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ASYMPTOTIC ANALYSIS ON THE SHARP INTERFACE LIMIT OF
THE TIME-FRACTIONAL CAHN–HILLIARD EQUATION∗

TAO TANG† , BOYI WANG‡ , AND JIANG YANG§

Abstract. In this paper, we aim to study the motions of interfaces and coarsening rates governed
by the time-fractional Cahn–Hilliard equation (TFCHE). It is observed by many numerical experi-
ments that the microstructure evolution described by the TFCHE displays quite different dynamical
processes compared with the classical Cahn–Hilliard equation, in particular, regarding motions of
interfaces and coarsening rates. By using the method of matched asymptotic expansions, we first
derive the sharp interface limit models. Then we can theoretically analyze the motions of interfaces
with respect to different timescales. For instance, for the TFCHE with the constant diffusion mobil-
ity, the sharp interface limit model is a fractional Stefan problem at the timescale t = O(1). However,

on the timescale t = O(ε−
1
α ), the sharp interface limit model is a fractional Mullins–Sekerka model.

Similar asymptotic regime results are also obtained for the case with one-sided degenerated mobility.
Moreover, the scaling invariant property of the sharp interface models suggests that the TFCHE
with constant mobility preserves an α/3 coarsening rate, and a crossover of the coarsening rates
from α

3
to α

4
is obtained for the case with one-sided degenerated mobility, in good agreement with

the numerical experiments.

Key words. method of matched asymptotic expansions, time-fractional Cahn–Hilliard equation,
phase-field modeling, coarsening rates, motion of interfaces
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1. Introduction. The coarsening progcess (see Figure 1.1(a)–(c)) is a ubiqui-
tous phenomenon and is observed in many fields, such as the study of solids or fluids
in material science, opinion dynamics in social science, and pattern formation in bio-
logical science [10]. It is marked by an increase of the typical length scale in the spatial
structures, which is due to the decrease of the interfacial energy [7, 11, 12, 13, 14, 22].
During the coarsening process, a power law, i.e., the increasing of a characteristic
length scale with respect to the power of time, is often observed [11, 12, 34]; see
also Figure 1.1(d). To measure the coarsening process, a coarsening rate is intro-
duced. It is clear that the Cahn–Hilliard equation (CHE) can be used for simulating
the coarsening progcess with an 1/3 power law. This power law coincides with the
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774 T. TANG, B. WANG, AND J. YANG

coarsening rate indicated by the classical Lifshitz–Slyozov–Wagner theory for bulk
diffusion. However, different coarsening rates have also been discovered, which sug-
gests that the CHE is insufficient. For example, significantly small coarsening rates,
i.e., 0.13, 0.07, and 0.09, are observed in the coarsening of γ′ precipitates [19, 32].
The authors explain that as a result of the existence of the elastic strain field. In
addition, a coarsening rate of 1/2 is observed in the study of precipitate in rapidly
solidified Al-Si alloy, and it is due to a change of the annealing temperature according
to the author [7]. More examples of different coarsening process are introduced in
[10]. These results suggest that the CHE may not be a suitable coarsening model of
every case, and other models should be considered.

Recently, time-fractional models have drawn people’s attention [2, 8, 16, 17, 20,
25, 26, 23, 37, 24]. Numerical results have shown that the coarsening rate of a time-
fractional Cahn–Hilliard equation (TFCHE) depends not only on the mobility but
also on the order of the fractional derivative [24, 27, 30, 34, 38, 17]. Especially, an
intriguing coarsening rate of α/3 is observed in [34]. Figure 1.1(a)–(d) shows the case
for α = 0.9.

This paper is concerned with the motion of interfaces and coarsening dynamics
of the TFCHE

(1.1)

{
∂α
t u = ∇(M(u)∇µ),

µ = −ε2∆u+ F ′(u), x ∈ Ω, 0 < t < T,

where, for some given 0 < α < 1, ∂α
t is the Caputo fractional derivative [2, 21, 31]

defined by

∂α
t u =

1

Γ(1− α)

∫ t

0

u′(τ)

(t− τ)α
dτ, t > 0.

As a nonlocal-in-time extension of classical phase-field models, u is the order parame-
ter, ε represents the width of interfaces, and µ is the chemical potential. Without loss
of generality, we restrict our attention to the commonly used double well potential

(1.2) F (u) =
1

4
(u2 − 1)2.

In (1.1), the diffusion mobility function M(u) is taken as the constant 1 or the one-
sided degenerate function 1 + u. For simplicity, (1.1) is subject to the Neumann
boundary conditions

∂u

∂n
=

∂µ

∂n
= 0, x ∈ ∂Ω, 0 < t < T,(1.3)

and the initial data

(1.4) u(x, 0) = u0(x), x ∈ Ω.

Extensive investigations have been made to study the coarsening process and the
coarsening rates of the CHE. Pego [28] studied the asymptotic regimes on CHE with
the constant mobility by the method of matched asymptotic expansions. Alikakos,
Bates, and Chen [1] proved the convergence of CHE to the Mullins–Sekerka (MS) equa-
tions. Cahn, Elliott, and Novick-Cohen [6] studied the degenerate CHE and obtained
the surface diffusion model. In addition, it has been shown that the coarsening rate of
the CHE is related to the diffusion mobility. Dai and Du [11, 12] studied the motion of
interfaces for CHE with single-sided degenerate mobility, and they obtained its sharp
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SHARP INTERFACE LIMIT OF THE TFCH EQUATION 775

(a) u at t = 4 (b) u at t = 25

(c) u at t = 100

4.4 4.6 4.8 5 5.2 5.4 5.6

ln(t)

-3.5

-3.45

-3.4

-3.35

-3.3

-3.25

-3.2

-3.15

ln
(E

(t
)/

|
|)

ln(E(t)/| |)

fitted line with slope -0.29

(d) evolution of energy

Fig. 1.1. M(u) = 1, α = 0.9, ε = 0.05. Morphological patterns at t = 4 (top left), t = 25 (top
right), t = 100 (bottom left), ln(E(t)/|Ω|) vs. ln(t) (bottom right).

interface limits as well as the coarsening rates. Moreover, Chen et al. presented a
careful numerical study for a thin film model without slope selection [9], with partic-
ular attention to the energy coarsening dependence on the interface width parameter.
More results related to the CHE can be found in, i.e., [1, 3, 4, 13, 15, 33, 36, 14, 35].

