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where

1
An _ Z[t,{/z _ ;/t,,+101/2 dal’ (2_9)

Iy

2
co=—| 6% de, 2.10
o=z ) (2.10)

2 fp1 tp
cp=;[/; 62 do— [ 62 do|, p>1. (2.11)

14 fp-1

Combining (2.6), (2.7), and (2.8), we obtain that

I(f, t,) =A,f(to) + X ¢, f(tap) + O(k*?), 1<n<N, (2.12)
p=0
where A, and c, are given by (2.9)-(2.11). Let
4k 4k
Bo=co+—=B:  Bi=a——"B  B,=c, P22 (2.13)

where B is a nonnegative constant and is independent of k and 4, i.e., 8> 0 and 8 = O(1).
The sequence {B,}5_, reduces to {c,};_, if the parameter 8 = 0. Since

4k
TB[f(tn) = f(t,_ )] = O(k*?),

we obtain from (2.12) that
I(f, 1) =A,f(t)) + X B,f(1,_,) + O(k*?). (2.14)
p=0

Now an application of the standard Crank—Nicolson method for (1.1) gives

uttt—y? _(utt 4yt " _1208%u(x;, s
j . j - B j . J +-/(')l,, /2(tn+1/2_s) 1/2 (hzj ) ds
+O(k?t,21* + h?), (2.15)

for 0sn<N—1and 1<j<J—1, where B is a difference operator which is a discretized
approximation for the differential operator B such that

i ultt+uf
2

Also in (2.15) we have used the notation 6>V, =V,,, — 2V, + V,_,. The remainder term in (2.15)
has been obtained by using Taylor’s expansion and in particular we have noticed that

(s ) = (5, 1)
P (54 )| = Ok Nt ) )

~O(k;32),

=Bu(x;, t,,, )+ O(k*t;2{* + h?). (2.16)
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where we have made use of (1.6). Combining (2.3), (2.14), and (2.15), we obtain that

!ttt —u o _(ult uf - no 8w+
J j j j 2.0 j jj
-B +A,6%u0 +
k 2 w2 E‘OBP 207
+O(k*t, )P+ k2 + k%), n>0, (2.17)

where

~ BI+A1+A0+4‘/EB/3 ~ Bn+l+An+1+An
A= 2h2 A= 242

(n>1). (2.18)

Our numerical scheme is based on the formula (2.17) and takes the form

62(L6_n—p + [Jjn+l—p)
2h? ’

[Jjn+1_ [Jjn _ [Jjn+l+ U_n
=B (2.19)

J
k 2

+A,8°U°" + Z_j B,

p=0

for 0sn<N—-1and 1<j<J—1. The above algebraic system will be solved subject to the
following boundary and initial conditions:

Ur=U"=0, 0<n<N, (2.20)
Uj0=u0(xj), 1<j<J-1. (2.21)
For Problem I, we choose the difference operator B such that

Ve +Vr+ VR AV”
S(1/n\ _ jt1 J ji—1 J
BV = - 3 2h

(2.22)

to approximate the differential operator B given in (1.4), where we have used the notation
AW, =W, — W,_,. Since

(X, tyey) Hu(x, t,)
> -

u(x. ty02)| = Ok 1(2) < O(k*43p),
it can be verified that B given by (2.22) and B given by (1.4) satisfy the requirement (2.16).

For Problem II, we choose B such that

621/jn
h* ’

B(Vj”) =pu (2.23)
and it can be shown that this operator and the one given by (1.5) satisfy (2.16). For later use we
collect the following notations and results, as given in [6]. Throughout this paper, we shall use
the notation U”, 0 <n <N, to refer to the vector in R’~! comprising the approximations
Uy, Uy,...,Uf,) corresponding to the time level ¢,. Whenever symbols such as V, or V,
appear in the analysis we shall understand that Vy=V,=0. If V=(V,V,,...,V,_,) and
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W=W, W,,...,W,_,) are real vectors, then we define

J-1
A+VJ=VI+1_VI’ ”Vllwzlma,lxllel, ”V“l=zhle|a
<J<J— i=1
J-1
(V, W)= L hVW,,  IIVI*=<V, V).

j=1

Furthermore, the following identities hold (see, e.g., [13]):
n n n 2
(Vi + V4 VAV = V78V + A7), (224)

(VAV +A(V)", V) =0, (2.25)
J-1
(83V, W)= —(AV,A,W)=— Y hA VAW, (2.26)

i=1

3. Convergence analysis

From now on, C denotes a positive constant which is independent of k, &, j, and n (with
0<j<J and 0 <n < N), but possibly with different values at different places. The following
result, which is concerned with the nonnegative character of certain real quadratic forms with
convolution structure, is due to Lopez-Marcos [6] and will play an important role in our
convergence analysis.

