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Abstract In this paper, a speed-up strategy for finite volume WENO schemes is devel-
oped for solving hyperbolic conservation laws. It adopts p-adaptive like reconstruction,
which automatically adjusts from fifth order WENO reconstruction to first order constant
reconstruction when nearly constant solutions are detected by the undivided differences.
The corresponding order of accuracy for the solutions is shown to be the same as obtained
by original WENO schemes. The strategy is implemented with both WENO and mapped
WENO schemes. Numerical examples in different space dimensions show that the strategy
can reduce the computational cost by 20–40%, especially for problems with large fraction
of constant regions.

Keywords Conservation law · Finite volume WENO method · Speed-up strategy ·
Multi-dimension

1 Introduction

The discontinuities in solutions of hyperbolic conservation laws often produce spurious os-
cillations in high-order accurate numerical schemes. Many strategies have been developed to
eliminate such oscillations. A popular one developed in 1980s was the limiter methods, most
of which satisfy the total variation diminishing (TVD) property for one-dimensional scalar
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conservation laws. Although TVD limiter methods can meet the need of many practical ap-
plications, they suffer from being only first order accurate near smooth extrema, thus are not
suitable for accuracy-demanding simulations like shock-turbulence interaction problems.

The essentially non-oscillatory (ENO) schemes as first introduced in [7] and later de-
veloped in [21, 23, 24] were designed to overcome the flaw of accuracy degeneration near
smooth extrema. The stencil-choosing technique is used to avoid cross-shock interpolation
so as to reduce spurious oscillations and at the same obtain more than second-order accuracy
near smooth extrema. Later, it was found that spending computational time in the dropped
stencils was a disadvantage of ENO schemes. Weighted essentially non-oscillatory (WENO)
schemes were then developed in [15] and [12]. In a WENO scheme, all candidate stencils
are utilized by a convex combination, resulting in (2r −1)-th order accuracy rather than r-th
order accuracy as in the ENO scheme which uses only one of the several candidate stencils.
Also, the smoothness indicators are used to allocate a weight to a candidate stencil, and this
achieves stencil-choosing task automatically.

Because of its robustness and adaptivity, the WENO scheme drew much attention soon
after its introduction. WENO schemes are nowadays widely used for solving conservation
laws as well as other non-linear equations such as Hamilton-Jacobi equations [10, 11, 29],
and great efforts were undertaken to make the schemes more applicable. In [9, 27, 31], some
reconstruction procedures on unstructured meshes were developed, extending the schemes
to applications in more complicated domains. In [20], a splitting technique was introduced
to resolve the instability caused by negative weights. In [5, 19, 32], some strategies on com-
bination of WENO and compact schemes were suggested to increase the wave resolution ca-
pability. Other developments include reducing dispersion errors and relaxing CFL condition
[1], adopting Hermite polynomials as building blocks [16, 17], designing new smoothness
indicator [30], etc. See [4] for a review of recent progresses on WENO schemes.

In 2005, a more accurate analysis of the fifth order WENO scheme was given in [8],
showing probable accuracy degeneration in critical points of solutions. A correction to this
flaw by a transform with regard to the non-linear weights led to the mapped WENO (here-
after WENOM) scheme. In this new version of WENO scheme and subsequent work in [3],
the uniformly high-order accuracy was rigorously proved for smooth solutions. However,
additional transforms are needed in computing the smoothness indicators.

In spite of great improvement made, the disadvantage of high computational cost for
finite volume type WENO schemes remains intact, and the situation becomes even worse
for late WENO versions like the WENOM scheme. In this paper, we aim at decreasing
computational cost of finite volume WENO schemes. We developed a p-adaptive like strat-
egy. For sufficiently smooth and nearly constant solutions, it is sufficient to use a constant
reconstruction instead of a full WENO reconstruction. We showed by a simple theoreti-
cal analysis that the constant reconstruction can keep the same order of accuracy as the
original WENO reconstruction. Since in many cases the region with nearly constant solu-
tions will occupy a significant fraction of the whole domain, the constant reconstruction
can save a lot of computational cost. Several numerical examples for scalar conservation
laws and the Euler equations are given to demonstrate the effectiveness of the proposed
strategy.

