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ABSTRACT. In this work, we demonstrate some recent progress on moving
mesh methods with application to computational fluid dynamics. The empha-
sis will be on the application to the gas dynamics governed by hyperbolic
system of conservation laws. Test problems in two- and three-dimensions
are computed using a proposed moving mesh algorithm. The computations
demonstrate our methods are efficient for solving problems with shock discon-
tinuities.

1. Introduction

Adaptive mesh methods have important applications for a variety of physical
and engineering areas such as solid and fluid dynamics, combustion, heat transfer,
material science etc. It is especially true in areas where physical phenomena de-
velop dynamically singular or nearly singular solutions in fairly localized regions,
such as shock wave, detonation wave, blow-up and spike solutions, etc. The numer-
ical investigation of these physical problems requires extremely fine meshes over a
small portion of the physical domain to resolve accurately the large solution varia-
tions. In multi-dimensions, developing effective and robust adaptive grid methods
for these problems becomes necessary. Successful implementation of the adaptive
strategy can increase the accuracy of numerical solutions and also decrease the
computational cost.

In the past two decades, there have seen many important progress in adaptive
grid methods for solving partial differential equations (PDEs). Roughly speaking,
there are two kinds of adaptive grid methods, static (or local refinement) and dy-
namic (or moving meshes). In the static adaptive methods, mesh points are moved
at fixed time levels, where points can also be added to or removed from the mesh
to obtain an approximate solution with the desired level of accuracy. The static
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170 MULTI-DIMENSIONAL MOVING MESH METHODS

adaptive method is conceptually easy to apply and usually reliable. Many local re-
finement methods have been developed, see, e.g., [4, 11, 12] and references therein.
However, the main disadvantage of the local refinement method is the complicated
data structure and the choice of the error indicators. Recently, several more effi-
cient error indicators were introduced for this purpose, see, e.g., [9, 13, 14, 18].
In particular, a detailed review of a posteriori error estimation is given in [31].

In the dynamic adaptive methods, the mesh points move continuously in time-
space domain and concentrate in regions of large solution variations. For this type,
a mesh equation is employed to move a mesh having a fized number of nodes in
such a way that the nodes remain concentrated in regions of rapid variation of the
solution. It requires simple data structure and usually requires just a moderate
number of spatial mesh-points. The moving mesh method is particularly useful
when the underlying physical problems have very large (not moderate) singularities,
e.g. shock, interior/boundary layers etc. In this case, the so-called monitor function
(indicator) can be constructed quite easily. There are two classes of moving mesh
methods. In the first class, the moving finite element method of Miller and Miller
[23] and the moving finite difference method of Dorfi and Drury [10] have aroused
considerable interest, see also [7, 8, 21]. In this approach, the mesh equation and
the original differential equation are often solved simultaneously. In the second
approach, the given PDEs and the mesh equations are decoupled, which are solved
separately, see, e.g., [1, 6, 19].

The main objective of this paper is to develop a three-dimensional moving
mesh method for shock capturing computations. Harten and Hyman [15] began
the earliest study in this direction, by moving the grid at an adaptive speed in each
time step to improve the resolution of shocks and contact discontinuities. After
their work, many other moving mesh methods for hyperbolic problems have been
proposed in the literature, including Azarenok et al. (1, 2, 3], Liu et al. [22],
Mackenzie et al. [26] and Tang et al. [27, 28]. However, it is noticed that some
existing moving mesh methods for hyperbolic problems are designed for one space
dimension. In 1D, it is generally possible to compute on a very fine grid and so
the need for moving mesh methods may not be clear. Multi-dimensional moving
mesh methods are often difficult to use for fluid dynamics problems since the grid
will typically suffer large distortions and possible tangling. It is thercfore useful to
design robust moving mesh algorithms for hyperbolic preblems in multi-dimensions.

