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In this paper we consider numerical solutions to a kinetic equation for
the dispersion of small particles in a turbulent flow. The solution
represents the probability density that a particle has a certain velocity
and position at a given time. These solutions are based on a
mixed finite-difference spectral method. Computational results are
presented. © 1992 Academic Press, Inc.

1. INTRODUCTION

Predicting the dispersion and deposition of small par-
ticles suspended in a turbulent flow is a problem of great
practical importance both industrially and environmentally
and has received considerable attention in the past (see, e.g.,
[1]). One of the authors (Reeks [2, 3]) recently derived a
transport equation for the particle phase space probability
density w(v, y, ) for a particle with velocity v and position
y at time ¢. This “kinetic” equation is in fact the analogue of
the Maxwell-Boltzmann equation of classical kinetic theory
(CKT); that is, it can be used in exactly the same way as the
Masxwell-Boltzmann equation is used in CKT to construct
the continuum equations and constitutive relations of the
dispersed particle phase.

Finding a suitable kinetic equation hinges upon finding a
suitable closed expression for the net acceleration of a par-
ticle resulting from its interaction with random turbulent
eddies (inter-particle collisions are ignored). If the particle
equation of motion is given by a Langevin equation then
this is equivalent to finding a closed expression for the term
(Wt), where f is the random fluctuating aerodynamic
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force, W is the instantaneous phase space density, and < )
is a time or ensemble average. If f(¢) is white noise, that is,
its time scale is much shorter than that of particle motion,
the kinetic equation reduces to the classical Fokker—Planck
equation (see Chandrasekhar [4] and Buyevich [5, 6])
with
, 0w

Wiy =—n'—, (L1)
where p’ is a tensor whose components are in general
functions of y and ¢ with the diagonal components
specifically positive. However, Reeks [2] was able to find
a more general form for this “diffusion current” not
restricted to white noise, by constructing expressions which
preserved invariance to a random Galilean transformation
(RGT) [7]. He showed that in general this term could be
expressed as a series expansion involving successively higher
order velocity and spatial derivatives of w(v,y, t) and
cumulants of f(¢) along a particle trajectory. Significantly,
truncation after the first term in the expansion corre-
sponded to a realisable process in which f(¢) is a Gaussian
random process. In this case

Wiy =(n 202 2),

vy (1.2)

where p and A are tensors whose components are given
functions of y and ¢ Using this form, the corresponding
kinetic equation reproduces the correct equation of state
[8] for the particle and preserves RGT invariance. Indeed
the existence of the spatial gradient term can be traced
directly to satisfying this latter requirement. For the case
when f(z) is white noise the more general form reduces to
that in Eq. (1.2) with A effectively zero.
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We wish in this paper to consider ways of solving this
kinetic equation for generic flows in which the dispersed
phase is contained within some finite volume. Solutions of
this sort will be particularly useful in several ways:

« in constructing constitutive relations;

» considering situations when simple gradient diffusion
is inadequate, e.g., deposition of particles in turbulent
boundary layers (see, e.g., [9]): in this case a solution can
only be found by solving the kinetic equation explicitly;

« considering the influence of absorbing or partially
reflecting boundaries: boundary conditions involving
particles impacting and adhering at surfaces are in fact most
naturally prescribed using this formulation (see, e.g., [2]).

As an illustration we consider here the one-dimensional
form of the kinetic equation appropriate for dispersion of
particles in inhomogeneous turbulence. For an axisym-
metric pipe in which the mean carrier flow, #, is uniform and
axial (see Fig. 1) and in which the distribution of particles
exhibits no spatial or velocity gradients in the axial direc-
tion the governing equation of the problem will be of the
form (see [2])

a_w___ a_w+ﬂ
or . Yoy

d(vw) 0

ov * ov |:#
where p and A are given functions of y and t and f~'is a
constant representing the particle response time.