Lemma 1. Let {a,};_, be a sequence of real numbers with the properties

a,>0, a,.,—a,<0, a,.,—2a,+a,_,>0. (3.1)
Then for any positive integer M, and real vector (V,, V,,...,V),) with M real entries,
M-1 n
2 ( Zapl/;l+l—p)l/n+l>0' 3.2)
n=0 \p=0

Now we will check if {c,};_, defined by (2.10) and (2.11) satisfies (3.1).
Lemma 2. The sequence {c};_, defined by (2.10) and (2.11) satisfies c,> 0 and c,,, <c,.

Proof. It is obvious that ¢, > 0. It can be shown from (2.11) that

161

o= J (1y-0) 1= a0, i, ()
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which implies that ¢, > 0 for p > 1. Further, a direct calculation shows that ¢, <¢,. Using the
fact that

d -1/2
d—(rk—B) <0 forr>1and 6 €(—k, k)
’
we can obtain that ¢, <c, forp>1. O
Lemma 3. The sequence {c,},_, satisfies c;—2c,+c,< and c,,,—2c,+c, >0 forp>2.

Proof. The first part of this lemma follows from

4k
c2—2c1+c0=T[3\/§—8\/§+6]<0. (3.4)

The second part follows from (3.3) and the fact that
al kr—6)""?>0 f 1 and 6 k, k
F( r—9) > orr>1and 8 €(—k, k). O

It can be seen from Lemma 3 that {c,};_, defined by (2.10) and (2.11) does not satisfy (3.1).
In order to give a convergence result for the numerical scheme (2.19)-(2.21) we need to choose
the parameter 8 > 0 such that the sequence {B,};_, in (2.13) satisfies the property (3.1). By
recalling the proofs of Lemmas 2 and 3, we require that

B:>0, Bi1>B,, B,—2B1+Bo=0, Bs—2B,+B,>0, (3.5)
which are equivalent to
¢, —2¢c, tc,
z<¢y, z2<¢,—¢y, z>—f, z2<¢cy—2¢,+ ¢y, (3.6)
where z = (3Vk )B. Since
c,—2¢,+¢,<0, c;2c—Cy=2c3—2¢,+¢, >0, (3.7)
the inequalities (3.6) lead to

¢, —2¢c, tc,

_f<2<03—202+01, (3.8)
which is equivalent to
-3Y3+8/2 -6
3 <B<4-12/3 +12/2. (3.9)

The above discussion yields the following result.
Lemma 4. If B satisfies (3.9), then the sequence {B,};_, defined by (2.13) satisfies (3.1).

Now we begin to derive the error bounds for the numerical scheme (2.19)-(2.21). Let
e/ = U" —uj, with ul =u(x;, t,) and U is the solution of (2.19)-(2.21). Subtraction of (2.17)

o 'n
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from (2.19) gives
o1 g ) 52(en+1 1 ¢7)

L =By - B() + L 8,
=0

where V"= (U + U™ /2, v} ==(u}*' +u})/2 and r] is the residual term which can be
bounded by

|r| < O(k?t, 312 + k372 + h?). (3.11)
Multiplying both sides of (3.10) by hk(e]*' + ") and summing in j, we obtain

52 +r/, (3.10)

2
e 12— lem)?

=k(B(V") - B(v"), e""' +e")

k n
_2_hz Z BP<A+(en+1—p+en—p), A+(e"+1+e”)>+k<r”, €”+1+€">, (312)

=0

where we have used (2.25) to get the second term of the right-hand side of (3.12). For Problem
I, following Lopez-Marcos [6, p. 128], we can show that the modulus of the first term of the
right-hand side of (3.12) can be bounded by

Ckllvr—uv" |2 < Ck(lle" 12+ Ile]1?). (3.13)
For Problem 11, it follows from (2.26) that
k(B(V"*)—B(v"), e""' +e") = 2k(B(V") = B(v"), V" —v")
2uk

= - la - v <. (3.14)

For the last term of (3.12) we have
[ k(rm e ey | <kllr (e i+ lletll) < Ckllr™|l.A, (3.15)
where A =max,_, _y |l €" ||, and we have made use of the fact that | W ||, < VIR [|[W || = |W .