This paper is organized as follows. Section 2 briefly describes the general finite vol-
ume method to solve hyperbolic conservation laws. In Sect. 3, the finite volume WENO and
WENOM reconstruction procedures are stated. In Sect. 4, the p-adaptive like strategy is pre-
sented in detail. Numerical examples are shown in Sect. 5 to verify the accuracy preserving
property and the computational efficiency.
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2 Finite Volume Method for Hyperbolic Conservation Laws

2.1 General Framework

A general system of hyperbolic conservation laws

∂u
∂t

+
d∑

i=1

∂Fi (u)

∂xi

= 0 (2.1)

is considered where d is the space dimension, u is the solution vector, and Fi is the flux
vector in the i-th direction. For completeness, we will give a brief description of the general
finite volume framework. For detail, [2] and [13] are recommended. Let the computational
domain, � ∈ R

d , be tessellated into non-overlapping control volumes which cover the whole
solution domain, that is

⋃

j∈J

T j = �, (2.2)

Tj ∩ Ti = φ, ∀i, j ∈ J , (2.3)

where J is the set of index. The cell average of the solution vector is defined as

uj = 1

|Tj |
∫

Tj

udx. (2.4)

According to the integral form of equation (2.1)
∫

Tj

ut dx +
∮

∂Tj

�f · d �n = 0, (2.5)

and the Gauss quadrature rule, the following semi-discrete equation with regard to cell av-
erages is obtained,

duj

dt
+ 1∣∣Tj

∣∣
∑

e∈∂Tj

∑

s∈Ge

αsgjk

(
us

j ,us
k

)= 0, (2.6)

where |Tj | is the volume (or area) of cell Tj , e is an edge of ∂Tj , �n is the unit outward
normal vector to e, Ge is the collection of Gauss points on edge e, αs is the weight of Gauss
quadrature, us

j is the limit value of the reconstructed uj (x) as x approaches a Gauss point
s, k is the index of the opposite cell which shares the same boundary with cell j , and the
numerical flux function gjk is required to satisfy

gjk(u,v) = −gkj (v,u),

gjk(u,u) =�f(u) · �n,
(2.7)

for conservation and consistency.

2.2 Flux Function g(u,v)

In this paper, two kinds of flux functions are used. One is the local Lax-Friedrichs flux, i.e.

g(u,v) = 1

2

[�f(u) · �n +�f(v) · �n − max{α(u), α(v)}(v − u)
]
,
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where α(u) is the largest magnitude of eigenvalues of the Jacobian ∂�f
∂u (u) · �n. The other one

is the HLLC flux especially designed for the Euler equations for which Refs. [25, 26] are
good references for detailed description. These two approximate Riemann solvers are used
to test the robustness of the speedup strategy.

2.3 Time Discretization

The time discretization used in this paper is the 3rd-order TVD Runge-Kutta method [23],
i.e.

u(1) = un + �tL(un, tn) , (2.8)

u(2) = 3

4
un + 1

4
u(1) + 1

4
�tL

(
u(1), tn + �t

)
, (2.9)

un+1 = 1

3
un + 2

3
u(2) + 2

3
�tL

(
u(2), tn + 1

2
�t

)
, (2.10)

where L denotes the spatial discretization operator, which may also depends on t for some
time-dependent problems or boundary conditions.

3 WENO and WENOM Reconstruction

We study reconstruction only on Cartesian grids in this paper. For general shaped meshes,
the reconstruction procedure is quite involved and is actually ongoing research topics, see
[9], [27] and [31] for good reference.

The main goal of reconstruction is to obtain point-wise values {us
j } at Gauss points from

cell averages {uj }. WENO and WENOM reconstructions are described in this section to
achieve this task. We present the reconstruction procedure only for a scalar function u be-
low. There are two approaches available for extending the scalar procedure to system of
conservation laws: component-wise and characteristic-wise. In component-wise approach,
one simply applies the procedure for the scalar function to each component of the vec-
tor function. In characteristic-wise approach, an additional characteristic transformation is
made before using the component-wise approach, and corresponding inverse transformation
is then used to change the variables from characteristic-wise ones back to component-wise
ones, which means that the WENO reconstruction procedure is used on characteristic vari-
ables instead of original variables. The transformation is based on the left and right eigen-
vector matrices of the Jacobian ∂�f

∂u (u) · �n with u being some average of uj and uj+1 at xj+ 1
2
.