In this work, we shall consider Eq. (1.3) with simple
Dirichlet boundary conditions:

w(=Y,0, t)=w(v, t), v=0,120; (1.4)
w(Y, v, t)=wg(v, 1), v<0,t=0. (1.5)
Initial conditions are given by
W(y, v, 0)=W1(J’a U)a ye(_Ya Y),

ve(—oo, +00). (1.6)

Partial differential equations are often solved numerically
by finite-difference methods (FDMs). Unfortunately, there
are two main difficulties in solving (1.3)-(1.6) by FDMs.

y
) = +Y
U constant
————————— ) = - Y
FIG. 1. The structure of a simple pipe flow.
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First, due to the existence of the term 2w/dv dy it is difficult
to construct stable schemes for (1.3)-(1.6) (one can refer to
[10-12] which consider FDMs for transport equations
similar to (1.3) with A=0, ie., without the mixed term).
Second, the eigenvalues of the resulting matrix arising from
the discretised finite-difference schemes have different signs
making it difficult to cope with the one sided boundary
conditions (1.4) and (1.5). From the above, it would appear
to be extremely difficult to construct proper FDMs to solve
problem (1.3)}-(1.6).

In recent years, there has been extensive activity in both
the theory and application of spectral methods which have
proved to be a powerful tool for obtaining numerical
solutions of differential equations (see, e.g., [13-16]). In
solving stationary neutron problems (similar to problem
(1.3}-(1.6), but without the mixed term and in a finite
domain), a method refered to as the “spherical harmonic
method” has been used successfully (see, e.g., [17-20]). In
this method the unknown function w(y, v, ) (Jv|<1) is
represented by an expansion of Legendre polynomials in v
with coefficients depending on y and ¢. The method can be
viewed as a certain type of spectral method for finite solu-
tion domain. When the problem is posed on ve (—o0, o)
(i.e., infinite domain) a variety of spectral techniques have
been developed in recent years. These include the use of sine
function, Hermite functions, and algebraically mapped
Chebyshev polynomials and previous results for these
techniques are summarized, for example, in Chapter 14 of
Boyd [13]. Many researchers have noted that the close
connection of Hermite polynomials to the physics makes
them a natural choice of basis functions for many fields of
science and engineering. Numerical applications include
[21, 227 and many problems in tropical meteorology and
oceanography (see also [23,24]). In this paper we shall
show that the spectral method with the use of the Hermite
polynomials can produce very accurate numerical solutions
for problem (1.3)—(1.6) in the infinite solution domain.

The remainder of the paper consists of three sections.
Section 2 gives some series expansion results for the
Hermite polynomials and Section 3 is devoted to the
description of the spectral method used. The final section
presents one numerical example for which the analytic
solution is known. The numerical solutions of the problem
using the spectral technique at various levels of truncation
is compared with the analytic solution.

2. SERIES EXPANSION

Throughout this paper we shall assume that the given
functions p=pu(y, t) and A=A(y, t) are nonnegative and
M+Y,t)=0.

Since the solution interval of v in Eq. (1.3) is (—o0, +00)
and the initial functions often assume the form
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p(y) exp(—a’v?), where p(y) is a given nonnegative
function and o is a positive constant, it is natural to
represent the unknown function w by an expansion of the
Hermite polynomials in v with coefficients depending on
y and t. Substitution of this expansion into the kinetic
equation (1.3) leads to simultaneous partial differential
equations for the coefficients. Specifically, let

g4, t)

W(.V,U, t)—nzo \/— ( 7t)'

x H,(aw) exp( —azvz), 2.1)

where H, is the nth order Hermite polynomial, g, are given
functions which are to be determined, and f, are unknown
functions. The extra factor 1/,/2"n! appearing in (2.1) will
induce a symmetric coefficient matrix for the hyperbolic
system for £, (see (3.4)). Setting

A,(v)= H ,(av) exp(—a®v?), (2.2)

1
/2"n!
we have the following recurrence relations:

af ,(v) _
v

d*H ,(v) _
dv?

2(n+1) A, ,(v), (23)

4n+1)n+2)H,, ,(v), (2.4)

n+

1 . n ~
THn+1(U)+\/;Hn—1(D)>,

(n+1)(n+2) A, ()

vl (v) = i < (2.5)

~n(v)
v —dev: _
—(n+1) A, (v).