The paper is organized as follows. In Section 2, we outline the mesh generation
procedure based on a variational approach. The numerical algorithm for moving
mesh method is described in Section 3. Finite volume scheme for three-dimensional
conservation laws will be outlined in Section 4. Numerical experiments are reported
in Section 5. Finally, some concluding remarks are given in Section 6.

2. Mesh Generation Based on the Variational Approach

Let 7, = (z,y,2) and 7. = (£,7,¢) denote the physical and computational
coordinates, respectively. A one-to-one coordinate transformation from the com-
putational (or logical) domain Q. to the physical domain {,, is denoted by

(2.1) 7 = Tp(Fe), e € Q.
Its inverse is denoted by

(2.2) Te =7c(Tp), Tp € Qp.
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In the conventional variational approach, the mesh map is provided by the mini-
mizer of a functional of the following form:

1
(2.3) E[F.] = 3 /Q (VETGIVE+ VTG IV + V¢TI GIVE) dry,
)4

where V := (05, 0y,0;), G is a given symmetric positive definite matrix called mon-
itor function. The variational mesh is determined by the Euler-Lagrange equations
of the above functional

(2.4) V- (GT'Vi) =0.
If the monitor function G is taken as
(2.5) G=wl,

then the mesh-generation method is the same as the well known Winslow’s variable
diffusion method {32]. In this paper, we will restrict our attention to the Winslow’s
approach. The extension to the general monitor function can be carried out in a
straightforward way.

When the monitor (2.5) is used, the Euler-Lagrange equation (2.4) becomes

(2.6) Oy (1327"'0) + 0, (layf'c> + 0, (lazf'c> =0,
w w w

As observed by Tang et al. [28], directly solving the above elliptic system may
be difficult, since the physical domain €, may be of very complex geometry. On
the other hand, it may be also difficult to solve the corresponding mesh generation
equations obtained by interchanging the dependent and independent variables in
(2.6) on the (simpler) computational domain, since the resulting equation is much
more complicated than (2.6) (see, e.g., [7, 19]). To avoid these difficulties, we use
a new energy functional

~ 1 ~ ~ ~ ~ ~ ~
(2.7) E[r,) = 5 / (VTxGVw + VTyGVy + VTZGVZ> dr.,
Qe
to replace the standard functional (2.3), where G is again the monitor function,
and V = (0¢,8,,0:)T. As a result, a new coordinate transformation 7, = 7p(7e)
can be obtained by solving the corresponding Euler-Lagrange equation

(2.8) V. (G%Fp) =0,

which results from minimizing the energy functional E’[Fp]. When a scalar-type
monitor (2.5) is used, the above equation becomes

(2.9) g (wOeTp) + By (wOyTp) + B¢ (W Tp) = 0.

Grid redistribution part in our 3D moving mesh method is to numerically solve
the system (2.9). Since the indicator w is in general associated with the underlying
solutions to the given PDEs, the equation (2.9) is in fact a nonlinear elliptical
equation which will be solved by an iteration strategy. Since the PDE solutions
do not change too significantly at two consecutive time steps (due to small time
stepping used), only a couple of iterations are sufficient to obtain a satisfactory
solutions for (2.9). The detailed description on the iteration procedure can be
found in [19, 20, 27, 28] for 1D and 2D moving mesh methods.
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REMARK 2.1. More terms can be added to the functional (2.7) to control other
properties of the mesh, such as orthogonality of the mesh and the alignment of the
mesh lines with a prescribed vector field, as described by Brackbill et al. [5, 6].

REMARK 2.2. In 2D, Eq.(2.9) becomes
(2.10) O¢ (WOeTp) + O (WO, Tp) = 0,

where 7 = (z,y). The boundary-point redistribution requires the use of a lower
dimensional moving mesh method. The above equation can be used to serve for
this purpose.

3. Algorithm for Moving Mesh Methods

Consider the three-dimensional hyperbolic system of conservation laws
(3.1) Owu + 0z Fr(u) + Oy Fy(u) + 8, F,(u) =0,

where F;, Fy, F, and u are vector functions in R3. The following steps describe the
major steps to evolve the PDEs (3.1) and to redistribute the mesh grids at each
time step.

