
Journal of Computational Physics 210 (2005) 325–341

www.elsevier.com/locate/jcp
A new parallel strategy for two-dimensional incompressible
flow simulations using pseudo-spectral methods

Z. Yin a, Li Yuan a, Tao Tang a,b,*

a LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Sciences,

Chinese Academy of Sciences, P.O. Box 2719, Beijing 100080, PR China
b Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, PR China

Received 3 November 2004; received in revised form 9 April 2005; accepted 18 April 2005

Available online 21 June 2005
Abstract

A novel parallel technique for Fourier–Galerkin pseudo-spectral methods with applications to two-dimensional

Navier–Stokes equations and inviscid Boussinesq approximation equations is presented. It takes advantage of the pro-

gramming structure of the phase-shift de-aliased scheme for pseudo-spectral codes, and combines the task-distribution

strategy [Z. Yin, H.J.H. Clercx, D.C. Montgomery, An easily implemented task-based parallel scheme for the Fourier

pseudo-spectral solver applied to 2D Navier–Stokes turbulence, Comput. Fluid 33 (2004) 509] and parallelized Fast

Fourier Transform scheme. The performances of the resulting MPI Fortran90 codes with the new procedure on SGI

3800 are reported. For fixed resolution of the same problem, the peak speed of the new scheme can be twice as fast

as the old parallel methods. The parallelized codes are used to solve some challenging numerical problems governed

by the Navier–Stokes equations and the Boussinesq equations. Two interesting physical problems, namely, the dou-

ble-valued x–w structure in two-dimensional decaying turbulence and the collapse of the bubble cap in the Boussinesq

simulation, are solved by using the proposed parallel algorithms.

� 2005 Elsevier Inc. All rights reserved.

Keywords: Parallel computing; Pseudo-spectral methods; Task distribution; Navier–Stokes equations; Boussinesq equations
1. Introduction

The pseudo-spectral method has been very popular in the research of highly accurate numerical

simulations since the pioneer work of Orszag and Patterson [2,3]. For smooth solutions, the conver-
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2005.04.010

* Corresponding author.

E-mail addresses: yinzh@lsec.cc.ac.cn (Z. Yin), lyuan@lsec.cc.ac.cn (L. Yuan), ttang@math.hkbu.edu.hk (T. Tang).

mailto:yinzh@lsec.cc.ac.cn
mailto:lyuan@lsec.cc.ac.cn
mailto:ttang@math.hkbu.edu.hk

326 Z. Yin et al. / Journal of Computational Physics 210 (2005) 325–341
gence order of the spectral methods is higher than any algebraic power of mesh size. For a com-

parable error on the uniform mesh, a much finer mesh is required for finite difference or finite ele-

ment methods. This is one of the reasons that the spectral method has been widely used in spite of

the prosperous development of adaptive grid methods. Some comprehensive overviews of the various

applications of spectral methods in fluid dynamics can be found in [4,5]. With the fast development
of supercomputers, more and more efforts have been devoted to parallelizing spectral methods. For

challenging simulation problems such as turbulence research, many new interesting phenomena are

discovered using large scale parallel computations (5123–40963) (e.g. see [6,7], and a review paper

[8]). The parallel schemes based on spectral methods have also been intensively investigated over

the last decade – mainly for three-dimensional (3D) problems [9–16]. The main computation time

for spectral methods is concentrated in the part of the Fast Fourier Transform (FFT). Under cer-

tain situations (especially in 3D simulations), it is possible to get high parallel efficiency by simply

using a good parallel FFT subroutine in the code. In the following, we will denote this parallel
FFT procedure as PFFT.

For 3D or higher dimensional FFT, the transpose-split method can provide very high parallel effi-

ciency. Most commonly used 3D parallel schemes employ this kind of parallel FFT [9–13]. Iovieno

et al. [14] combined the transpose-split method and de-aliased procedure in pseudo-spectral codes

together to yield high parallel efficiency. Based on the three time-evolution equations of the 3D

Navier–Stokes (NS) equations, Basu adopted a parallel scheme which can only be used on a

3-processor computer [15]. Ling et al. [16] try to parallel the 3D code by combining the 3-CPU method

and the PFFT scheme, and a comparison showed that the combined scheme is always slower than
PFFT.

In contrast to the world-wide efforts in 3D parallelization, rather limited efforts have been devoted to

parallelizing the two-dimensional simulations [17,1]. In the meantime, people have been using higher and

higher resolutions to investigate 2D turbulence: the resolutions adopted in [18] are 40962, and 81922 in

[19]. It is quite common to treat the 2D parallel spectral code as a simplified version of the 3D codes, which

are very efficient only in 3D cases (PFFT). As a result, the ratio of the communication time to the compu-

tation time in those 2D parallel codes is relatively large, and the parallel efficiency is much lower compared

with the corresponding 3D codes [1]. As can been seen later in this paper, for simulations with resolutions
of lower than 5122, the speedup of the PFFT scheme saturates when more than 32 processors are used on

SGI3800. The usage of more processors in those cases will only cause a lower speed and waste of computer

resources.