Motivated by the above asymptotic analysis theory and numerical results on the
coarsening rates for time-fractional CHE, we will establish asymptotic regime theory
on the TFCHE by the method of matched asymptotic expansion as used in [28] and
to derive the surface diffusion models of interface motion for the TFCHE. As far as
we know, this is the first work to study the coarsening process and coarsening rate of
TFCHEs using formal asymptotic matching.

Our main results are twofold. First, a formal asymptotic description of the
TFCHE in the later regime of phase separation is given, where different types of mobil-
ities are discussed. Second, using the resulting sharp interface models and the scaling
invariant property, we explain the corresponding coarsening rates for the TFCHEs,
which agrees well with numerical observations in [34, 38]. A more precise outline of
the first result is given below. In a slow timescale O(1), the solution at leading order
satisfies a nonlocal “Stefan problem” with equilibrium condition at the interface, and
the leading order inner solution is the solution to the problem

F ′(U)− ∂zzU = 0,(1.5a)

U(−∞) = −1, U(+∞) = 1, U(0) = 0,(1.5b)
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776 T. TANG, B. WANG, AND J. YANG

which is the rescaled tanh function U(z) = tanh(z/
√
2). Then, on a much more

slower timescale t1 = ε
1
α t, phase equilibrium holds everywhere, and interface motion

is governed by µ1, which is the second term in the asymptotic expansion of the
chemical potential µ, obeying the following nonlocal MS model:

∂α
t1u0 = ∆µ1 in Ω\Γ,(1.6a)

µ1 = κ
S

[U ]
on Γ,(1.6b)

I1−αV = [∂mµ]+−/[U ] on Γ.(1.6c)

In (1.6a)–(1.6c), S and [U ] are some constants, u0 is the sign function of the distance
function ϕ, Γ is the interface, κ = ∆ϕ is the mean curvature, V = ∂tϕ is the normal
velocity of Γ on x with the signed distance ϕ from the point x ∈ Ω to interface, m
is the unit normal vector on Γ, I1−α denotes the fractional integral operator, and u0

is determined by the interface Γ and equals ±1 in Ω±, correspondingly. The present
results reduce to the classical one of Pego [28] for local CHE,

V = [∂mµ1]
+
−/[U ], on Γ,

by letting α → 1.
As for the case with one-sided degenerate mobility, i.e., M(u) = 1 + u, the cor-

responding sharp interface models in timescales t1 = ε
1
α t and t2 = ε

2
α t are derived,

respectively, as the following nonlocal MS models:

∂α
t1u0 = ∆µ1 in Ω+,(1.7a)

µ1 = −κ
S

[U ]
on Γ,(1.7b)

I1−αV = ∂mµ+
1 on Γ(1.7c)

and

∂α
t2u0 = ∇(µ1∇µ1) in Ω−,(1.8a)

µ1 = −κ
S

[U ]
on Γ,(1.8b)

2∆µ2 = ∂α
t u0 in Ω+,(1.8c)

µ2 = −κ2 S1

[U ]
on Γ,(1.8d)

I1−αV = ∂mµ+
2 +

1

4
µ−
1 ∂mµ−

1 on Γ.(1.8e)

A more precise outline of the second model is given below. For the case with
the constant mobility M(u) = 1, the scaling invariant of the nonlocal MS model
implies a coarsening rate of α/3, which coincides well with that observed in numerical
experiments. For the case with one-sided degenerate mobility M(u) = 1 + u, the
models (1.7a)–(1.7c) and (1.8a)–(1.8e) exhibit two different coarsening rates of α

3 and
α
4 , respectively, which are in good agreement with the observations in [11, 12].

The rest of the paper is organized as follows. In sections 2 and 3, we establish
sharp interface limit models for the TFCH system (1.1)–(1.4) when M(u) = 1 and
M(u) = 1 + u, respectively. In section 4, the scaling invariant properties of sharp
interface models and the coarsening rates will be discussed. Some concluding remarks
are given in the final section.
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SHARP INTERFACE LIMIT OF THE TFCH EQUATION 777

2. Sharp interface models when M(u) = 1. The method of matched as-
ymptotic expansions expansion as in Pego [28] will be used in this section. For all
γ ∈ R and t1 = εγt, simple calculation yields

∂α
t v(t1) =

εαγ

Γ(1− α)

∫ εγt

0

v′(τ)

(εγt− τ)α
dτ = εαγ∂α

t1v(t1).(2.1)

Below we will develop sharp interface models at different timescales. We assume that
with domain Ω ⊂ RN , N = 2 or 3, there is a smooth N − 1 dimension interface
Γ which divides Ω into Ω+ and Ω−. For simplifying the problem, we assume the
interface Γ does not intersect with the boundary. Such an assumption is made to
avoid the analysis on boundary layers involved by the intersection. We point out
that the asymptotic analysis involving boundary layers for the regular CHE has been
presented by Dziwinik, Münch, and Wagner [18].

2.1. The timescale t = O(1): A time-fractional Stefan problem. We
assume that the phase structures are nearly equilibrated.

2.1.1. Outer expansion. We expand the solution in a series of powers of ε in
the timescale t:

u(x, t) = u0(x, t) + εu1(x, t) + · · · ,(2.2a)

µ(x, t) = µ0(x, t) + εµ1(x, t) + · · · .(2.2b)

In this timescale,

∂α
t u = ∂α

t u0 + ε∂α
t u1 + · · · .(2.3)

By comparing (2.3) with (1.1) and matching the powers of ε, we get

∂α
t u0 = ∆µ0, µ0 = F ′(u0).(2.4)

This method will be used many times in this paper. The leading order equation
implies that the phase parameters evolve according to the chemical potential. The
boundary condition on ∂Ω is taken naturally as ∂u0

∂n = 0. To model this problem, it
is necessary to derive the boundary conditions on the interface, which can be done by
matching outer solutions with the inner solutions.

2.1.2. Inner expansion. Now we consider the inner expansions near the front.
Intuitively, the inner solutions take the value of the solutions restricted on the in-
terface. The inner solutions will be defined in this region by an inner variable z.
Moreover, the inner solution matches with the outer solution when z → ±∞ accord-
ing to some specified matching conditions. We take the same notations as Pego [28].
In order to define the inner variable z, define the stretched normal distance to the
front

z = ϕ(x, t)/ε,

where ϕ(x, t) is the signed distance of the point x in Ω to the interface Γ(t) such that
ϕ > 0 in Ω+ and ϕ < 0 in Ω−. Note that ϕ is a smooth function near Γ if Γ is smooth.