From (2.1) and (2.5), we have

H,,H(v)+\[ i, l(v)]

EORES e ]

1 & fn (1)
=—;§ [\[gn Wy, 1) —=2=——"— 3y

n+1 0fns1(, 1)
+ 2 gn+1(ya t) ay

(2.6)

LS

dy

7w
i‘g[\[f" B

n+ agn+1(y9 t) Iy
i) —ay—] 1,0

Q2.7)
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Similarly, (2.1) and (2.6) yield

2 ow)=— 3 LS a=Dngu s ) fsa)
+ng,(y, 1) £y, )] H,(v).

From (2.1) and (2.4), we obtain

=a’u 020: 2/(n—1)ng, 1y 1)
n=0
an—z(y, t) FI,,(D),

and from (2.1) and (2.3), we have

(2.8)

2

(29)

o*w d
PR LA
oy~ AL

20n+1) A, ,1(v)

5fn(y, t) 0g.(y, 1)

dy
-y [Jz_ng,, iy Lot
n=0

.y ég"#(y’”fn-l(y, z)] ,(0). (2.10)

We now substitute (2.7)-(2.10) into Eq. (1.3) and equate the
coefficient of H,(v) on the two sides of the equation. The
result is a system of partial differential equations for the
Ja(y, t), which can be written in the form

Ofn 08n, 1
Enor T s I a[

n afn—l ' agn+1
+\/;gn—l ay + 2 fn+1

+\/gagn 1.fn 1:| nﬁgnfn+(2a2.u_ﬂ)
X/ (n—=1)ng,_fo_r—In\/2n

[gn(y, 1)

(e o]

10|

n+1 a.fn+1
2 gn+1 ay

6 n a n—
o Tty e
Equations (2.11) can be further re-arranged to give
afn _ll: n+ gn+lafn+1
ot Y & 8y
\/’(1'}‘21 Z)gn lafn 1:|
&n
tduifor1tduofutdu_1) fuos
+du_2yfu2s (2:12)
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where
1 jn+11 0g,,,
d=—— | P (2.13)
1 og
d — = 1
o=~ (- 2), (.14)

1 1 dg,_, 1 dg _1:|
d, = —- noly0ge?— 28t 2.1
ney \ﬁ[gn oy M ey (213)

dy_2)=(20%—B)/(n— 1)#%;

(2.16)

for n=0, 1, 2, .... Here the functions f_; and f_, have been
set equal to 0.
Setting
g.=g"* with g=1+24a% (2.17)
we obtaih that
Envt_ (142102 82—1= /. (2.18)
&n &n
Then Egs. (2.12)—(2.16) become
ofu_ e /n+1af,,+1+ﬁaf,,-1]
ot o 2 Oy 2 oy
+dnlfn+1+ anfn
+dy iy fuo1+ A2y fua (2.19)
Further, using (2.12)-(2.16) and (2.19), we obtain
3/2 1
d, = _l<£+_1> __a_g, (2.20)
a\ 2 \/E Jy
n og
—nf——== 2.21
np 2ot (2.21)
n—1 [n oOg
=—— [—== 222
1) 20 \2gdy (2.22)
dp_2)= (22— B) V(n—1)n/g, (2.23)
forn=0,1,2, ...

3. SPECTRAL METHOD

The spectral method of order N is the result of solving the
first N+ 1 of the Egs. (2.19) for the N + 1 unknown func-
tions f, f1, ..., after fx, , has been set equal to 0 in the last
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of these equations. The spectral approximation to w(y, v, t)
will be given by

2.y, t)f,,( ’

N

x H,(av) exp(—a’v?).

WN(y’ v, t)" Z
(3.1)

Let F denote an (N + 1)-dimensional column vector defined
by

F=F(y, )= [fo(y, ), /(3 1)s s [ 3, DT (32)
Then Eqgs. (2.19) become
a—F——l_gka—E+SF, (3.3)

ot a Oy

where R and S are (N + 1) x (N + 1) matrices given by

N[—

(=
.o o Ql
I (SIS

. % o o
N NI
o % =)
N

-'K'o o o
[SIEN

R=] O s (34)
0
and
doo  dy 0 0 0 0
dl(—l) le dll 0 0 0
S=1 dy_ s dy_1y dyp dp 0 0 (3.5)
0

0 d3(—2) d3(~1) d30 d3l

It can be seen from (3.4) that the matrix R is symmetric
and thus has real eigenvalues. Specifically, we have the
following result.

THEOREM 1. The eigenvalues of R are the zeros of the
Hermite polynomial Hy , ((y).