Step 1: Initial data and grid preparation. Given an initial partition
(7 )1 .k = (7p)ijk for the physical domain €, and a uniform (fixed) partition for

. . (0] e
the logical domain Q.. Compute grid values Uil jrderd U((Tp)igd j+d kelsto)

based on the cell average of the initial data u((7}),to) over the control volume

Vir1j+1k+4 shownin Fig. 1, namely,

6D u{(Folisp ooy ) = +1k+11/// w(z,y, 2 to) V.
i+ 3.5

1i+d e+l

Step 2: Mesh motion. Even at the initial stage, the grids should be redis-
tributed based on the initial function, the initial partition and the corresponding
grid values (3.2). Step 2 consists of three parts which are used not only for the grid
re-distribution at the initial stage, but also for that at each later time-step. For
v=20,1,2,---, do the following:

(a): Redistribute the grid points {(7 )t kb to {(7);
mesh equation (2.9):

{v+1]

ik } by solving the

0= az+2,3 k ( )Elﬂl,] k (F )£li;+k1] - O‘z—— 2J kv (TP)£Z+£]
(3.3) 8503 | T ha — Fo5hY] = Bi s sk V()
% k+1 (FP)EZ]',IC+1 — (7p )Eyflcl] - 7i,j,k—%vk(rp)£;Tk1]1

where V; denote the backward difference operator in [-direction, and

1
ikdik = Y Wikl jipkia
2 1 2
q=%3
_1’
Bigxie =3 T  Witpithkte
Pg=%3
— 1
Viiktd =4 Do Witpjtektd-

pg==t3
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(b): Update the solution values {u["+1]

VS TERS) } over the new control volume
1 . - . . .
.["T ] : ., 1 using the following discrete conservative-interpolation:
i+3,J+35.k+3

6
lVe[u+1]lu£u+1] - ,VE[VJIULV] - lE (Cﬁlu)s[[ll] ,SJMI»

(3.4)
e={i+3,j+5k+3}

where cz, = (7)) ~ (7)"*) . 73, denotes the component of the speed

vector of mesh motion, 7i; denotes outward unit normal vector of surface

[V+1] [V]
element S;, V. 4+ d el and V 1+4 k + , are two hexahedrons on new

meshes {(Fp)i"':,: ]} and old meshes {('rp) : j,k}» respectively, and | -| denote
volume (or area) of volume (or surface) element. The use of (3.4) in 1D
is justified by the authors in [27]. Note that the above solution-updating

method guarantees the conservation of mass in the following sense:

u+1] [u+1]
(3:5) ;cl i+3 J+2,k+2l TR WIS N Zkl i+3 J+;,k+‘]uz+2,1+;,k+2'
. 14,
(c): Repeat the updating procedure (a) and (b) until ||(7,)F+1 — (7))
is smaller than a given tolerance.
Step 3: Evolve the system of conservation laws (3.1) by using high resolution

finite volume methods on the mesh {(r"p)["HI} to obtain the numerical approxi-

i3,k
mations u:fj irdiesd 2 the time level t,11. The high resolution finite volume
2 2! 2
methods will be described in next sec[t]lon. o]
— o+l —
Step 4: If t,4; < T, then let Uil grdbtd = Uit dsd bt and (7p); ;=

(Fp)kfkl and go to Step 2.