Consider the functions ṽ = ṽ(z, x, t) defined near the interface. Following [28],
we require that v does not vary when x varies normally to Γ but z holds, that is,
ṽ(z, x+ α∇ϕ, t) = ṽ(z, x+∇ϕ, t) for small α or ∇ϕ · ∇xṽ = 0. Moreover, define

m = ∇ϕ(x, t), κ = ∆ϕ(x, t), V (x, t) = ∂tϕ(x, t),(2.5)
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778 T. TANG, B. WANG, AND J. YANG

wherem is the unit normal vector on Γ pointing toward Ω+, κ is the mean curvature of
Γ at point x, and ∂tϕ = V (x, t) is the normal velocity of front motion in this timescale,
which is positive when pointing toward Ω−. We also assume that ∂tϕ = V (x, t) exists
for all x ∈ Ω. Given ṽ(z, x, t) and v = ṽ(ϕ(x, t)/ε, x, t), we have derivatives transform
according to the relations [28]

∇v = ∇xṽ + ε−1m∂z ṽ,(2.6a)

∆v = ∆xṽ + ε−1κ∂z ṽ + ε−2∂zz ṽ,(2.6b)

∂tv = ε−1∂tϕ∂z ṽ + ∂tṽ.(2.6c)

For the inner expansion, we have

u(x, t) = ũ0(z, x, t) + εũ1(z, x, t) + · · · ,(2.7a)

µ(x, t) = µ̃0(z, x, t) + εµ̃1(z, x, t) + · · · .(2.7b)

By Taylor expansion and (2.7a)–(2.7b), the expansions are related by

µ̃0 = F ′(ũ0)− ∂zzũ0,(2.8a)

µ̃1 = F ′′(ũ0)ũ1 − ∂zzũ1 − κ∂zũ0,(2.8b)

µ̃2 = F ′′(ũ0)ũ2 − ∂zzũ2 − κ∂zũ1 +
1

2
F ′′′(ũ0)ũ

2
1 −∆xũ0.(2.8c)

Substituting the expansion back to (1.1), using the derivative transform formulas
(2.6a)–(2.6c), and matching the lowest-order term of ε shows.

∂zzµ̃0 = 0.(2.9)

Integrating (2.9) and combining (2.8a), we derive

µ̃0 = a0(x, t)z + b0(x, t) = F ′(ũ0)− ∂zzũ0.(2.10)

Since ũ0 must be bounded, a0(x, t) has to be zero. Then we derive b0 by solving the
following system:

F ′(ũ0)− ∂zzũ0 = b0,(2.11a)

ũ0(+∞, x, t) = u+(x, t), ũ0(−∞, x, t) = u−(x, t).(2.11b)

Letting z → ±∞ in (2.11a) and integrating (2.11a) with respect to u yields

F ′(u+(x, t)) = F ′(u−(x, t)) = b0(x, t),(2.12a)

b0(x, t)(u
+(x, t)− u−(x, t)) = F (u+(x, t))− F (u−(x, t)).(2.12b)

Assuming that the leading order inner solution u0 links the two pure phases ±1 means

u+(x, t) = 1, u−(x, t) = −1.(2.13)

Therefore,

b0 = µ̃0(z) = 0.(2.14)
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SHARP INTERFACE LIMIT OF THE TFCH EQUATION 779

Recall (2.11a) with b0 = 0. As in [11], we choose the well-known solution profile

ũ0(z) = tanh

(
z√
2

)
=: U(z).(2.15)

Matching with the outer solution by (2.4) derives the boundary conditions for the
equilibrium state

µ0 = 0 on Γ.(2.16)

For the matching between higher-order terms, we follow the ideas provided by
Caginalp and Fife in [5]. Fixing x on Γ, we seek to match the expansions by requiring
formally that

(µ0 + εµ1 + · · · )|(x+εzm,t) ≈ (µ̃0 + εµ̃1 + · · · )|(z,x,t)(2.17)

when εz is between o(1) and O(ε). Expanding the left-hand side in powers of ε as
εz → 0+ gives

µ+
0 + ε(µ+

1 + zDmµ+
0 ) + ε2(µ+

2 + zDmµ+
1 +

1

2
z2D2

mµ+
0 ) + · · · ,(2.18)

where Dm denotes the directional derivative along m and µ+
i is the limit when z → 0

along m :

µ±
i = lim

z→0±
µi(x+ zm , t1).(2.19)

Similar results hold for εz → 0−. To match these expansions in (2.18) with the inner
expansion, one requires

µ±
0 (x, t) = µ̃0(z, x, t), z → ±∞,(2.20a)

(µ±
1 + zDmµ±

0 )(x, t) = µ̃1(z, x, t), z → ±∞,(2.20b)

(µ+
2 + zDmµ+

1 +
1

2
z2D2

mµ+
0 )(x, t) = µ̃2(z, x, t), z → ±∞.(2.20c)

The time derivative in the local frame equals

∂α
t u(x, t) = ∂α

t

(
(ũ0 + εũ1 + · · · )|(ϕ(x,t)/ε,x,t)

)
=

1

Γ(1− α)

∫ t

0

ε−1∂τϕ(x, τ)∂zũ0(ϕ(x, τ)/ε)

(t− τ)α
dτ

+
1

Γ(1− α)

∫ t

0

∂τϕ(x, τ)∂zũ1(ϕ(x, τ)/ε, x, τ) + ε(∂τ ũ1(z, x, τ)|z=ϕ(x,τ)/ε)

(t− τ)α
dτ + · · ·

=
1

Γ(1− α)

∫ t

0

ε−1∂τϕ(x, τ)∂zũ0(ϕ(x, τ)/ε, x, τ)

(t− τ)α
dτ + h.o.t.