In this paper, for the Euler equations, the characteristic-wise approach and the commonly
used Roe average [18] are used.

3.1 Polynomial Reconstruction

The principle to achieve high order accuracy for ENO or WENO schemes is the polynomial
reconstruction, which means a (k − 1)th order polynomial p(x) is constructed on a fixed
stencil {Tj1 , . . . , Tjk } to approximate a smooth function v(x), requiring that for each cell Tjl

on this stencil, the following conservative property is satisfied:

vjl = 1

�x

∫

Tjl

p(x)dx. (3.1)
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The objective of reconstruction is to get k-th order approximation to the scalar function
v(x), i.e.

p(x) = v(x) + O(�xk) for each Tjl . (3.2)

Unfortunately, whether this objective can be accomplished or not depends on the choice
of the stencil, which is a very complicated task for multidimensional general meshes (see [9]
for detail). However, on Cartesian grids, the task becomes simpler because the polynomial
reconstruction can be done in a dimension-by-dimension way. So only the one-dimensional
reconstruction is required. Notice that the value of p(x) is a linear combination of k cell
averages {vjl } on the stencil of {Tj1 , . . . , Tjk }.

3.2 One-Dimensional WENO Reconstruction

3.2.1 Weighted Reconstruction Based on Multi-stencils

In one-dimensional case, the final objective of the reconstruction is to obtain the left and
right limiting states on the grid interface of two adjacent cells j and j + 1, which means
that for each cell j , the reconstruction values at end points xj− 1

2
and xj+ 1

2
are required.

More generally, for later use in multi-dimensional case in Sect. 3.3, the reconstructed value
at any point x ∈ [xj− 1

2
, xj+ 1

2
] is required. For a r-th order accurate ENO reconstruction in

this interval, r different stencils can be chosen, which are

{{
Tj+l−r+1, . . . , Tj+l

} : l = 0, . . . , r − 1
}
. (3.3)

The union of these stencils constitutes a wider stencil allowing a (2r − 1)th order poly-
nomial reconstruction for u(x). The (2r − 1)th order WENO reconstruction is a weighted
combination of r ENO reconstructions on r different stencils, i.e.

ũW (x) =
r−1∑

l=0

ωl(x)ũl,L(x), (3.4)

where ũW (x) is the WENO reconstruction value, ũl,L(x) is the ENO reconstruction value on
stencil l, and ωl(x) is the nonlinear weight which depends on the smoothness of the solution.
The purpose of WENO reconstruction is to obtain high-order accuracy and essentially non-
oscillatory property.

3.2.2 Optimal Weights

For achieving highest order of accuracy, the weights ωl can be chosen to result in a (2r −1)th
order polynomial reconstruction, which are called optimal weights. The existence of these
weights can be proved by Taylor series expansion (see [6] for detail). However, depending
on the location of x ∈ [xj− 1

2
, xj+ 1

2
], the weights may be non-positive sometimes, resulting

in numerical instability. In [20], a splitting technique is introduced to resolve this problem
effectively. This technique is used in all numerical examples presented in Sect. 5, but we
will not discuss this technique in this paper due to limited space.

Tables of coefficients of the polynomial reconstruction on uniform meshes and the op-
timal weights were given in [6] for x = x+

j− 1
2

and x−
j+ 1

2
up to r = 9 for convenience of

programming.
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3.2.3 Non-linear Weights and Smooth Indicators

The stability is realized by giving the smoother stencil more weight, resulting in an ap-
proximation to ENO schemes, which use only the smoothest stencil. Assuming βl to be
the quantification of the smoothness of stencil l, which is called smoothness indicator, the
nonlinear weights are obtained by

ωl = αl∑r−1
s=0 αs

, l = 0, . . . , r − 1, (3.5)

αl = cl

(ε + βl)p
, l = 0, . . . , r − 1 (3.6)

where cl is the optimal weight. The relationship between the exponent p and the order r

was discussed in [6] , with the conclusion that for r ≤ 5, p = 2 is an appropriate choice, and
p = r is recommended otherwise.