Proof. LetR,, (y)=det(y]—R). Expanding the deter-
minant about its last row results in two terms, arising from
the last two elements of that row, we then obtain

N
Ry 1) =R ) =5 Ry (0): (3.6)
We shall prove that
Ruy(y)=2""Hpy), N>=L (3.7)
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This can be verified for N=1 and 2 by direct calculations.
If (3.7) holds for N< L, we have, by using (3.6), that

Rei1) =1R) ~2 Ry ()

=2""H.(5) - 27"LH,_,(y)
—9—(L+ 1)(2?HL(7) —2LH, (7))

=2""*VH, (). (3.8)

This completes the proof of Theorem 1. |

Letyo>y; > --- >y, be the zeros of the Hermite polyno-
mial H,, ,(y); and set

(3.9)

a-{$

n=0

1 ,1 7!
T LA 7}
We have the following results concerning the eigenvectors

of R.

THEOREM 2. (i) The eigenvector of R corresponding to
the eigenvalue vy, is

Uk = [U0k9 Ulk’ R3] Unk]T9 (310)

with

Cy

— H,(v%).
,_2"n! (Ve

(ii)) The element of the inverse matrix of U=
LUg, Uy, ..y Up] is of the form

Uy = (3.11)

1

(U e =W Hy(y,)- (3.12)
Proof. (i) IfRY=7y,7Y, then
n n+1

2Vn—tF [T Pne 1=V Vs (3.13)

forn=0,1,..,N; and y_,, yy., are set equal to 0. It is
straightforward to show that the recurrence relation (3.13)
is satisfied by y, = U,,, where U, is defined by (3.11).

(i) Since the corresponding eigenvectors U, and U; of
two different eigenvalues y, and y; are mutually orthogonal,
we have

N

1
Y 5o Ha) Hof) = G0,

n=0

(3.14)

which implies that (U ~'),, = H,(y,)/~/2%k!. The proof of
Theorem 2 is therefore complete. ||
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Let F=U"'F and §=U"!'SU. From Theorem 2 we
obtain that

U~'RU=A=diag(yy, ¥, r Yn)- (3.15)
If we premultiply (3.3) by U ~!, we obtain
a—F=—ﬁ/1a—F+§F (3.16)
ot a dy

Since the function g is positive, Eq. (3.16) is a typical hyper-
bolic system and can be solved by forward and backward
space differences according to the signs of y, (0 <k < N).
The boundary conditions for F are, when N is odd,

Fi(=Y, )=wi(y;/0, 1) exp(y?),

—1
j=0,1, .., L, (3.17)
2
FAY, £y =wg(y;/a, t) exp(y?),
J=——N; 1, wes N. (3.18)

If N is even, then yy,=0. In this case the system of
Egs. (3.16) for fy,(y,t) needs no boundary condition
because d/0y does not appear. Hence in this case

F(=Y, t)=wy(y,/0, 1) exp(y?),

=012 1 @)
2
Fi (X, £)=wg(y,/0, t) exp(y?),
j=§+ 1, ., N. (3.20)

To derive the above boundary conditions, we may write
from (2.1) that

W(y, yj/a’ t)zWN(ys 'Yj/a’ t)= Z \/ﬁ
x [y, t) H,(y,) exp(—y?).  (321)

From (2.17), together with A(+Y,¢)=0, we have
g,(x Y, t)=1. This and (3.21) yield that

w(+ Y, y,/0 DR F(£Y, t)exp(—y?).  (322)
When N is odd, y,>0 when j< (N —1)/2 and y,<0 when
Jj=(N+1)/2. From (1.4), (1.5), and (3.22), we choose

the boundary conditions (3.17)-(3.18). The boundary
conditions (3.19)-(3.20) are obtained in a similar way.
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4. NUMERICAL EXAMPLES

Consider the test problem
ow ow o(vw) *w

Ol Ay e (41)
w( l,v,t)—z[l—sin(%(l—e")v)q(t)]
xexp(—%z), 030, (4.2)
w(l,v,t)——[1+sin<g—(1—e")v)q(t):l
xexp(_l’;), v<0, 43)
w(y,v,0)=%<1+cos%y>exp<—§>, (4.4)

with

2 ., 1 ., 3
q(t)—exp[—Z(t+2e e —§>]

The exact solution of (4.1)-(4.4) is

w(, v, t)=% [1 +cos <§ (y—(1 —e")v)) q(t)]

vZ
X exp (_E)

Problem (4.1)-(4.4) has been chosen since it has an analytic
solution and this allows us to compare our numerical results
with the exact solution (4.5). It is noted that the analytic
solution satisfies 0 < w(y, v, t) <1 which indicates that the
test problem (4.1)-(4.4) is more realistic than that given in
[25], where the test problem does not lead to a positive
semidefinite solution.