(2.21)

Then matching the O( 1ε ) term gives

1

Γ(1− α)

∫ t

0

∂τϕ(x, τ)∂zũ0(ϕ(x, τ)/ε)

(t− τ)α
dτ = µ̃1zz(z, x, t).(2.22)
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780 T. TANG, B. WANG, AND J. YANG

Integrating (2.22) with respect to z over (−∞,+∞), we get

1

Γ(1− α)

∫ t

0

ϕτ (x, τ)

(t− τ)α
dτU

∣∣+∞
−∞ = µ̃1z

∣∣+∞
−∞.(2.23)

By using the matching condition (2.20b), we derive

1

Γ(1− α)

∫ t

0

ϕτ (x, τ)

(t− τ)α
dτ = [m · ∇µ0]

+
−[U ]−1,(2.24)

where [U ] = U
∣∣+∞
−∞ = 2 and [m · ∇µ0]

+
− denotes the jump of the direction derivative

of µ over the interface along the normal vector. We rewrite (2.24) in the following
form using the notation of fractional integral:

I1−αV =
1

2
[∂mµ0]

+
−.(2.25)

Sharp interface model in t = O(1). Ignoring the subscripts, the sharp
interface model is a time-fractional Stefan model:

∂α
t u0 = ∆µ0, µ0 = F ′(u0), in Ω/Γ,(2.26a)

u0 = 1 on Γ+, u0 = −1 on Γ−,(2.26b)

µ0 = 0 on Γ,(2.26c)

I1−αV =
1

2
[∂mµ0]

+
−.(2.26d)

2.2. The timescale t1 = ε
1
α t: A time-fractional MS model. In this part

we derive the time-fractional sharp interface model in the timescale t1 = ε
1
α t.

2.2.1. Outer expansion. In this timescale,

∂α
t u = ε∂α

t1u0 + ε2∂α
t1u1 + · · · .(2.27)

Similar to (2.4), we have

0 = ∆µ0, µ0 = F ′(u0), ∂α
t1u0 = ∆µ1, ∂α

t1u1 = ∆µ2.(2.28)

In this timescale, at leading order, we have a steady-state equation for µ0. In order
to establish the limit model, we also need the boundary conditions on the boundary
∂Ω and the interface Γ. The boundary condition on ∂Ω is naturally inherited from
the boundary condition ∂u

∂n = 0, but for the boundary conditions on the interface, we
need to solve for them by asymptotically matching the outer solutions and the inner
solutions.

2.2.2. Inner expansion. Similar to (2.9), matching 1/ε2 and 1/ε terms in the
second equation in (1.1) yields

∂zzµ̃0 = 0,(2.29a)

κ∂zµ̃0 + ∂zzµ̃1 = 0.(2.29b)

Analogous analysis to section 2.1 leads to a tanh profile again, i.e.,

ũ0 = U(z), µ̃0 = 0,
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SHARP INTERFACE LIMIT OF THE TFCH EQUATION 781

where U(z) is defined in (2.15). We also assume that u+
0 (x, t1) = 1, u−

0 (x, t1) = −1.
Matching the inner solution with the outer solution according to (2.20a), one derives
the boundary conditions for the outer solution

µ0 = 0 on Γ.(2.30)

Notice that now ∆µ0 = 0 and µ0 = F ′(u0) in (2.28); therefore,

µ0 = 0 in Ω, u0 ≡ −1 in Ω−, and u0 ≡ 1 in Ω+.

As for µ̃1, we have

(2.31) µ̃1 = F ′′(ũ0)ũ1 − ∂zzũ1 − κ∂zũ0 = b2(x, t1).

Since F ′′(ũ0)ũ
′
0(z) − ∂zzũ

′
0 = 0, multiplying (2.31) by U ′ and integrating by z on

(−∞,+∞) yields
[U ]µ̃1 + κS = 0,

where

S =

∫ +∞

−∞
U ′(z)2dz, [U ] = u+ − u− = 2.

Using the matching conditions (2.20b),

µ1 = µ̃1 = −κ
S

[U ]
on Γ.

Letting ε → 0, we have the boundary conditions of µ at the interface Γ. Therefore,
we have a closed system for µ1,

∂α
t1u0 = ∆µ1 in Ω\Γ,(2.32a)

µ1 = −κ
S

[U ]
on Γ,(2.32b)

∂mµ1 = 0 on ∂Ω,(2.32c)

provided that Γ is known and smooth, which is well-defined and can be solved inde-
pendently in each Ω±.

Similar to (2.24), in this new timescale, we have

1

Γ(1− α)

∫ t1

0

ϕτ (x, τ)

(t1 − τ)α
dτ = [m · ∇µ1]

+
−[U ]−1,(2.33)

which is

I1−αV =
1

2
[∂mµ1]

+
−.(2.34)

Sharp interface model in t1 = ε
1
α t. Collecting the above equations (2.32a)–

(2.32c), we get the sharp interface model as follows:

∂α
t1u0 = ∆µ1 in Ω\Γ,(2.35a)

µ1 = −κ
S

[U ]
on Γ,(2.35b)

∂µ1

∂n
= 0 on ∂Ω,(2.35c)

I1−αV =
1

2
[∂mµ1]

+
− on Γ.(2.35d)
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782 T. TANG, B. WANG, AND J. YANG

u0 ≡ 1 or u0 ≡ 1 when ϕ > 0 or ϕ < 0, respectively. The system (2.35a)–(2.35d) is
well-posed, which determines the motion of the front for given smooth initial data. It
is a time-fractional MS model.

Remark 1. Since u0 is the sign function of ϕ, ∂tu0 ≡ 0. Hence, in the local CH
model, (2.35a) becomes

∆µ1 = 0 in Ω\Γ.

But for the TFCHE, it is necessary to keep ∂α
t0u0 due to the nonlocal effect.

3. Sharp interface models when M(u) = 1+u. In this section, we intend to
derive the sharp interface models of the TFCHE with one-sided mobility M(u) = 1+u
under the same problem setting as in section 2. To begin with, special treatments are
required for the degenerate mobility since in this case the leading order term 1+u0 in
the asymptotic expansion of M(u) might not be valid when z → −∞. Assuming that
1+ ũ0 decreases exponentially, that is, 1+ ũ0 ∼ ez/σ, z → −∞. Taking η = σ ln 1

ε , we
have the following estimates of 1 + ũ0:

(3.1) 1 + ũ0 =


O(ε) if z ≤ −η,
O(ε2) if z ≤ −2η,
O(ε3) if z ≤ −3η,
O(ε4) if z ≤ −4η.

To simplify the notations, we denote χ4 = 1(−∞,−4η], χ3 = 1(−4η,−3η], χ2 = 1(−3η,2η],
χ1 = 1(−2η,η], and χ0 = 1(−η,+∞), which are the corresponding characteristic func-
tions on each interval. Then we have the following expansion of 1 + ũ0:

1 + ũ0

=(1+ũ0)χ0 + ε(1 + ũ0)ε
−1χ1+ε2(1+ũ0)ε

−2χ2 + ε3(1+ũ0)ε
−3χ3 + ε4(1 + ũ0)ε

−4χ4.