The smooth indicator βl is computed as in [12]:

βl =
r−1∑

m=1

�x2m−1
∫ x

i+ 1
2

x
i− 1

2

(
∂mpl(x)

∂xm

)2

dx, (3.7)

where pl(x) is the ENO polynomial reconstruction on stencil l.

3.2.4 Mapped WENO Schemes

In [8], sufficient conditions to obtain uniform (2r − 1)th order are formulated as

ωl − cl = O(�xr), l = 0, . . . , r − 1, (3.8)

and mapped weights for the fifth order (r = 3) are given to satisfy such conditions. They are
computed by

ωl,M = αl,M∑r−1
s=0 αs,M

, (3.9)

αl,M = g(ωl, cl), (3.10)

g(a, b) = a(b + b2 − 3ab + a2)

b2 + a(1 − 2b)
. (3.11)

3.3 Multi-dimensional WENO Reconstruction

The WENO reconstruction on multi-dimensional Cartesian grids is much simpler than on
general grids [22]. The procedure for the three-dimensional reconstruction can be summa-
rized as follows.

Step 1 Follow the 1D reconstruction procedure described in Sect. 3.2 in i direction to obtain
face averages {ui+ 1

2 ,j,k} from cell averages {ui,j,k}.
Step 2 Follow the same 1D procedure in j direction to obtain line averages {ui+ 1

2 ,gs
j
,k} from

face averages {ui+ 1
2 ,j,k}, where gs

j is the y coordinate of Gauss quadrature point.
Step 3 Follow the same 1D procedure in k direction to obtain point values {ui+ 1

2 ,gs
j
,gt

k
} from

line averages {ui+ 1
2 ,gs

j
,k}, where gt

k is the z coordinate of Gauss quadrature point.
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Fig. 1 Gauss points on a
three-dimensional Cartesian grid

Step 4 Repeat previous steps 1–3 in directions j and k to obtain {ug
q
i
,j+ 1

2 ,gt
k
} and

{ug
q
i
,gs

j
,k+ 1

2
}, respectively, where g

q

i is the x coordinate of Gauss quadrature point in i

direction.

Notice that {ui+ 1
2 ,gs

j
,gt

k
}, {ug

q
i
,j+ 1

2 ,gt
k
} and {ug

q
i
,gs

j
,k+ 1

2
} include all Gauss points at all bound-

aries of every Cartesian grid, as illustrated in Fig. 1.

4 Speed Up Strategy on WENO Schemes

In many applications, solutions are almost uniform in large portions of the computational
domain, especially at the beginning of computation. So the computational cost associated
with using full WENO reconstruction in these regions is superfluous. Some simplifications
are proposed as following.

Our speed up strategy can be stated as follows. For (2r−1)th order WENO reconstruction
of variable u at any point x in cell Tj := [xj− 1

2
, xj+ 1

2
], compute the undivided difference

dk := |uk − uj |, for k = j − r + 1, . . . , j + r − 1. (4.1)

If

dk < K�x2r−1, for k = j − r + 1, . . . , j + r − 1, (4.2)

holds (where K = O(1) is a problem-dependent constant), then simply set the WENO re-
construction ũW (x) in (3.4) to uj , otherwise, do a conventional WENO reconstruction as
before.

The following proposition guarantees the original (2r − 1)-order accuracy of the WENO
scheme for smooth functions.

Proposition 1 Assuming u is smooth enough and the condition (4.2) is satisfied, then the
following relation

ũ(x) = uj + O(�x2r−1), (4.3)

is true, where ũ(x) denotes the (2r − 1)th order polynomial reconstruction for u(x) in the
interval [xj− 1

2
, xj+ 1

2
].
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Proof First let

c0 = xj− 1
2
,

c1 = xj+ 1
2
,

ci+2 = xj− 3
2 −i , for 0 ≤ i ≤ r − 2,

ci+r+1 = xj+ 3
2 +i , for 0 ≤ i ≤ r − 2,

for ease of presentation. Consider the primitive function U of u as

U(x) =
∫ x

−∞
u(y)dy. (4.4)