If we use the estimates (3.13)—(3.15) to (3.12) and sum over n (and note that | e°| = 0), then
we obtain, for both Problems I and II, that

n
kllrm |l
=0

m=

len* 1< Ck Y (lle™ 11>+ llem]?) +CA
m=0

-k J-1 n m
tor L L LA e ) |A (e ), (3.16)

Jj=1m=0\p=0

for 0 <n <N —1. It follows from Lemmas 1 and 4 that the last term of (3.16) is nonpositive.
Moreover, it follows from (3.11) that

Y kllrmlla<C X (k2 + k%% + kh?)
m=0 m=0

<Ck* Y (m+1)7 + Ck¥? + Ch2 + O(k*/? + h?). (3.17)

m=0



T. Tang / Partial integro-differential equations 317

Therefore, (3.16) leads to

n+1
e I2<Ck Y lle™ ||+ C(k**+h*)A. (3.18)

m=0
An application of the discrete Gronwall lemma for (3.18) yields that
le" 1> < C(k32+h*)A, 0<n<N-1. (3.19)

The above inequality implies that A% < C(k3/2 + h?) A, which is equivalent to A = O(k>/? + h?).
Hence, we have obtained the following convergence result.

Theorem 1. Assume that the solution of Problem I (Problem II) satisfies the smoothness
requirements stated in the Introduction, and that (UY,...,U") are solutions of (2.19)-(2.21) with
the discretized operator given by (2.22) ((2.23) for Problem II). If B in (2.13) satisfies (3.9), then
as h and k tend to zero independently,

max [|[U" —u"ll = O(k*? + h?). (3.20)

1<n<N

4. Numerical experiment

For numerical verification of the above theorem we consider the following example,

u,= ft(t —-5) %u_(x, ) ds, (4.1)
0

u(0, t)=u(l,¢)=0, 0<t<T, (4.2)

u(x,0)=sin(wx), 0<x<1. (4.3)

The solution of this problem is [14] u(x, t) = M(w>/%¢3/?)sin(wx), where M denotes the entire
function

M(z)= ¥ (-1)'T(En+1) 2", (4.4)
n=0
It is well known that the central difference approximations yield a convergence order of (at
most) 2, so the estimate of Theorem 1 for the space discretization is the best possible. The main
purpose of this section is to verify that the error bound for the time discretization is the optimal
one. In other words, we shall show that the predicted convergence order % in time is the best
possible.
For the numerical scheme (2.19)-(2.21) we obtain a linear algebraic system which takes the
form

MU ' =F", 0<n<N-1, (4.9)
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Table 1
Errors and convergence rates
N Error Rate

5 7.01D-2 (7.89D-2)
10 2.49D-2 (2.71D-2) 1.49 (1.54)
20 8.66D-3 (9.80D-3) 1.52 (1.47)
40 3.05D-3(3.52D-3) 1.51(1.48)

where F" € R’~! is independent of U"*! and M is an (J — 1) X (J — 1) matrix given by

a b 0 0 0
b a b 0 0
M= 0 b a b 0 ,
0 0 b a b
where
a=1+kB,/h* b= —3kB,/h*. (4.6)

It can be shown that the solution U"*! of (4.5) satisfies
U"*'=PHPF", n>0, (4.7)

where P =(p,) is a (J/ — 1) X (J — 1) symmetrical matrix with p;; = 2/J sin(jjw/J) and H is a
diagonal matrix which takes the form

-1

)t 2%
H = diag (a+2bcos7) ,(a+2bcosT) ,...,|a+2b cos

!

Equation (4.7) provides an explicit form for the numerical solutions of problem (4.1)—(4.3).

In Table 1 we list the errors (max, _, .y Ile"|]) and computed rates of convergence when
uniform stepsizes h =k = T /N are used. In the calculations we have set 8 =0.1 (see (3.9)) and
T=0.5. The numerical results reflect a convergence rate = 3 in time, which is in good
agreement with the theoretical prediction of Theorem 1. Also in Table 1 we list the errors and
rates for numerical solutions with 8 = 0; the values appear between parentheses. Although the
convergence rate in time is seen to be about 3, it is unclear whether or not Theorem 1 can be
extended to the case when B = 0.
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