Two issues require some attention. First, some temporal or spatial smoothing
on the monitor function should be used to obtain smoother meshes. One of the
reasons for using smoothing is to avoid very singular mesh and/or large approxi-
mation error around the stiff solution areas. In this work, we apply the following
low pass filter to smooth the monitor

1 1
Wit l i+ k+d gwi+%,j+%,k+ 6( i+ 2, 5+1k+d T Wis Ll ksl

TWird gkl T Witk itk tWirl it ks +wi+—2~,j+§,k—5)

+ 25 (Wit e g hry Tt erd T Wich grgked T Omb o k)
FWin 1 ikl T Wil ol e 1 T W31 gl Wit iilk L
FWiil 13kl TWitd g k-1 FWisl il ks +wz+2,]——2-,k+%)

<
}
-

a(wi+%,j+%,k+3 T Wit i3 h-1 T Wit ik TWirg;
+wz-——,g+3 k+3 w1 1+3.k-3% +wz—— d—%,k+3 +w1—% J—3

where w3 51 ki1 = @W(Uird it ket (VWips j4dh+s)- The second issue is
about the redistribution of boundary grid points. Actually, the 3D boundary point
redistribution can be regarded as local two-dimensional mesh motion. More pre-
cisely, the 2D mesh equation (2.9) can be solved to obtain the boundary point
redistribution.
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FIGURE 1. Three-dimensional control volume V1 ;,1 4.1 and
2:JT2:kT3
vector fi.

4. Finite Volume Method for Conservation Laws

Our solution procedure is based on two independent parts: a mesh-redistribution
algorithm and a solution algorithm. As described in the last section the first part
is based on an iteration procedure and the second part is independent of the first
one. In principle, it can be any of the standard codes for solving the given PDEs,
such as ENO schemes [25], central schemes [24] and BGK schemes [33]. In this
paper, the underlying PDEs are solved by a high resolution finite volume method
with a kinetic flux-vector splitting (KFVS) approach.

4.1. Scalar equation. Consider the three-dimensional scalar hyperbolic con-
servation laws

(4.1) O + Oy fu(u) + Oy fiy(u) + 0, f.(u) = 0.

Integrating the above equation over an arbitrary three-dimensional control volume
V and using the divergence theorem give

(4.2) 8, ///Vu dV+/aV fa(u) dS =0,

where fz(u) = f 7, f = (fz, fy, f2), and @ = (ng,ny,n,) denotes outward
unit normal vector of surface element dS. Particularly, we assume that V is a
finite hexahedron (See Fig. 1) with eight vertices: A;({¥p)ijk), B1((7p)i+1,5.k)
Co{(7p)i+1,54+1,6), D1((7p)ig+1,k6)s A2((Fp)ijk+1)s Ba(Tp)is1,5h+1, Co((Fp)it1 5 41,641),
and Da((7p)i j+1,k+1). Thus the bounding surface 8V of the control volume V' con-
sists of six sub-face elements 5;, 1 <[ < 6:

S := A;B;C1Dy, Sy := AgByCaDs, S3 1= A1 B1B2A,,
S4 = ClDlDQCQ, Ss = A1D1D2A2, SG = C1B1B2C2.

The explicit finite volume method for scalar conservation laws (4.1) is then of the
form

6
n+1 .
(4.3) R o AT L% A Vit1 .41 k+1|an[|Sl|
2 =1
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where fn, =f (uﬁl,un is an appropriate numerical flux approximating fz,(u) at
the cell interface Sj, and u~ and u~l denote the approximation of cell averages of
u over the left and right control volume of the surface S; along the corresponding
outward normal direction, respectively. As an example, fﬁ, can take the following

‘Lax-Friedrich flux:

(19 Jr= 5 () + fr(uk) ~ 5 maxl(fuf, (0]} (ufh — k).

4.2. The Euler equations. The three-dimensional compressible Euler equa-
tions for inviscid gas dynamics may be written in the following form

(4.5) .U + 8, Fo(U) + 8, F,(U) + 8, F.(U) = 0,
where
p PUg puy puz
pus pui +p PUyUg PUUg
U= puy |, = PUzUy s Fy = pu?, +p , By = pUzUy
pUz puzU, pUyU, m@ +p
E uz(E + p) uy(E + p) u:(E + p)

Here p, @ = (ug,uy,u.), p, and F = pe + %pﬂ'2 are the density, velocity vector,
pressure, and the total energy, respectively. To close the above system, we use the
equation of state for ideal gases, p = (v — 1)pe, where 7 is the ratio of specified
heat capacities of the fluid, and e denotes the internal energy density.