(3.2)

Replacing 1 + ũ0 by the above expansion gives a valid series of M(u). Moreover, a
similar idea is applied for ũ0z. When z → −∞, ũ0z decays at the same rate as 1+ ũ0.
As for when z → +∞, we assume that ũ0z ∼ e−z/σ̂ and η̂ = σ̂ ln 1

ε , so ũ0z ≤ O(ε)
when z ≥ η̂. Let the partitions be [−η, η̂), [−2η,−η) ∪ [η̂, 2η̂), [−3η,−2η) ∪ [2η̂, 3η̂),
[−4η,−3η)∪ [3η̂, 4η̂), and (−∞,−4η)∪ [4η̂,+∞) and the corresponding characteristic
functions be χ̂0, χ̂1, χ̂2, χ̂3, χ̂4. Then the following expansion holds:

ũ0z = ũ0zχ̂0 + εũ0zε
−1χ̂1 + ε2ũ0zε

−2χ̂2 + ε3ũ0zε
−3χ̂3 + ε4ũ0zε

−4χ̂4.(3.3)

With the above expansions, we can now compute ∇ · (M(u)∇µ) as follows:

∇ · (M(u)∇µ) = M ′(u)∇xu · ∇xµ+ ε−2∂zu∂zµ+M(u)(∆xµ+ ε−1κ∂zµ+ ε−2∂zzµ).

(3.4)

By simple calculations, we find the terms of powers of ε in (3.4) correspondingly. The
first four leading order terms are required in our later analysis, which are the O( 1

ε2 )
term

χ̂0ũ0zµ̃0z + χ0(1 + ũ0)∂zzµ̃0,(3.5)
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SHARP INTERFACE LIMIT OF THE TFCH EQUATION 783

the O( 1ε ) term

(ũ0zχ̂1ε
−1 + ũ1z)µ̃0z + ũ0zχ̂0µ̃1z + χ0κ(1 + ũ0)µ̃0z + χ0(1 + ũ0)µ̃1zz(3.6)

+(ũ1 + χ1(1 + ũ0)ε
−1)µ̃0zz,

the O(1) term

∇xũ0∇xµ̃0 + (χ̂0ũ0zµ̃2z + (χ̂1ũ0zε
−1 + ũ1z)µ̃1z + (χ̂2ũ0zε

−2 + ũ2z)µ̃0z)(3.7)

+χ0(1 + ũ0)(∆xµ̃0 + κµ̃1z + µ̃2zz) + (ε−1(1 + ũ0)χ1 + ũ1)(κµ̃0z + µ̃1zz)

+(ε−2(1 + ũ0)χ2 + ũ2)µ̃0zz,

and the O(ε) term

∇xũ0∇xµ̃1 +∇xũ1∇xµ̃0 + (χ̂0ũ0zµ̃3z + (χ̂1ũ0zε
−1 + ũ1z)µ̃2z(3.8)

+(χ̂2ũ0zε
−2 + ũ2z)µ̃1z + (χ̂3ũ0zε

−3 + ũ3z)µ̃0z)+

+χ0(1 + ũ0)(∆xµ̃1 + κµ̃2z + µ̃3zz)

+((1 + ũ0)χ1ε
−1 + ũ1)(∆xµ̃0 + κµ̃0z + µ̃2zz)

+((1 + ũ0)χ2ε
−2 + ũ2)(κµ̃0z + µ̃1zz) + ((1 + ũ0)χ3ε

−3 + ũ3)µ̃0zz.

We start with a nontrivial timescale in this section.

3.1. The timescale t = O(1): A one-sided time-fractional Stefan prob-
lem.

3.1.1. Outer expansion. Similar to (2.28), it yields

∂α
t u0 = ∇((1 + u0)∇µ0), ∂α

t u1 = ∇((1 + u0)∇µ1 + u1∇µ0).(3.9)

3.1.2. Inner expansion. In the same way as (2.29a)–(2.29b), the O(ε−2) equa-
tion is

0 = χ̂0ũ0zµ̃0z + χ0(1 + ũ0)µ̃0zz.(3.10)

We rewrite (3.10) in the following form:

(3.11) χ0∂z((1 + ũ0)µ̃0z) + χ̂0(1 + ũ0)µ̃0zz = 0.

That is, for z ∈ (−η, η̂),

µ̃0zz(1 + ũ0) + µ̃0zũ0z = ∂z(µ̃0z(1 + ũ0)) = 0,(3.12)

which implies µ̃0z(1 + ũ0) = c1 in (−η, η̂) and c1 is a constant independent of z. For
z in [η̂,+∞), we have

(3.13) µ̃0zz(1 + ũ0) = 0.

In this case, µ̃0 = a1z + b1. Here a1 and b1 are some functions independent of
z. However, we claim a1 = 0 since µ̃0 must be bounded. This leads to µ̃0 = b1.
Moreover, recall that

(3.14) µ̃0 = F ′(ũ0)− ∂zzũ0, ũ0|x=±∞ = ±1.
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784 T. TANG, B. WANG, AND J. YANG

We take the profile

(3.15) ũ0 = tanh(z/
√
2), µ̃0 = 0, ∀z ∈ [η̂,+∞).

By the smooth continuity of µ̃0 at η̂, we have c1 = 0 and µ̃0 = 0 in (−η,+∞).
Now we consider the governing function of the front. The time-fractional deriva-

tive in this scaling is

∂α
t u(x, t) = ∂α

t

(
(ũ0 + εũ1 + · · · )(ϕ(x, t)/ε, x, t)

)(3.16)

=
1

Γ(1− α)

∫ t

0

ε−1∂τϕ(x, τ)∂zũ0(ϕ(x, τ)/ε, x, τ) + (∂τ ũ0(z, x, τ)|z=ϕ(x,τ)/ε)

(t− τ)α
dτ

+
1

Γ(1− α)

∫ t

0

∂τϕ(x, τ)∂zũ1(ϕ(x, τ)/ε, x, τ) + ε∂τ ũ1(z, x, τ)|z=ϕ(x,τ)/ε

(t− τ)α
dτ + · · · .