In the following numerical calculations, several values of
N (see (3.2) for N) are tested. We use N=2, 3, 4, 6, and 8,
respectively, which correspond to 3, 4, 5, 7, and 9 truncated
terms in the series expansion (2.1). The constant o (see
(2.1)) used in the calculations is 1/, /2. The Hermite polyno-
mials H, . (7), for N=2, 3, 4, 6, and 8, are

(4.5)

Hy(y) =8y — 12y, (4.6)
H,(y)=16y* - 48y* + 12, 4.7)
Hi(y) = 32y° — 160y° + 120y, (4.8)
H,(y)=128y" — 1344y° + 3360y> — 1680y,  (4.9)

Hy(y) =512y° — 9216y" + 48384y°

— 80640y° + 30240y. (4.10)
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The roots of the above polynomials, which in general
cannot be found analytically for large N, are obtained
numerically. They are

H,:1.2247,0, —1.2247, (4.11)
H,:1.6507, 0.5246, —0.5246, —1.6507,; (4.12)
H;:2.0202, 0.9586, 0, —0.9586, —20202;  (4.13)
H,: 2.6520, 1.6735, 0.8163, 0, —0.8163,

—1.6735, —2.6520; (4.14)
H,:3.1910, 2.2666, 1.4685, 0.7235, 0,

—0.7235, —1.4685, —2.2666, —3.1910. (4.15)

Using (4.6)—(4.15) we can find the corresponding matrices
U and U~'. The finite-difference scheme for (3.16), for
0<Jj<N,is

~ - y; At
D t+4D)=f(y, 1) =L =g
iy t+4t)=fi(y, 1) aAyg (»1)

x (fi(y, ) =F(y— 4y, 1))

+418F); (y, 1), if y,>0; (4.16)
T+ 40 =700 =L 87,0
x (F;(y + 4y, )= Fi(», 1))
+41(8F); (y, 1), if y,<0; (4.17)
and
fin t+ 40 =F,(y, )+ Au(SF),(p,1), if y,=0.
(4.18)
= (R
0.7 >
0.6
a 05
% 041
03
0.2}
0.1}
. v-axis

0 02 04 06 08 1 12 14 16 18 2
FIG. 2. The variation of w(0, v, ¢) with 0 <v <2 at r = 1. The numeri-

cal results are obtained by using three and four truncated terms (ie., N=2
and 3).
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0.6

_______ solid: Exact
- dashed: N=2
dotted: N=3

w(0,v,3)

00 0.2 0.4 0.6 0.8 1 1.2 14 1.6 18 2

FIG. 3. The variation of w(0, v, ¢) with 0 <v <2 at ¢ = 3. The numeri-
cal results are obtained by using 3 and 4 truncated terms (i.e., N=2and 3).

Here At and Ay are steplengths in ¢ and y directions,
respectively. Equations (4.16) and (4.17) are solved with
the boundary conditions (3.17)-(3.18) (if N is odd) or
(3.19)-(3.20) (if N is even). The stability restriction, ie.,
Courant-Friedrichs-Lewy condition,

At
— max

| <1,
Ayo<j<nN ;] <

(4.19)

must be satisfied. In the present calculations the mesh sizes
used are 4y=0.02 and 4r=0.001. Since the maximum
eigenvalue used in our calculations is 3.191 (sec (4.15)) the
above CFL condition is satisfied.