The polynomial reconstruction for u on 2r −1 cells is equivalent to the Newton interpolation
for primitive function U on 2r end points due to u(x) = U ′(x) [22]. Let Ũ denote the
Newton interpolation polynomial for U , then Ũ can be written as the divided-difference
form:

Ũ (x) = U(xj−r+ 1
2
) +

2r−1∑

i=1

V [c0, . . . , ci]
i−1∏

k=0

(x − ck)

+ R(x)

2r−1∏

k=0

(x − ck), (4.5)

where the third term is the O(�x2r ) error term for the Newton interpolation and the recursive
definition of the divided-difference is

V [a1, a2, . . . , an] = V [a2, . . . , an] − V [a1, . . . , an−1]
an − a1

. (4.6)

Notice that condition (4.2) implies

V [c0, . . . , ci] = O(�x2r−i ), ∀i ≥ 2 (4.7)

in accordance with (4.4) and (4.6). Differentiating (4.5) yields to

ũ(x) =
2r−1∑

i=1

V [c0, . . . , ci]
[

i−1∏

k=0

(x − ck)

]

x

+
[
R(x)

2r−1∏

k=0

(x − xj−r+ 1
2 +k)

]

x

, (4.8)

and from (4.7), each i ≥ 2 term has a quantity of O(�x2r−i ) × O(�xi−1) = O(�x2r−1),
thus the equation

ũ(x) = V [xj− 1
2
, xj+ 1

2
]
(
x − xj− 1

2

)

x
+ O(�x2r−1)

= uj + O(�x2r−1), (4.9)

is obtained. �
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The free non-negative parameter K in (4.2) will depend on the spatial derivatives of the
solution. However, present study shows that neither the numerical solution nor the required
computational time is sensitive to this parameter. The numerical test in Sect. 5.1 will verify
this point.

5 Numerical Examples

5.1 Accuracy Test

Two equations are considered in accuracy tests. The first one is the scalar linear equation:

∂u

∂t
+ 2

∂u

∂x
= 0, (5.1)

u(x,0) = e−x2
sin(x). (5.2)

The initial condition is illustrated in Fig. 2. The accuracy and computational time at t = 1
are listed in Tables 1 and 2, where SWENO and SWENOM denote the speed-up WENO and
WENOM schemes, respectively, and K = 0.5 is used.

It can be seen from Table 1 that the accuracy of the WENO and SWENO schemes is
degenerated. Notice that the derivatives of function f (x) = e−x2

sinx are listed as

f ′(x) = e−x2
[−2x sinx + cosx] , (5.3)

f ′′(x) = e−x2 [
(4x2 − 3) sinx − 4x cosx

]
, (5.4)

f ′′′(x) = e−x2 [
(−8x3 + 18x) sinx + 4x cosx

]
, (5.5)

Fig. 2 Initial conditions for the accuracy test of the scalar linear equation

Table 1 L∞ error and order of
accuracy for the accuracy test of
the scalar linear equation

Grids 200 400 800

WENO L∞ error 1.3754e–03 9.2553e–05 6.9870e–06

order 3.89 3.73

SWENO L∞ error 1.3754e–03 9.2553e–05 6.9870e–06

order 3.89 3.73

WENOM L∞ error 1.5206e–04 3.7115e–06 1.0395e–07

order 5.36 5.16

SWENOM L∞ error 1.5206e–04 3.7115e–06 1.0395e–07

order 5.36 5.16
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Table 2 Computational time
(seconds) and efficiency for the
accuracy test of the scalar linear
equation

Grids WENO SWENO Time WENOM SWENOM Time

ratio ratio

200 0.167 0.136 81.4% 0.175 0.148 84.6%

400 0.850 0.674 79.3% 0.938 0.697 74.3%

800 5.457 3.953 72.4% 5.813 4.238 72.9%

Table 3 Relationship between
errors and the parameter K K Error

1.0E–24 1.03947e–07

1 1.03947e–07

5 1.03947e–07

10 1.03947e–07

12 1.14143e–07

15 1.50095e–07

Fig. 3 Relationship between
time cost and the parameter K

which means many critical points with f ′ = 0 and f ′′′ 
= 0. This is in agreement with the
conclusion in [8], which states that the accuracy degenerates at such kind of points. The
speed-up strategy does not change the data at all. Nevertheless, it effectively reduces the
computational time by about 20% as seen from Table 2. Furthermore, it can reduce more
time on finer meshes.