To minimize the relatively long communication time, Yin et al. [1] propose a parallel task-distribution

scheme (PTD) in the 2D pseudo-spectral NS code. Although this scheme is very easy to implement with a

good parallel efficiency, it has the limitation that the code can only use 2, 4, and 6 processors to do the cal-

culation. In this paper, we will parallel the 2D spectral codes by combining the PTD and PFFT schemes.

The new strategy overcomes the shortcomings of the former schemes and shows a significant improvement
in parallel efficiency. In the following, we will denote this combined strategy as PTF scheme (parallelization

through task distribution and FFT).

The paper is organized as follows. In Section 2, the PTF scheme is applied to solve the 2D NS equa-

tion; the benchmark of the parallel code on SGI 3800 is presented. We also show several long-term

numerical simulations with high resolutions, which reveal some interesting physical phenomena of 2D

decaying turbulence [20,21]. The adoption of the PTF scheme saves about 20–40% of cpu time in those

longtime runs (the largest number of time steps in those simulations is up to 1.6 · 106). In Section 3, the

new scheme is applied to solve the 2D inviscid Boussinesq equations. A challenging numerical problem,
which is studied previously in [22–24], is investigated with three kinds of resolutions (10242, 20482, and

40962). Some extended studies of the new scheme are presented in Section 4, and a summary of this work

is given finally.

Z. Yin et al. / Journal of Computational Physics 210 (2005) 325–341 327
2. Parallel 2D pseudo-spectral code for the NS equations

The study of the 2D turbulence distinguishes itself from the 3D turbulence due to its unique phenomena

such as inverse energy cascade and self-organization. In the past few decades, a particular kind of statistical

mechanics [25,26] has been widely adopted to study the 2D freely decaying turbulence (see [20] and refer-
ences therein).

As a powerful tool, direct numerical simulations (DNS) provide some useful theory check and inspire the

deeper thoughts of the statistical theory (e.g. see [20,21]). Those simulations normally need to last as long as

100–1000 eddy turnover times before final states of the 2D decaying turbulence are reached. This means

that the total calculations of this kind of 2D DNS, despite having a smaller array, are more or less the same

as those of some short-term 3D DNS. For example, 20 time steps of a 2D DNS with the resolution of 10242

will take roughly the same CPU time as one time step of a 3D DNS on a grid of 2563 on the same computer.

On the other hand, because the time-evolution loop is impossible to be parallelized, the parallel procedure
within one time step becomes essential to improve the performance of a 2D DNS code.

On modern supercomputers, the total CPU time involved in the 2D DNS is not as enormous as that of

the 3D DNS if the grid points are the same in each dimension. The peak performance of the parallel code,

which is indicated by the shortest wall clock time regardless of the number of CPUs used, becomes more

important in 2D DNS. As will be seen later in this paper, the significant improvement of the peak speed is a

big advantage of the PTF scheme.
2.1. The governing equations and pseudo-spectral methods

The 2D incompressible NS equations in term of vorticity and stream function are written as:
ox
ot

þ u � rx ¼ mDx; ð1Þ

Dw ¼ �x; ð2Þ

where u = (u,v) is the velocity, m the kinematic viscosity, vorticity x = (0,0,x) = $ · u, w stream function.

The stream function is related to velocity by u = ow/oy and v = �ow/ox. In the conservative form, Eq.

(1) becomes
ox
ot

þr � ðxuÞ ¼ mDx. ð3Þ
We adopted ABCN scheme to carry out the time integration, which discretizes the non-linear term $ Æ (xu)
with a 2nd order Adams–Bashforth scheme and the dissipation term mDx with the Crank–Nicolson scheme.

The particular time-stepping used is independent of the parallelization. More accurate schemes, such as 4th
order Runge–Kutta, could also be employed.

When Eqs. (2) and (3) are solved by pseudo-spectral methods, the Fourier coefficients of x are evaluated

at each time step. The non-linear term $ Æ (xu) is obtained by being transferred back and from the physical

space with FFTs; in the meantime, the de-aliasing procedure has to be adopted to remove all aliasing errors.

There are two kinds of de-aliasing techniques available: padding-truncation and phase-shifts [4]. The FFT

we used requires the dimension size to be the power of 2, which is faster than those FFTs that have prime

factors other than 2. The costs of two de-aliasing techniques are the same as those for our FFTs. Therefore,

we use the phase-shifts in this paper, which reserves more high wave numbers information than that for
padding-truncation.

Table 1 shows the ten FFTs needed to solve Eqs. (2) and (3) in each time step [27]. The expression with a

hat (e.g. û; dðUXÞ) is the spectral space value of the corresponding physical value without hat (u, (UX), etc.).