In this paper, we use a high resolution finite volume method with a kinetic flux-
vector splitting (KFVS) approach to solve the three-dimensional Euler equations
(4.5). The explicit 3D KFVS finite volume method can be written in the same form
of (4.3):

n+1 Un
i+dgtiktd T Vitgatikts T |

ll ZFH¢|SII

i+5.0+3.k+

where numerical flux Fy;, is of the following form [29]:

(4.6) Fr =FF U™+ Fz(UF™), 1<1<6.

ny

The split flux vectors F. ﬁil are given by

(1),
<vm>i
(A7) FE(U) = pM <<vi[>>i i ,
[0+ G, (02 53+ @)]

where #; and 7} are tangent vectors of surface S; perpendicular to each other, (-)
and (-), are some fundamental moments which can be found in [29], and M is a
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local rotating transformation

1 it 0 0
0 sin{a)cos(8) ~sin(B) —cos(a) cos(8) O
M =10 sin{a)sin(8) cos(8) —cos(a)sin(8) 0
0 cos(a) 0 sm(a 0
0 0 0 1

Here o and [ denote the angle between the vector 7i; and z- and z-axises, respec-
tively, as illustrated in Fig. 1. For a first-order scheme, we can use
Ln _ Rn __
Uﬁ, = Ui+§,j+%,k+%’ iy UH— J+3.k—30
o= Upn =
(4.8 iz T Cikygtiktd Vi i+3.-5.k+5
. ) UR o =U. UR no__ =1
7 i+ii+3k+d i i-%.j+3.k+5
vkn _y,
e Cit+3,i+3.k+50

To obtain a second-order scheme, a piecewise linear function can be employed to
replace the piecewise constant approach, in a way similar to the van Leer’s initial
reconstruction technique [30]. For example for a regular grid system, we can use

L,n__
Uﬁl U1+2 Jrik+s T K (U i+3.0+5.k+50
z

(4.9) n
Urﬁ = Vitl i+l k——+—(U )1+2J+ k-3

5. Numerical Tests

5.1. 2D computations. For completeness, we include in this section also a
2D test. The procedures described in earlier sections can be easily adopted to the
2D case. More computational results in two space dimensions can be found in Tang
and Tang [27].

ExAMPLE 5.1. A 2D Riemann problem. Two-dimensional Euler equations
of gas dynamics can be written as

p pu pv
pu puc +p puv

5.1 =0

(5-1) | T puv pv? +p ’
E |, wW(E+p) |, vw(E+p) |,

where p, (u,v), p, and F are density, velocity, pressure, and total energy, respec-
tively. For an ideal gas, the equation of state is p = (y — 1)(E ~ p(u? +v?)/2). The
initial data is chosen as

(1.1,0.0, 0.0, 1.1) ifr>05 y>05,
(0.5065, 0.8939, 0.0, 0.35) ifz <05 y>0.5,
(p:u,v,p) = (1.1, 0.8939, 0.8939, 1.1) ifz <05 y<D0.5,
(0.5065, 0.0, 0.8939, 0.35) ifz>05 y<0.5,

which corresponds to the case of left forward shock, right backward shock, upper
backward shock, and lower forward shock.

In [17], Lax and Liu computed 2D Riemann problems with various initial data
using the positive schemes. The problem considered here corresponds to the Con-
figuration 4 discussed in their paper. We use our adaptive mesh algorithm with
50 x 50 and 100 x 100 grid points to compute this Riemann problem and display the
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meshes and density at t = 0.25 in Fig. 2. It is found that our results with 100 x 100
mesh points give sharper shock resolution than that of the positive schemes with
400 x 400 grid points (see [17], p. 333). The monitor function used in this compu-

tation is G = wl with w =\ /1 +2(p? + p2) .

o 0.2 0.4 ag.6 c.8 1

FIGURE 2. Example 5.1: The contours of mesh (left) and the density
(right) with 50 x 50 grid points (top) and 100 x 100 grid points (bottom).
30 equally spaced contour lines are used for the density.