Matching the O(1/ε) terms in (3.16) together with (3.4) yields the equation

1

Γ(1− α)

∫ t

0

∂τϕ(x, τ)∂zũ0(ϕ(x, τ)/ε)χ0

(t− τ)α
dτ(3.17)

=(ũ0zχ̂1ε
−1 + ũ1z)µ̃0z + ũ0zχ̂0µ̃1z + χ0κ(1 + ũ0)µ̃0z

+ χ0(1 + ũ0)µ̃1zz + (ũ1 + χ1ũ0ε
−1)µ̃0zz

=χ0(1 + ũ0)µ̃1zz + χ̂0ũ0zµ̃1z

=χ0∂z((1 + ũ0)µ̃1z) + (χ̂0 − χ0)ũ0zµ̃1z,

which is simplified by using the former results (3.15). Integrating (3.17) over (−∞,∞),
we have

∂α
t1ϕũ0|η̂−η =(1 + ũ0)µ̃1z|+∞

−η − ũ0zµ̃1z|+∞
η̂ .(3.18)

Here −1 ≤ ũ0(−η) ≤ −1 + O(ε) and 1 − O(ε) ≤ ũ0(η̂) ≤ 1. In addition, since
µ̃+∞
1z = 0, we could derive

∂α
t ϕ(2 +O(ε)) = 2 lim

z→+∞
µ̃1z − (1 + ũ0)µ̃1z|−η + ũ0zµ̃1z|η̂ = 2 lim

z→+∞
µ̃1z +O(ε).

(3.19)

Therefore, using the matching conditions,

∂α
t ϕ(2 +O(ε)) = 2 lim

z→+∞
µ̃1z +O(ε) = 2∂mµ̃+

0 +O(ε).(3.20)

By letting ε → 0, we derive the sharp interface condition:

∂α
t ϕ = ∂mµ̃+

0 .(3.21)

Sharp interface model in t = O(1). Combining (3.9), (3.14), and (3.21), we
derive the following sharp interface model:

∂α
t u0 = ∇((1 + u0)∇µ0), µ0 = F ′(u0), in Ω/Γ,(3.22a)

u0 = ±1 on Γ±, µ0 = 0, on Γ,(3.22b)

I1−αV = ∂mµ+
0 on Γ.(3.22c)
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3.2. The timescale t1 = ε
1
α t: A one-sided time-fractional MS model.

3.2.1. Outer expansion. The same as (3.9), by asymptotic matching, it yields

0 = ∇((1 + u0)∇µ0),(3.23a)

∂α
t1u0 = ∇((1 + u0)∇µ1 + u1∇µ0),(3.23b)

∂α
t1u1 = ∇((1 + u0)∇µ2 + u1∇µ1 + u2∇µ0).(3.23c)

Here µ0, µ1, µ2 are the same as shown before. The first equation implies a equilibrium
state, so we take the following solution in the outer region:

(3.24) u0 =

{
+1 in Ω+,
−1 in Ω−.

3.2.2. Inner expansion. The same as (3.10), asymptotic matching leads to

0 =ũ0zµ̃0z + χ0(1 + ũ0)µ̃0zz,(3.25)

0 =(ũ0zχ̂1ε
−1 + ũ1z)µ̃0z + ũ0zχ̂0µ̃1z + χ0κ(1 + ũ0)µ̃0z + χ0(1 + ũ0)µ̃1zz+

(ũ1 + χ1ũ0ε
−1)µ̃0zz.(3.26)

Now we solve (3.25)–(3.26) as follows. Equation (3.25) is

(3.27) χ0∂z((1 + ũ0)µ̃0z) + χ̂0(1 + ũ0)µ̃0zz = 0.

For z ∈ (−η, η̂), (3.27) is

µ̃0zz(1 + ũ0) + µ̃0zũ0z = ∂z(µ̃0z(1 + ũ0)) = 0,(3.28)

and, for z ∈ [η̂,+∞), it is

µ̃0zz(1 + ũ0) = 0.(3.29)

As in section 3.1, (3.28)–(3.29) can be solved by the exact function

ũ0 = tanh(z/
√
2), µ̃0 = 0.(3.30)

Next, we intend to determine ũ1 and µ̃1. Using (3.30), (3.26) is simplified into

χ0(1 + ũ0)µ̃1zz + χ̂0ũ0zµ̃1z = 0,(3.31)

which implies that µ̃1 = c2 for z ∈ (η̂,+∞). We assume that µ̃1 = c2 for all z. Here
c2 is some constant independent of z. Recall that

(3.32) µ̃1 = −ũ1zz − κũ0z + F ′′(ũ0)ũ1.

Noticing that F ′′(u0)u
′
0 − ∂zzu

′
0 = 0, multiplying (3.32) by u′

0, and integrating the
resulting one over (−∞,+∞), we have

(3.33) µ̃1 = c2 = −κ
S

[U ]
,

where S =
∫ +∞
−∞ ũ′

0(z)
2dz and [U ] = ũ0|+∞

−∞.
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786 T. TANG, B. WANG, AND J. YANG

As for ũ1, we use the idea which was presented in [11]. We find that ũ1 =
κΦ0 + αũ′

0, where Φ0 satisfies

−Φ0zz + F ′′(ũ0)Φ0 = ũ0z −
S

[U ]
.(3.34)

We impose ũ1(0) = 0 to center the function. Thus, it is determined that

ũ1 = κΦ = κ(Φ0 −
Φ0(0)

ũ′
0(0)

ũ′
0),(3.35)

where Φ(±∞) = − S
[U ]F ′′(±1) .

Now we derive the equation of the front line. Matching with respect to series of
ε, we get

1

Γ(1− α)

∫ t1

0

∂τϕ(x, τ)∂zũ0(ϕ(x, τ)/ε)χ0

(t1 − τ)α
dτ(3.36)

=∇xũ0∇xµ̃0 + ((χ̂0ũ0zε
−1 + ũ1z)µ̃1z + χ̂0ũ0zµ̃2z + (χ̂2ũ0ε

−2 + ũ2z)µ̃0z)

+ χ0(1 + ũ0)(∆xµ̃0 + κµ̃1z + µ̃2zz)(ε
−1(1 + ũ0)χ1 + ũ1)(κµ̃0z + µ̃1zz)+

+ (ε−2(1 + ũ0)χ2 + ũ2)µ̃0zz,

which yields, by using the known functions ũ0, µ̃0, ũ1, µ̃1, that

1

Γ(1− α)

∫ t1

0

ε−1∂τϕ(x, τ)∂zũ0(ϕ(x, τ)/ε)χ0

(t1 − τ)α
dτ = χ̂0ũ0zµ̃2z + χ0(1 + ũ0)µ̃2zz,

(3.37)

which gives, by integrating in(−∞,∞) and using the matching condition, that

∂α
t1ϕ = lim

z→+∞
µ̃2z = ∂mµ+

1 .(3.38)

Sharp interface model in t1 = ε
1
α t. It follows from (3.23b), (3.33), and (3.38)

that the sharp interface model in this timescale is

∂α
t1u0 = ∆µ1 in Ω+,(3.39a)

µ1 = −κ
S

2
on Γ,(3.39b)

I1−αV = ∂mµ+
1 on Γ, .(3.39c)

u0 is the sign function of ϕ, and u0 = ±1 in Ω±. We call (3.39a)–(3.39c) the time-
fractional MS model. The front motion is governed only by the phase parameter
restricted in Ω+.