Table 1

Ten FFTs needed to be calculated in each time step of NS spectral solver

A B C D

1 û ! u v̂ ! v Û ! U V̂ ! V
2 x̂ ! x X̂ ! X
3 ux ! dðuxÞ vx ! dðvxÞ UX ! dðUX Þ V X ! dðVXÞ

328 Z. Yin et al. / Journal of Computational Physics 210 (2005) 325–341
The capital letters denote the phase-shift values of the corresponding lower case variables. For example, in
a simulation with M2 resolution
1 Th

twelve
Xj ¼
X
k

x̂ke
ik�ðxjþdÞ;
where j indicates the grid point, k is the wave number, x = (x,y), and d = (p/M,p/M). Each arrow in Table 1

indicated one 2D FFT, and the four FFTs in the third row should be calculated after the six FFTs in the

first two rows.

It is worth mentioning that the pseudo-spectral method needs to evaluate twelve FFTs for the non-
conservative form (Eqs. (1) and (2)),1 since the two FFTs in the 2nd row of Table 1 are replaced with four

FFTs to transfer dðox=oxÞ; dðox=oyÞ, and their phase-shift counterparts to physical space. (Of course, the

FFTs in the 3rd row need to be changed correspondingly although no more FFT is required.) Hence, it

is a natural choice to employ the conservative formulation when we use PFFT scheme to parallel the

2D NS code. In the following subsection, we will give a brief discussion for the PFFT scheme. And we will

also introduce some symbols and analyzing tools that will be used throughout the paper.

2.2. A brief discussion for the PFFT scheme

The PFFT scheme calculates the ten parallelized FFTs one after another according to the certain

sequence mentioned in the previous section. It is observed that the research on parallel FFT is a fast devel-

oped field (e.g. see [28–31], or a relatively complete review in [32]). It is difficult to rank the available FFTs,

since there are so many different versions of FFTs, different parallel schemes for the FFTs, and different

parallel computers to implement them. In this paper, we will not devote our efforts to parallel FFT (simply

use the most popular transpose-split [10,33]). Instead, we will try to find other methods to improve the par-

allel efficiency. Our parallel scheme will be even faster if a faster parallel FFT is adopted.

The total time (Tsum) for each processor is the sum of the computation time (Tcomp) and the communi-
cation time (Tcomm), and Tcomm consists of two parts – transmission time (Tsendrec) and latency time (Tdelay)
T sum ¼ T comp þ T comm ¼ T comp þ T sendrec þ T delay. ð4Þ

In the following, we make M2 represent the resolution of the simulation, p the total number of processors,

tsendrec the time to transmit a word between processors, tdelay the latency time for a message passing, and tc
the per-element computation time in a single processor times a factor (the factor is 5 in the case of full com-

plex FFT, and 5/2 for real-complex FFT) [4].

In the case of PFFT, the 2D NS equations need to calculate ten FFTs, which takes the major part of the

computations
e non-linear term in Eq. (1) and Fig. 3 of Yin et al. [1] is should be in conservative form ($ Æ (xu)), because ten FFTs instead of

FFTs were considered in [1].

Fig. 1.

on SG

Z. Yin et al. / Journal of Computational Physics 210 (2005) 325–341 329
T comp ¼
10tFFT

p
¼ 10

p
ðM2log2ðM2Þ tcÞ; ð5Þ
where tFFT is the time required by one processor to compute one FFT. For each FFT, one processor needs

to send (p � 1) blocks of data to other (p � 1) processors, and receives the same amount of data from all

other processors. The size of each block is M2/p2, so:
T sendrec ¼ 2� ðp � 1Þ �M2

p2
� tsendrec

� �
� 10; ð6Þ

T delay ¼ 2� ððp � 1Þ � tdelayÞ � 10. ð7Þ

Hence, according to our analytical model, the total time for one time step on one processor is:
T sum ¼ ð20p � 20ÞM
2

p2
tsendrec þ ð20p � 20Þtdelay þ

10

p
ðM2log2ðM2ÞtcÞ. ð8Þ
In fact, the values of tc is smaller for larger CPU numbers because of the cache effect, while tsendrec and tdelay
are almost constant for a given parallel computer. Here, we are only trying to give an estimated analysis

and treat tsendrec, tdelay, and tc as constants; accurate timing work will be the speedup plot resulting from

the wall clock time (see, e.g. Fig. 1; the similar approach is also adopted in [13]).

Formany parallel systems, tdelay is much larger than tsendrec (sometimes a factor of 1000 [34,35]). SoTdelay is
a non-trivial part of Tsum, especially when M2 is small. According to Eq. (8), if we use more processors

in the simulation, Tdelay will become larger while the rest part (Tsendrec + Tcomp) will be smaller. Eventually,

Tdelay will become the dominating part of Tsum, which affects the parallel efficiency of the PFFT scheme. In

the case of the 2D DNS, this phenomenon is seen in relatively small CPU numbers, because Tsendrec + Tcomp

is not very large. In the 3D DNS with high resolutions (5123 or higher), Tdelay will take a very small portion

in Tsum except for very large p. This is the main difference between the 2D and 3D problems.