5.2. 3D computations.
ExaMPLE 5.2. Linear advection problem. The first 3D problem is the
scalar advection equation
(5-2) at/) + az(P“x) + ay(puy) + 0, (puz) =0,
where the velocity field is given by
up (2,9, 2,t) = 2sin’(xx) sin(my) sin(m2)g(t),
uy (x,y, 2, t) = —sin(wz) sin®(7y) sin(r2)g(t),

u,(z,y, z,t) = —sin(nz) sin(my) sin(72)g(t),
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FIGURE 3. Contours of mesh and solution for Example 5.2 on one cut-
plane. Top: ¢ = 0.2; Bottom: t = (0.4.

with time function g(t) = cos(wt/T). The physical domain is considered as a unit
cube with periodic boundary conditions at + = 0.1, y =0, 1, and z = 0, 1. Initially,
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the density distribution has a discontinuity placed at z = %, ie.

1, ifz <05,
(5.3) M%%A®={O’ﬁz>aa

‘ Due to the form of g(t) in the velocity field, the initial discontinuity should

be recovered at time ¢ = T'. Since the initial condition (5.3) is discontinuous, it
is reasonable to use the gradient-based monitor function. Therefore, the monitor
function is taken as wlI with

(5.4) w=1/14+0.5*|Vp|2,

where V := (B¢, By, Oc)T. In the present computations, T = 0.4 and 403 grid points
are used. We also employed the van Leer’s limiter, as discussed in [27]. Fig. 3
shows results for the adaptive mesh obtained by using the proposed moving mesh
method on one cut-plane at t = 0.5%xT = 0.2 and ¢t = T'. It can be verified that the
solution at ¢t = 7" is the same as the initial function. This is well observed in the
numerical solutions. It is also observed that our moving mesh scheme adapts the
mesh very well to the regions with large solution gradients.

EXAMPLE 5.3. A spherical Riemann problem between two walls. The
second 3D example is a spherical Riemann problem between two parallel walls at
z =0 and z = 1. Initially the gas is at rest with density and pressure {p,p) = (1,1)
everywhere except in a sphere at (0,0,0.4) with radius 0.2. Inside the pressure
(p,p) = (1,5). The jump in pressure results in a strong outward moving shock wave
and contact discontinuity and an inward rarefaction wave. This inward moving wave
causes a local “implosion”, and a second outward moving shock wave is created.
The main features of the solution are the interactions between these waves and
between waves and the walls. This problem is proposed by Langseth and LeVeque
[16].

Figs. 4 and 5 show the contours of computed density and adaptive meshes at
t = 0.2, 0.3, 0.5, and 0.6, respectively. In this computation, the following monitor
function is used:

(5.5) w= \/1 +0.5%|Vp|2 + 0.1 |Ap|2,

where A := (9¢¢, Oy, cc)T. The inclusion of the higher-order derivatives was not
used in the two-dimensional moving mesh computations for hyperbolic conservation
laws (e.g., [2, 3, 27]). However, the monitor (5.5) seems useful for this three-
dimensional problem.

6. Concluding Remarks

In this work we proposed an adaptive mesh algorithm for solving hyperbolic
system of conservation laws in three space dimensions. The basic idea of our adap-
tive mesh algorithm can be summarized as the following:

(1) Suppose a logically rectangular spatial grid is given on which the cell
centered approximation to the PDE’s solution lives.

(2) Update the grid by iterating an artificial time () elliptic (or parabolic)
grid generator. Simultaneously update the cell centered approximate so-
lution u by iterating d,u = 0 on the moving (with respect to 7) grid.
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