3.3. The timescale t2 = ε
2
α t.

3.3.1. Outer expansion. In this case, by asymptotic matching, it yields

0 = ∇((1 + u0)∇µ0),(3.40a)

0 = ∇((1 + u0)∇µ1 + u1∇µ0),(3.40b)

∂α
t2u0 = ∇((1 + u0)∇µ2 + u1∇µ1 + u2∇µ0).(3.40c)
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Let us solve (3.40a)–(3.40c). Equation (3.40a) implies an equilibrium state, so it is
reasonable to take static solutions in Ω+ and Ω−,

(3.41) u0 =

{
+1 in Ω+,
−1 in Ω−,

which yields, together with (3.40b)–(3.40c), that the governing equations of µ1 in
Ω−and µ2 in Ω+ are

∇(µ1∇µ1) = ∂α
t2u0 in Ω−,(3.42a)

∆µ1 = 0 in Ω+,(3.42b)

2∆µ2 +
1

2
∇(µ1∇µ1) = ∂α

t2u0 in Ω+.(3.42c)

Therefore, we take the solution that µ1 is a constant in Ω+.

3.3.2. Inner expansion. Similarly, asymptotic matching ε yields

0 =ũ0zµ̃0z + χ0(1 + ũ0)µ̃0zz,(3.43)

0 =(ũ0zχ̂1ε
−1 + ũ1z)µ̃0z + ũ0zχ̂0µ1z + χ0κ(1 + ũ0 )̃̃µ0z + χ0(1 + ũ0)µ̃1zz(3.44)

+ (ũ1 + χ1ũ0ε
−1)µ̃0zz,

0 =∇xũ0∇xµ̃0 + ((χ̂0ũ0zε
−1 + ũ1z)µ̃1z + χ̂0ũ0zµ̃2z + (χ̂2ũ0ε

−2 + ũ2z)µ̃0z)(3.45)

+ χ0(1 + ũ0)(∆xµ̃0 + κµ̃1z + µ̃2zz) + (ε−1(1 + ũ0)χ1 + ũ1)(κµ̃0z + µ̃1zz)

+ (ε−2(1 + ũ0)χ2 + ũ2)µ̃0zz,

and

1

Γ(1− α)

∫ t2

0

∂τϕ(x, τ)∂zũ0(ϕ(x, τ)/ε)χ0

(t2 − τ)α
dτ(3.46)

=∇xũ0∇xµ̃1 +∇xũ1∇xµ̃0 + (χ̂0ũ0zµ̃3z + (χ̂1ũ0zε
−1 + ũ1z)µ̃2z

+ (χ̂2ũ0zε
−2 + ũ2z)µ̃1z + (χ̂3ũ0zε

−3 + ũ3z)µ̃0z)

+ χ0(1 + ũ0)(∆xµ̃1 + κµ̃2z + µ̃3zz)

+ ((1 + ũ0)χ1ε
−1 + ũ1)(∆xµ̃0 + κµ̃0z + µ̃2zz)

+ ((1 + ũ0)χ2ε
−2 + ũ2)(κµ̃0z + µ̃1zz) + ((1 + ũ0)χ3ε

−3 + ũ3)µ̃0zz,

where the solutions of the first and the second equations, following the same treatment
as in former sections, derive

(3.47) ũ0 = tanh(z/
√
2), µ̃0 = 0, µ̃1 = κS/2, ũ1 = κΦ.

As for µ̃2, we simplify (3.45) by (3.47) to derive

0 = χ̂0ũ0zµ2z + χ0(1 + ũ0)µ̃2zz,(3.48)

which leads to µ̃2 = b2 in (−η,+∞), where b2 is a constant independent of z. Recall
that by asymptotic matching,

(3.49) µ2 = F ′′(ũ0)ũ2 − ũ2zz − κũ1z + F ′′′(ũ0)ũ
2
1/2.
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Multiplying (3.49) by ũ′
0 and integrating the resulting one over (−∞,+∞), we get

(3.50) µ̃2ũ0|+∞
−∞ = −κ2

∫ +∞

−∞
(Φ′ − 1

2
F ′′′(ũ0)Φ

2)u0zdz

in (η̂,+∞), which is

(3.51) µ̃2 = −κ2S1/2

if we let S1 = κ2
∫ +∞
−∞ (Φ′ − 1

2F
′′′(ũ0)Φ

2)u0zdz. Then, as in [11], we extrapolate a

little bit, and one may assume that µ̃2 = −κ2S1/2 in (−η, η̂).
Now we solve for ∂α

t ϕ. Using (3.47), we have

1

Γ(1− α)

∫ t2

0

∂τϕ(x, τ)∂zũ0(ϕ(x, τ)/ε)χ0

(t2 − τ)α
dτ(3.52)

=ũ1zµ̃2z + ũ1µ̃2zzχ0(1 + ũ0)µ̃3zz + χ̂0ũ0zµ̃3z

=χ0∂z((1 + ũ0)µ̃3z)− (χ0 − χ̂0)ũ0zµ̃3z + ∂z(ũ1µ̃2z),

which yields, by integrating over (−∞,+∞), that

∂α
t2ϕ(2 +O(ε))= lim

−η→−∞
((1+ũ0)µ̃3z)+2∂mµ+

2 + lim
−η→−∞

(ũ1µ̃2z)− lim
η̂→+∞

u0zµ̃3z+O(ε).