Fig. 1 shows the speedup of PFFT on different resolutions on SGI3800 (tdelay . 5.6 · 10�6 s; tsendrec .
2.5 · 10�8 s). The speedup factor is the wall clock time of serial run divided by that of the parallel run
in the same resolution. For the resolution of 1282, the run with eight processors has the top speed. If

the CPU number is larger than eight, the speed of the code drops down, and the parallel code with 32

or 64 processors is even slower than the serial code. For resolutions of 2562 and 5122, 16 CPUs give the
10 20 30 40 50 60

10

20

30

40

50

60

Number of Processors

S
pe

ed
up

ideal speedup
128 x 128
256 x 256
512 x 512
1024 x 1024

The speedup of 2D Navier–Stokes code with PFFT scheme (or ‘‘1-n’’ scheme, see the discussion at the beginning of Section 2.3)

I3800.

330 Z. Yin et al. / Journal of Computational Physics 210 (2005) 325–341
best performance, while 32 and 64 CPUs will lead to worse performance than 16 CPUs. For 10242, the fast-

est run is the one with the maximum available CPUs. We can predict from the tendency of the curve (or Eq.

(8)) that the speedup will also drop down for the 10242 run with 128 or more processors.

One may notice that the super-linear speedup for runs with 10242 resolution: in the case of 16 CPUs, a

speedup of 21 is observed. The super-linear speedup is due to the so-called cache effect, which makes tc
smaller in parallel computing. The platform we choose here is SGI Origin 3800 with a relatively large cache

size (8 MB). The behavior of the cache memory is very hard to predict, because modern computer archi-

tectures have very complex internal organizations [36,37]. Therefore, we do not take the cache effect into

the consideration in the analyzing model.

To sum up, Tdelay takes a large portion in the total communication time (Tcomm) and seriously reduces

the parallel efficiency for larger CPU numbers in the PFFT scheme. The issue of minimizing Tdelay is the key

to enhance the parallel efficiency.
2.3. A new parallel strategy – PTF

As mentioned earlier, there are ten FFTs needed to be evaluated at each time step. In PTF scheme, they

can be divided into two, four, and six groups corresponding to the 2, 4, and 6 CPUs scheme in PTD [1]. In

the following, we will call these three PTF schemes as ‘‘2-n’’, ‘‘4-n’’, and ‘‘6-n’’ scheme, respectively. (We

also denote PFFT scheme as ‘‘1-n’’ scheme to unify notations). There are six FFTs in the 2-n scheme for

each group, while three FFTs in the 4-n scheme. Note that there are twelve FFTs in the 2-n and 4-n schemes

at each time step (there is only ten FFTs in serial and PFFT codes) because the two FFTs in the 2nd row of
Table 1 are calculated twice to reduce the total communication time. The 6-n scheme will not be discussed

in the rest of the paper, because we want to compare the parallel efficiency of the PTF scheme with the

PFFT (1-n) scheme, and the number of CPUs involved should be powers of 2.

For any type of PTF scheme, one group will be called ‘‘master group’’, on which the time integration and

data input and output (I/O) are carried out, and the other groups will be called ‘‘slave groups’’. When cal-

culating FFT, data are exchanged only within each group. When it is necessary to transfer information be-

tween groups, the first node in master group will and only will communicate with the first nodes in the slave

groups; likewise, the second nodes in different groups will communicate with each other, etc.
At the beginning of time loop, each node in the master group needs to send one block data (the size is M2

p=2

for 2-n scheme, and M2

p=4 for 4-n scheme) to the corresponding node in the slave group, and to receive the

same amount of data at the end of time loop. Following the same procedure in the previous section, we

can get the estimated cpu time of the PTF schemes:
2-n : T sum ¼ ð28p � 48ÞM
2

p2
tsendrec þ ð6p � 10Þtdelay þ

12

p
ðM2log2ðM2ÞtcÞ; ð9Þ

4-n : T sum ¼ ð40p � 96ÞM
2

p2
tsendrec þ

3

2
p � 2

� �
tdelay þ

12

p
ðM2log2ðM2ÞtcÞ. ð10Þ
As can be seen from Eqs. (8)–(10), Tcomp in the 1-n, 2-n, and 4-n schemes are roughly the same (20% dif-

ference at most) for fixed M and p; Tdelay in the 1-n scheme is about three times as large as that in the 2-n

scheme, and about 13 times as large as that in 4-n scheme. In the meanwhile, Tsendrec in the 2-n or 4-n

scheme is increased by relatively small factor (no more than 2) compared with 1-n scheme. Hence, Tdelay

in the 1-n scheme will occupy the largest partition of Tsum among the 1-n, 2-n, and 4-n schemes. However,

even in the 2-n and 4-n schemes, Tdelay still increases and the remaining parts of Tsum decrease for larger p;

the bottleneck effect in parallelization still exits.
Fig. 2(a) shows the speedup plot for the 2-n scheme. For the resolution of 1282, the peak speed appears

at 16 CPUs run (compared with 8 CPUs run for the 1-n scheme). For the resolution of 2562, the peak speed