It will also be worth to see the impact on speed-up effectiveness and accuracy by choosing
different values of K . The numerical tests on 800 grids verify that the errors do not change
in six significant decimals from K = 0 to K = 10, and increase only when K > 10, see
Table 3. Figure 3 shows the relationship between time cost and the value of K . It can be
seen that the time cost depends almost linearly on the log scale of K . This means that the
CPU time essentially does not change much for a large range of K . Therefore, it is safe
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Table 4 L∞ error and order of
accuracy for the accuracy test of
the Burger’s equation

Grids 200 400 600 800

WENOM L∞ error 2.485e–05 3.013e–06 3.376e–07 6.174e–08

order 3.04 5.40 5.91

SWENOM L∞ error 2.485e–05 3.013e–06 3.376e–07 6.174e–08

order 3.04 5.40 5.91

Table 5 Computational time
(seconds) and efficiency for the
accuracy test of the Burger’s
equation

Grids WENOM SWENOM Time ratio

200 0.071 0.059 83.1%

400 0.235 0.178 75.7%

600 0.629 0.464 73.8%

800 1.291 0.975 75.5%

to say that both computational cost and numerical results are almost the same within a large
range of K .

Secondly, the Burger’s equation is considered, i.e.

∂u

∂t
+ ∂

∂x

(
1

2
u2

)
= 0, (5.6)

where the initial condition is the mollifier function, i.e.

η(x) :=
{

e
1

x2−1 if |x| < 1,

0 if |x| ≥ 1,
(5.7)

and computational domain is set to [−4,4]. The computation is conducted until t = 0.2 to
show the accuracy and computational time, which are listed in Table 4 and 5 respectively.
Only WENOM and SWENOM schemes with K = 1 are used in this case. Figure 4 illustrates
the numerical results at t = 1 and t = 2.

5.2 One-Dimensional Riemann Problem

Hereafter, the Euler equations are considered, and only the numerical results computed with
the SWENOM scheme are illustrated in the figures, for they are indistinguishable in these
figures from those computed with the original SWENOM scheme. First, consider the 1D
Euler equations

∂

∂t

⎛

⎝
ρ

ρu

ρE

⎞

⎠+ ∂

∂x

⎛

⎝
ρu

ρu2 + p

u(ρE + p)

⎞

⎠= 0, (5.8)

where

ρE = p

γ − 1
+ 1

2
ρu2, (5.9)

with specific ratio γ = 1.4. The initial conditions are Sod’s shock tube problem, i.e.
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Fig. 4 Solutions for the accuracy test of the Burger’s equation on 400 grids. Up left: t = 0; Up right: t = 1;
Down: t = 2

(ρ,u,p) =
{

(1,0,1) if x ≤ 0,

(0.125,0,0.1) if x > 0.
(5.10)

The computed density distribution by the SWENOM scheme is shown in Fig. 5, where
the red circles indicate the constant region decided by the speed-up strategy with K = 1.
and the computational costs are listed in Table 6. Again, the speedup strategy can reduce
computational time by 20–30%, and can reduce more on finer grids.

5.3 Two-Dimensional Riemann Problem

Next, consider the two-dimensional Euler equations:

∂U
∂t

+ ∂F1(U)

∂x
+ ∂F2(U)

∂y
= 0, (5.11)
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Fig. 5 Density-space profile at
t = 2 for Sod’s shock tube
problem with 100 grids, CFL=0.8
and local Lax-Friedrichs flux

Table 6 Computational time and
efficiency for the Sod’s shock
tube problem

Grids WENOM SWENOM Time ratio

200 0.464 0.347 74.8%

400 1.745 1.257 72.0%

800 6.759 4.865 72.0%

where

U =

⎛

⎜⎜⎝

ρ

ρu

ρv

ρE

⎞

⎟⎟⎠ , F1(U) =

⎛

⎜⎜⎝

ρu

ρu2 + p

ρuv

u(ρE + p)