In order to compare numerical and theoretical solutions
of (4.1)—(4.4), we plot w(0, v, ¢) for 0 < v < 2 at different time
levels. Figure 2 shows numerical results of w(0,v,1)
obtained by the use of three and four truncated terms (i.c.,
N=2 and N =3). The theoretical solutions given by (4.5)

0.55

solid: Exact
dotted: N=3
0.5 s, dashdot: N=4 4

0.45

0.4

03

w(0,v,5)

0.25

0.2

0.15

0.1

v-axis
0.05 L
1]

02 0.4 0.6 0.8 1 1.2 14 1.6 18 2

FIG. 4. The variation of w(0, v, ¢) with 0 <v <2 at £ =5. The numeri-
cal results are obtained by using 4 and 5 truncated terms (i.c., N =3 and 4).
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Error for w(0,v,10)

0 02 04 0.6 0.8 1 12 14 1.6 1.8 2

FIG. 5. The variation of |w(0, v, 10} — w (0, v, 10)| for N =3, 4, and 6.

are also plotted in Fig. 2. It is observed that the agreement
between the numerical and theoretical results is favourable.
However, as t grows the agreement between the theoretical
solution and the numerical result obtained by using three
truncated terms (i.e., N = 2) breaks down. This can be seen
from Fig. 3 which plots w(0, v, 3), obtained by using N =2
and N = 3, respectively. Figure 3 suggests that N =2 is too
small to obtain accurate numerical solutions.

Figure 4 gives the theoretical and numerical results of
w(0, v, 5). The numerical results presented in Fig. 4 are
obtained by using four and five truncated terms (i.e., N=3
and 4). It can be observed from Fig. 4 that the numerical
solution with N=3 and 4 at t= 5 compares very well with
the theoretical one. As time ¢ becomes sufficiently large the
solution of problem (4.1)-(4.2) reaches a steady state, ie.,

2
v
w(y, v, t) ~exp <——2—> (4:20)
1

09F ]

k()
08}
07 §
06 .
05 :

time t
% 1 2 3 4 s s 7 8 9 10

FIG. 6. The variation of k() with 0 < ¢ < 10.
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The spectral solutions approximate this steady state solu-
tion very well, but it is difficult to plot them so that they are
distinguishable from the exact solution. Instead, Fig. 5
shows the numerical errors |w(0, v, 10) — w ,(0, v, 10)|, with
N =3, 4, and 6, which are observed to be of order O(10~*).

In practice, we require, in particular, the so-called current
to the wall k, defined as

(Ja = ow(Y, v, 1) dv)

=D [T 17 wino ) do )

(4.21)

For problem (4.1)-(4.4), a direct calculation from (4.5) and
(4.21) gives (see Fig. 6)

<1+(7t/2)(1—e")q(t) )
k(1) = x [&° cos((n/2)(1 = e~")o) exp(—(v/2)) dv).
<\/7r/2 + (2/n) q(2) )
x f& cos((m/2)(1 —e™")v) exp(—(v*/2)) dv
' (4.22)
On the other hand, using
) jw H (av) exp(—a?p?) do
’ S/ n=0
B {H,,_ Oy, n>1, (423)
and
Gy | “ oH, (aw) exp(—ov?) do
0
1/202, n=0,
={ /2%, n=1, (4.24)
H, ,(0)/«?, nx2,
0.016 v T T - T
T S S
0.014} -
0012 '_,,-"; _
- 0.01}
g 0.00le ,;;" 4
E ol S ]
0006- o
"‘ o.? ‘ time t
ol—

0 1 2 3 4 5 6 7 8 9 10

FIG. 7. The variation of jk(t) — k()| for N=4, 6, and 8.
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we obtain from (3.1) and (4.21) that
k(t)~=kn(1)
1 (fo(Y, 1)+ /2 f(X, 1) )

+3N_, 26 (Y, 1) H,_(0)/\/2"n!

Tl S foln D) dy '
( AT Hy 1 0) L S5 ) dy/\/z"n!)
(4.25)

Figure 7 shows the numerical errors |k() — k (¢)| for N=4,
6, and 8. It is observed that the calculated solutions of k are
in good agreement with the theoretical results when larger
values of N are employed. Physically, we also need to
predict the long-time behavior of k(#). In other words, k(o0)
is of practical importance in the investigations. The present
numerical calculation of kg suggests that kg(c0)=0.807,
yielding a relative error with respect to k(oo)( =\/2—/7;) of

kg(o0) — k()

~ 10

(4.26)
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