10 20 30 40 50 60

10

20

30

40

50

60 (a)

Number of Processors

S
pe

ed
up

ideal speedup
128 x 128
256 x 256
512 x 512
1024 x 1024

10 20 30 40 50 60

10

20

30

40

50

60 (b)

Number of Processors

S
pe

ed
up

ideal speedup
128 x 128
256 x 256
512 x 512
1024 x 1024

10 20 30 40 50 60

10

20

30

40

50

60 (c)

Number of Processors

S
pe

ed
up

ideal speedup
128 x 128
256 x 256
512 x 512
1024 x 1024

Fig. 2. The speedup of 2D Navier–Stokes code on SGI3800 with ‘‘2-n’’ scheme (a), ‘‘4-n’’ scheme (b), and ‘‘ideal’’ scheme. The values

used in the ‘‘ideal’’ scheme are the top speedup among 1-n, 2-n, and 4-n schemes for the same resolutions and the same numbers of

processors.

Z. Yin et al. / Journal of Computational Physics 210 (2005) 325–341 331
appears at 32 CPUs run (compared with 16 CPUs run for 1-n scheme). For 5122 and 10242 in the 2-n

scheme, and all the resolutions in the 4-n scheme (Fig. 2(b)), 64 CPUs run is the fastest. Because two extra

FFTs are introduced and Tsendrec is slightly larger in 2-n and 4-n schemes, some runs in Fig. 2 are slower

than the corresponding 1-n ones for certain resolutions and p. For example, there is no super-linear speedup

observed for the 10242 curve in Fig. 2(b), although the 4-n scheme is twice as fast as the 1-n scheme when 64
processors are used.

In practice, the fastest scheme for fixed p and M2 is always what we want to use to do longtime simu-

lation. Fig. 2(c) is a combined figure which consists of the best performance point in Figs. 1 and 2(a) and

(b). Table 2 indicates the corresponding schemes adopted to draw this ‘‘best speedup’’ plot. It should be

emphasized that most points in the 10242 curve show super-linear speedup. The points when p 6 16 come

from the 1-n scheme, while the 2-n and 4-n schemes are faster for p P 32. For lower resolutions, the 1-n

scheme works the best for small p, and the 2-n or 4-n scheme dominates the points on the corresponding

curve in Fig. 2(c) gradually for larger p. On the first row of Table 2, which corresponds to the resolution of
1282, the 4-n scheme dominates for p P 4.

The situations of p = 2 in the 2-n scheme and p = 4 in the 4-n scheme correspond to the PTD scheme.

Although the benchmark results are slightly different from [1] due to different computers used, the conclu-

sion is the same: PTD is an easily implemented and efficient parallel scheme for the 2D DNS for relatively

small resolutions. The easy implementary property of PTD is inherited by PTF schemes: once the PFFT

code is ready, it is very easy to change it into PTF codes. Hence, PTF is an attractive strategy, especially

in 2D simulations.
Table 2

The corresponding schemes for the values in Fig. 2(c)

1 CPU 2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs 64 CPUs

1282 1-n 2-n 4-n 4-n 4-n 4-n 4-n

2562 1-n 1-n 4-n 2-n 4-n 4-n 4-n

5122 1-n 1-n 1-n 1-n 4-n 4-n 4-n

10242 1-n 1-n 1-n 1-n 1-n 2-n 4-n

332 Z. Yin et al. / Journal of Computational Physics 210 (2005) 325–341
2.4. Numerical results for 2D decaying turbulence

In this subsection, we will use our PTF codes to investigate an interesting phenomenon in 2D decaying

turbulence – the multi-valued x–w structure.

People used to treat the functional relation x = f(w) as an indication of the final state of 2D turbulence,
but the simulation shown in Figs. 18 and 19 of Yin et al. [20] gives a counter example: the double-valued x–
w structure (see Yin [21] for a detailed discussion about this kind of structure). We will seek some other

simulations to validate the generality of multi-valued structures, and there are mainly two choices to do

this: (1) make changes in the initial conditions; (2) test different values of m for certain kind of initial

condition.

The parallel code we used before (PTD scheme [1]) has a very limited speedup because the maximum

number of CPUs used is limited to six. Most simulations were carried out by changing the initial condition

for relatively small m with the resolution of 5122 [21], which normally lasted from several days to a few
weeks. For 10242 runs, the calculations for one time step are four times as large as those for 5122, and

the time step has to be smaller due to the CFL condition. A typical 2D decaying turbulence lasts from

two months to half a year if we only use PTD schemes. With the PTF codes, it is now possible to carry

out 10242 simulations to find the new double-valued x–w structure.