⎞

⎟⎟⎠ , F2(U) =

⎛

⎜⎜⎝

ρv

ρuv

ρv2 + p

v(ρE + p)

⎞

⎟⎟⎠ , (5.12)

and

ρE = p

γ − 1
+ 1

2
ρ(u2 + v2). (5.13)

The initial conditions of the Riemann problem can be written as

(ρ,u, v,p) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(ρ1, u1, v1,p1), if x > 0.5 and y > 0.5,

(ρ2, u2, v2,p2), if x ≤ 0.5 and y > 0.5,

(ρ3, u3, v3,p3), if x ≤ 0.5 and y ≤ 0.5,

(ρ4, u4, v4,p4), if x > 0.5 and y ≤ 0.5.

(5.14)

Solutions of this problem depend only on configurations of the four phases. In [14], all
19 configurations are considered. However, in order to show just the speed-up efficiency,
only three configurations listed in Table 7 are computed in this paper, and corresponding
results are shown in Figs. 6, 7, and 8 with K = 10, where the areas with blue, red and
purple boundaries are detected as constant solution areas in x−, y− and both directions,
respectively.
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Table 7 Three configurations
for 2D Riemann problem Conf. Phase ρ u v p

1 1 1.1 0 0 1.1

2 0.5065 0.8939 0 0.35

3 1.1 0.8939 0.8939 1.1

4 1.1 0.8939 0.8939 1.1

2 1 0.5197 0.1 0.1 0.4

2 1 −0.6259 0.1 1

3 0.8 0.1 0.1 1

4 1 0.1 −0.6259 1

3 1 0.5313 0.1 0.1 0.4

2 1.0222 −0.6179 0.1 1

3 0.8 0.1 0.1 1

4 1 0.1 0.8276 1

Fig. 6 Density contours at
t = 0.25 for configuration 1 of
2D Riemann problem with
200 × 200 grids, CFL = 0.6, and
HLLC flux

The computational costs are tabulated in Table 8.
We can see from Figs. 6, 7, and 8 that configurations 1 and 3 have larger constant solution

regions, while configuration 2 has smaller constant solution regions. Therefore, the time
ratios of SWENOM to WENOM in Table 8 correctly reflect their dependence on the relative
sizes of the nearly constant solution domain to the whole domain [−0.5,0.5] × [−0.5,0.5].

5.4 Double Mach Reflection

This is a standard two-dimensional test problem on compressible gas dynamics. The detailed
description is given in [28]. The domain for computation is [0,4] × [0,1]. Initially a Mach
10 shock makes a 60◦ angle with x-axis, positioned at x = 1

6 , y = 0 and moving right. The
exact states of the shock’s two sides are

(ρl, ul, vl,pl) = (8,8.25 cos θ,−8.25 sin θ,116.5), (5.15)

(ρr , ur , vr ,pr) = (1.4,0,0,1), (5.16)
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Fig. 7 Density contours at
t = 0.25 for configuration 2 of
2D Riemann problem with
200 × 200 grids, CFL = 0.6, and
HLLC flux

Fig. 8 Density contours at
t = 0.2 for configuration 3 of 2D
Riemann problem with
200 × 200 grids, CFL = 0.6, and
HLLC flux

Table 8 Computing time of 2D
Riemann problem with
200 × 200 grids

Conf. WENOM SWENOM Time ratio

1 739.718 478.360 64.7%

2 513.681 396.443 77.2%

3 488.691 339.743 69.5%

with θ = 30◦. At the left and top boundary, the exact states of the moving shock are set. At
the bottom boundary, the exact post-shock state is set from x = 0 to x = 1

6 and the reflective
boundary condition is used for the rest part. The computed density contours are shown in
Fig. 9. The overall computational time is reduced by 33% with K = 0.5 for this problem.
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Fig. 9 Density contours at t = 0.2 for double Mach reflection, with 480 × 120 grids, Ma = 10, CFL = 0.6,
and local Lax-Friedrichs flux