(3.53)

Using the matching conditions and letting ε → 0, we get

2∂α
t2ϕ = 2∂mµ+

2 + u−
1 ∂mµ−

1 ,(3.54)

which gives, by using µ1 = F ′′(u0)u1 = 2u1, that

∂α
t2ϕ = ∂mµ+

2 +
1

4
µ−
1 ∂mµ−

1 .(3.55)

Sharp interface model at t2 = ε
2
α t. Combining (3.42a) and (3.42c) with (3.47),

(3.51), and (3.55), we finally derive the sharp interface model in this timescale,

∇(µ1∇µ1) = ∂α
t2u0 in Ω−,(3.56a)

µ1 = −κ
S

[U ]
on Γ,(3.56b)

2∆µ2 = ∂α
t2u0 in Ω+,(3.56c)

µ2 = −κ2 S1

[U ]
on Γ,(3.56d)

I1−αV = ∂mµ+
2 +

1

4
µ−
1 ∂mµ−

1 on Γ,(3.56e)

where u0 is the sign function of ϕ, i.e., u0 = ±1 in Ω±.

4. Scaling invariant property and coarsening rate heuristic. In physics,
coarsening is a progcess when the pattern formed by the material “coarsens” and
during which the “typical length scale” of the system is increasing. For phase-field
models, since the energy of the system is proportional to the area of the interfacial
layer, energy decay would result in the reduction of the interface layer, and the pattern
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coarsens. Coarsening phenomena are also observed in numerical simulations of the
pattern formation governed by TFCHE. As many people believe, coarsening is due
to some “scaling invariant” property of the system, so the scaling invariant power
law of the sharp interface model coincides in the coarsening rate in the simulation of
[11, 22, 29].

Consider the nonlocal MS model with constant mobility in the t1 = ε
1
α t timescale.

It is scaling invariant in the following sense. Rescalen µ, x, t, and ϕ by

x = Xx̂, t = T t̂, µ = Mµ̂, ϕ(x, t) = Xϕ̂(x̂, t̂).

Direct calculation leads to

κ = X−1κ̂, ∂α
t ϕ = X/Tα∂α

t̂
ϕ̂, ∂mµ = X−2∂m̂µ̂,

and

M

X2
∆̂µ̂ =

1

Tα
∂α
t̂
û0 in Ω\Γ,(4.1a)

Mµ̂ =
1

X
κ̂

S

[U ]
on Γ,(4.1b)

X

Tα
∂α
t̂
ϕ̂ =

M

X
[∂m̂µ̂]+−[U ]−1 on Γ.(4.1c)

If taking M = X−1 and Tα = X3, the system has exactly the same form as (2.35a)–
(2.35d). This is the scaling invariance property and it shows that the typical length
scale l of this model satisfies an l ∼ ct

α
3 power law, which implies that the TFCHE

admits a coarsening rate of α
3 . This result fits the numerical experiments in [34, 38]

well.
In the second part of this section, we aim to use this idea to determine the

coarsening rate of the sharp interface models of the degenerate TFCHE. First, for the
sharp interface models in the t1 = ε

1
α t timescale,

∂α
t1u0 = ∆µ1 in Ω+,(4.2a)

µ1 = −κ
S

[U ]
on Γ,(4.2b)

I1−αV = ∂mµ+
1 on Γ,(4.2c)

by using the same rescaling as in (4.1c)–(4.1a),

x = λ
α
3 x̂, t1 = λt̂1, µ1 = λ−α

3 µ̂1, ϕ(x, t1) = λ
α
3 ϕ̂(x̂, t̂1),

we find that (4.2a)–(4.2c) preserves a α
3 coarsening rate, too.

On the other hand, for the sharp interface model (1.8a)–(1.8e) in the t2 = ε
2
α t

timescale,

∂α
t2u0 = ∇(µ1∇µ1) in Ω−,(4.3a)

µ1 = −κ
S

[U ]
on Γ,(4.3b)

∂α
t2u0 = 2∆µ2 in Ω+,(4.3c)

µ2 = −κ2 S1

[U ]
on Γ,(4.3d)

I1−αV = ∂mµ+
2 +

1

4
µ−
1 ∂mµ−

1 on Γ.(4.3e)
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Taking M1,M2, T,X to be the length scales of the chemical potentials, time, and
space, respectively, we rescale the above system (4.3a)–(4.3e) so that

1

Tα
∂α
t̂
u0 =

M2
1

X2
∇(µ̂1∇µ̂1) in Ω−,(4.4a)

M1µ̂1 = − 1

X
κ̂

S

[U ]
on Γ,(4.4b)

1

Tα
∂α
t̂
u0 = 2

M2

X2
∆̂µ̂2 in Ω+,(4.4c)

M2µ̂2 = − 1

X2
κ̂2 S1

[U ]
on Γ,(4.4d)

X

Tα
∂α
t̂
I1−αV̂ =

M2

X
∂mµ̂+

2 +
M2

1

X

1

4
µ̂−
1 ∂mµ̂−

1 on Γ.(4.4e)

The system is the same form as (1.8a)–(1.8e) if we take

Tα = X4, M1 =
1

X
, and M2 =

1

X2
.

It exhibits a power law relation l ∼ ct
α
4 . Moreover, this power law indicate a coars-

ening rate of α
4 .

5. Discussion and conclusions. We study the front motion and obtain the
corresponding sharp interface models of the TFCHE with two different kinds of dif-
fusion mobilities. We find that in both cases, the sharp interface limits are sensitive
to the timescale. For example, in a slow timescale ε

1
α t, the asymptotic limits are

fractional MS models, which are formally similar to classical MS models excepte for
the nonlocal term.

Moreover, powerlaw arguments show that the nonlocal fractional MS model of
TFCHE with constant mobility fits the α

3 coarsening rate obtained in existing numer-
ical experiments [38, 34]. Moreover, TFCHE with the one-sided degenerate mobility
contains two stages of different coarsening rates α

3 and α
4 . The results show that the

TFCHE could be used to model the coarsening process with a general coarsening rate.
We expect to extend similar arguments to the nonlocal-in-time phase-field equations,
in which the time fractional operator is replaced by a nonlocal-in-time operator [16].

In this paper, we only study the TFCH asymptotically. The convergence analysis
of TFCH to the sharp interface model is a challenging work due to the nonlocal effect
of the fractional operator and the low regularity of the solution. Another interesting
question is how to model the coarsening process with a rate greater than 1/3. Since
our analysis suggests that TFCHE with constant mobility admits a coarsening rate
α/3 and it contains two stages of different coarsening rates α

3 and α
4 for the one-sided

degenerate mobility, one possible way is to find proper mobilities.
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