We carried out two simulations starting from four equal-sized vortices patches, which are asymmetri-

cally placed in a double periodic box (Fig. 3(a)). The first run adopted relatively low Reynolds number

(1/m = 4000) with the resolution of 5122. The time step is 0.0005. We used 32 CPUs in total (this is the

maximum nodes available for longtime simulations in LSEC). According to Table 2, the 4-n scheme is
the fastest approach under this situation. The simulation lasted for 17 h, and reached the quasi-steady state

at t � 200 with a simple function relation of x–w (Fig. 7(b) in [21]). The same run lasts for 29 h if we use the

PFFT scheme (32 CPUs), and 82 h for the PTD scheme (4 CPUs).

The second run adopted a large Reynolds number (1/m = 40,000) with the resolution of 10242. We used

the 2-n scheme code on 32 processors, and the quasi-steady state was reached at t � 800 after 16 days� cal-
culation. In the late state of this simulation, the orientation of the flow pattern (Fig. 3(b)) is totally different

from that obtained with the 5122 run. Moreover, the double-valued x–w structure is recovered (Fig. 3(c)),

which fits the definition of the final state of the 2D turbulence given in [21]. Hence, it seems that further
1 2 3 4 5 6

1

2

3

4

5

6

 (a) contours of ω at t=0

1 2 3 4 5 6

1

2

3

4

5

6

 (b) contours of ω at t = 800

1.5 1 0.5 0 0.5 1 1.5
1.5

1

0.5

0

0.5

1

1.5

ω

ψ

 (c) t = 800

Fig. 3. Constant vorticity contours of the initial (a) and final (b) state in a Navier–Stokes simulation. Dashed contours represent

positive vorticity and drawn contours represent negative vorticity. (c) is the x–w scatter plot in the final state (with a double-valued

structure).

Z. Yin et al. / Journal of Computational Physics 210 (2005) 325–341 333
computations do not lead to any new phenomenon. The same run lasts for 20 days if we use the PFFT

scheme (32 nodes), and about one year for the PTD scheme (4 nodes).

It is interesting to see the appearance of multi-valued x–w structures in high Reynolds number (40,000),

while relatively low Reynolds number (4000) results in traditional functional relation. Although the phys-

ical mechanism of the multi-valued structure is still unclear, our simulations reveal some limitations of the
statistical mechanics [21], and it is worthwhile to carry on further investigations in this direction. Of course,

the PTF scheme may play an important role in these longtime computations because of its high parallel

efficiency. With maximum 32 processors available for longtime simulation, the peak speed of PFT is only

about 70% faster than that of PFFT for the resolution of 5122, and 24% for 10242. However, for runs like

what are shown in Figs. 3, 24% shortage still means 4 days� calculation on 32 nodes, which is definitely non-

trivial.
3. Application of PTF scheme to 2D inviscid Boussinesq equations

It is very interesting to understand whether a finite time blow-up of the vorticity and temperature gra-

dient can occur from a smooth initial condition in 2D inviscid Boussinesq convection. This has been studied

recently by several groups, ending up with different conclusions: Pumir and Siggia [22] used the TVD

scheme with the adaptive meshes (the maximum grid size is 2562), which observed the blow-up process;

E and Shu [23] did not obtain the blow-up phenomena by using the ENO scheme on a 5122 grid and spec-

tral methods on a 15002 grid; Ceniceros and Hou [24] also obtained blow-up free solutions with the adap-
tive mesh computation on a 5122 grid. It is worth mentioning that the maximum mesh compression ratio in

[24] is 8.83, which gives an effective resolution of 46002 on uniform mesh. Although these groups yielded

different conclusions, they all tried to use the highest possible resolutions to investigate the problem. Hence,

parallel computing is a natural choice.

The non-dimensionized 2D inviscid Boussinesq convection equations can be written in x–w formulation:
qt þ u � rq ¼ 0; ð11Þ
xt þ u � rx ¼ �qx; ð12Þ
Dw ¼ �x. ð13Þ
Here, q is the density (we take the same denotation as [23] for an easy comparison) and the gravitational

constant is normalized to be g = (0,�1). Again, ABCN scheme is adopted to carry out the time integration.

Below we will discuss how to implement our parallel strategy for Eqs. (11)–(13). Numerical results on the
finite time blow-up will be reported.

3.1. The application of the new strategy to Boussinesq equations

As shown in Table 3, there are 20 FFTs involved when the Fourier–Galerkin spectral methods are used

to solve Eqs. (11)–(13). These FFTs can be divided into four independent groups, which are indicated by

the different columns in Table 3. There is no communication within the different columns until all FFTs are

finished. In each column, the 1st and the 2nd FFT need to be evaluated before the 4th one, while the 5th
FFT should be calculated after the 1st and 3rd one are finished.

When the PTF scheme is used to parallelize the code, there are five options to divide the groups without

too much extra data communication:

(1) 1-N scheme – one group; each FFT is computed by all the CPUs involved, i.e., PFFT scheme. (Here,

we use ‘‘N’’ instead of ‘‘n’’ to avoid conflicts with the parallel schemes for the NS equations).