Fig. 10 Density contours at
t = 0.4 for shock vortex
interaction, with 200 × 100 grids,
CFL = 0.6, and HLLC flux

5.5 Tow-Dimensional Shock Vortex Interaction

This example is often used to show the advantages of high-order methods. The computa-
tional domain is [0,2] × [0,1]. At position x = 0.5, a vertical stationary shock is set with
Mach number 1.1. A vortex is initialized at (xc, yc) = (0.25,0.5). The vortex is described as
a perturbation to the initial condition, written as

ũ = ετeα(1−τ2) sin θ, (5.17)

ṽ = −ετeα(1−τ2) cos θ, (5.18)

T̃ = − (γ − 1)ε2e2α(1−τ2)

4αγ
, (5.19)

S̃ = 0, (5.20)

where τ = r
rc

and r = √(x − xc)2 + (y − yc)2. Here T̃ is the perturbation to temperature

(T = p

ρ
) and S̃ is the perturbation to entropy (S = ln p

ργ ), see [22] for a detailed description.
The numerical results are illustrated in Fig. 10. We record 20.0% time is saved with K = 10
for this problem.

5.6 Explosion test in three space dimensions

Finally, a spherically symmetric problem is tested to show the speed-up efficiency in three
dimensions. The problem is described in detail in Chap. 17 of [25]. The three-dimensional
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Euler equations are written as

∂U
∂t

+ ∂F1(U)

∂x
+ ∂F2(U)

∂y
+ ∂F3(U)

∂z
= 0, (5.21)

where

U =

⎛

⎜⎜⎜⎜⎝

ρ

ρu

ρv

ρw

ρE

⎞

⎟⎟⎟⎟⎠
, F1(U) =

⎛

⎜⎜⎜⎜⎝

ρu

ρu2 + p

ρuv

ρuw

u(ρE + p)

⎞

⎟⎟⎟⎟⎠
,

(5.22)

F2(U) =

⎛

⎜⎜⎜⎜⎝

ρv

ρuv

ρv2 + p

ρvw

v(ρE + p)

⎞

⎟⎟⎟⎟⎠
, F3(U) =

⎛

⎜⎜⎜⎜⎝

ρw

ρuw

ρvw

ρw2 + p

w(ρE + p)

⎞

⎟⎟⎟⎟⎠
,

and

ρE = p

γ − 1
+ 1

2
ρ(u2 + v2 + w2). (5.23)

The solution domain is in the range of [−1,1]× [−1,1]× [−1,1], and the initial conditions
which consist of a spherical discontinuity are

(ρ,u, v,w,p) =
{

(1.0,0.0,0.0,0.0,1.0) if r ≤ 0.4,

(0.125,0.0,0.0,0.0,0.1) if r > 0.4,
(5.24)

where r = √x2 + y2 + z2, and 50 × 50 × 50 uniform grids are used. Computed density
and pressure distributions with the SWENOM scheme are illustrated in Figs. 11 and 12
respectively. 47% computational time is saved with K = 0.5. Thus we see the speed-up
effect is more evident in high spatial dimensions. However, this effect relies on the rela-
tive size of nearly constant solution region to the whole domain, which is problem depen-
dent.

6 Conclusions

In this paper, a p-adaptive type speedup strategy for the finite volume WENO scheme is
proposed. The reconstruction polynomial will adjust from the original WENO polynomial
to the cell average constant when nearly constant solution regions are detected by using un-
divided differences of cell averages. The strategy is implemented with both original WENO
and mapped WENO schemes. Both theoretical analysis and numerical tests demonstrate that
the desired order of accuracy is maintained as long as the nearly constant solution condition
is satisfied. The numerical results show the proposed strategy can reduce the computational
time of the WENO schemes by about 20–40%, and this effect can be more pronounced in
higher spatial dimensions.
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Fig. 11 Density contours at
t = 0.25 and z = 0 for explosion
test in 3D with 50 × 50 × 50
grids, CFL = 0.15, and local
Lax-Friedrichs flux

Fig. 12 Pressure contours at
t = 0.25 and z = 0 for explosion
test in 3D with 50 × 50 × 50
grids, CFL = 0.15, and local
Lax-Friedrichs flux
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