Table 3

Twenty FFTs needed to be calculated in each time step of Boussinesq spectral solver

A B C D

1 û ! u Û ! U v̂ ! v V̂ ! V
2 x̂x ! xx X̂x ! Xx x̂y ! xy X̂y ! Xy

3 q̂x ! qx P̂ x ! Px q̂y ! qy P̂ y ! Py

4 uxx ! dðuxxÞ UXx ! dðUXxÞ vxy ! dðvxyÞ V Xy ! dðVXyÞ
5 uqx ! dðuqxÞ UPx ! dðUPxÞ vqy ! dðvqyÞ VPy ! dðVPyÞ

334 Z. Yin et al. / Journal of Computational Physics 210 (2005) 325–341
(2) 2-N scheme – two groups; column A & B in one group, and column C & D in the other group.

(3) 4-N scheme – four groups, which belongs to different columns in Table 3, respectively.

(4) 8-N scheme – eight groups (see column A–H of Table 4). Note that there are four extra FFTs intro-

duced to save the communication time: the first row of FFTs in Table 3 are calculated twice in the first

row of Table 4.

(5) 12-N scheme – twelve groups; the first three rows of FFTs in Table 3 are calculated simultaneously in

twelve groups. The results from the four groups calculating the first row of FFTs are transferred to

the eight groups computing the 2nd and 3rd row, respectively, and the rest eight FFTs in the 4th and
5th rows are performed in those eight groups. (Like the 6-n scheme in the NS solver, the 12-N scheme

will not be discussed here because the number of processors involved is not of the power of 2.)

Similar to Section 2, we can analyze the total computation time for different schemes:
Table

In 8-N

are fou

1

2

3

1

2

3

1-N : T sum ¼ ð40p � 40ÞM
2

p2
tsendrec þ ð40p � 40Þtdelay þ

20

p
ðM2log2ðM2ÞtcÞ; ð14Þ

2-N : T sum ¼ ð48p � 80ÞM
2

p2
tsendrec þ ð10p � 16Þtdelay þ

20

p
ðM2log2ðM2ÞtcÞ; ð15Þ

4-N : T sum ¼ ð72p � 160ÞM
2

p2
tsendrec þ

5

2
p � 2

� �
tdelay þ

20

p
ðM2log2ðM2ÞtcÞ; ð16Þ

8-N : T sum ¼ ð144p � 384ÞM
2

p2
tsendrec þ

3

4
p þ 6

� �
tdelay þ

24

p
ðM2log2ðM2ÞtcÞ. ð17Þ
For all the PTF discussed above (Eqs. (14)–(17)), it is clear that Tdelay will take larger portion of Tsum when

p becomes larger in those schemes. For fixed p, Tdelay will take smaller portion of Tsum when more groups
4

scheme, the total twenty-four FFTs in each time step of Boussinesq spectral solver are divided into eight groups (A-H). There

r FFTs introduced in addition to the twenty FFTs in Table 3

A B C D

û ! u Û ! U v̂ ! v V̂ ! V
x̂x ! xx X̂x ! Xx x̂y ! xy X̂y ! Xy

uxx ! dðuxxÞ UXx ! dðUXxÞ vxy ! dðvxyÞ V Xy ! dðVXyÞ

E F G H

û ! u Û ! U v̂ ! v V̂ ! V
q̂x ! qx P̂ x ! Px q̂y ! qy P̂ y ! Py

uqx ! dðuqxÞ UPx ! dðUPxÞ vqy ! dðvqyÞ VPy ! dðVPyÞ

Z. Yin et al. / Journal of Computational Physics 210 (2005) 325–341 335
are adopted in the PTF schemes (e.g. 4-N or 8-N scheme). Hence, the 4-N and 8-N schemes have some

advantage over the 1-N and 2-N schemes when p is large. Some further discussions for Eqs. (14)–(17) will

be continued in the following subsection together with the speedup plots (Fig. 4).

Like the 2D NS equations (Eqs. (2) and (3)), Eqs. (11) and (12) can also be written in the conservative

form:
qt þr � ðquÞ ¼ 0; ð18Þ
ðqxÞt þr � ðqxuÞ ¼ �1

2
ðq2Þx. ð19Þ
When the Fourier–Galerkin spectral methods are used to solve the equations above, Eq. (18) presents some

problems because the time evolution step is carried out in spectral space: to get the value of x̂ in the next

time step, dðqxÞ has to be transferred back to physical space so that the new value can be obtained by using

the relation x = (qx)/q. Furthermore, there is an extra non-linear term � 1
2
ðq2Þx in Eq. (19) which requires

one extra FFT. The total number of FFTs in conservative form is the same as non-conservative form.

Hence, unlike what we did for 2D NS equations in Section 2, the non-conservative equations are solved

here.
3.2. Benchmarks and comparisons

In this section, we will show the speedup plots of the Boussinesq equations on SGI3800. Unlike what we

did for the NS equations, we added a new resolution (642) to show the effectiveness of the new parallel

scheme in the low resolution. The maximum processors used here are 32, which makes the resulting speedup

plots (Figs. 4) more concise.

Fig. 4(a) shows the speedup plot for PFFT (or 1-N) scheme. The top speedup is obtained on 4 processors
for the 642 grid, while 8 and 16 processors reach the top speed for the resolutions of 1282 and 2562, respec-

tively. The speedup curves of 5122 and 10242 indicate reasonably good parallel efficiency of PFFT scheme.

The 5122 runs reveal super linear speedup for 2, 4, 8, and 16 nodes, which is due to the cache effect. The

10242 runs only have super linear speedup in the cases of 8 and 16 nodes. The speedups of 32-node run

for these two high resolutions are lower than 32 because Tdelay begins to dominate the total computation

time. We did not show the speedup plots for resolutions higher than 10242 because of the limit of the max-

imum local memory. However, since solving the equations with the highest possible resolution is the main

task of our research, we will discuss the parallel efficiency on those high resolutions (20482 and 40962) in
other ways later in the following section.

Fig. 4(b) shows the ‘‘best speedup’’ plot of PTF schemes. All the resolutions have their top speed in the

32 CPUs case. Moreover, almost all the points on the curves show super linear speedup for higher resolu-

tions (5122 and 10242). The peak speeds shown in Fig. 4(b) are increased by a factor of 27% (10242 reso-

lution) to 171% (642 resolution) compared to the PFFT scheme. The lower resolutions get a higher factor

because of the limitation of the total CPUs available. We can predict that the factor of 10242 resolution will

be larger than 27% if the maximum number of CPUs used is larger than 32.

Table 5 provides the corresponding schemes to the points in Fig. 4(b). PFFT (or, 1-N) scheme never
shows the best performance for resolutions of 642 and 1282 for p P 2 (For p = 1, 1-N is the only choice,

which is not necessary for comparison). For resolutions higher than 2562, the 1-N scheme reaches the peak

speed more frequently, especially for runs with fewer processors. As indicated in Table 5, the PTF schemes

with more groups (e.g. 4-N or 8-N scheme) have better speedup for lower resolutions and larger number of

CPUs, while the schemes divided into fewer groups (e.g. 1-N or 2-N scheme) work best for higher resolu-

tions and relatively smaller number of CPUs.

In the real programming efforts, we have found that it is more convenient to fix the size of each group

(instead of fixing p) because the size of main calculating arrays can be determined beforehand. The code will

5 10 15 20 25 30

5

10

15

20

25

30

35

(a)

Number of Processors

S
pe

ed
up

ideal speedup
 64 x 64
 128 x 128
 256 x 256
 512 x 512
1024 x 1024

5 10 15 20 25 30

5

10

15

20

25

30

35

(b)

Number of Processors
S

pe
ed

up

ideal speedup
 64 x 64
 128 x 128
 256 x 256
 512 x 512
1024 x 1024

Fig. 4. The performance on SGI3800: (a) the speedup of 2D Boussinesq code with PFFT scheme (or ‘‘1-N’’ scheme); (b) the speedup of

2D Boussinesq code with ‘‘ideal’’ scheme. The values used on (b) are the top speedup among 1-N, 2-N, 4-N, and 8-N schemes for the

same resolutions and the same numbers of processors.

Table 5

The corresponding schemes for the values in Fig. 4(b)

1 CPU 2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

642 1-N 2-N 2-N 8-N 8-N 8-N

1282 1-N 2-N 2-N 2-N 8-N 8-N

2562 1-N 1-N 1-N 2-N 2-N 8-N

5122 1-N 1-N 1-N 1-N 2-N 4-N

10242 1-N 2-N 2-N 1-N 1-N 2-N

336 Z. Yin et al. / Journal of Computational Physics 210 (2005) 325–341
get the number of groups (1, 2, 4, or 8) at the initial stage of real runs, and distribute the 20 FFTs into

different groups. Thus, the programming effort concerning the PFT scheme is trivial if the PFFT code is

already available.
Attention should be drawn to the performance of the 2-N scheme, which occupies eight of the total 30

places in Table 5. In the 10242 runs, the 2-N scheme is faster than the 1-N scheme on 2 and 4 nodes� sim-

ulations, which is counter to the conclusion we made in the above paragraph. Although most of the weird

speedup behaviors in parallel computing can be attributed to cache effect, this one presents some difficulties

because the more CPUs are used to calculate one FFT, the smaller tc will be (due to cache effect). To explain

this, we need to calculate the exact values of Tcomm for the 1-N and 2-N schemes in our analytical models

(Eqs. (14) and (15)):
For the 1-N scheme; T comm ¼ 10M2 � tsendrec þ 40� tdelay if p ¼ 2;

7.5M2 � tsendrec þ 120� tdelay if p ¼ 4.

(

For the 2-N scheme; T comm ¼ 4M2 � tsendrev þ 4� tdelay if p ¼ 2;

7M2 � tsendrev þ 24� tdelay if p ¼ 4.

(

It is clear that all parts of Tcomm in the 2-N scheme are smaller than the 1-N scheme in the case of p 6 4,

although Tsendrec of the 2-N scheme is larger than that of the 1-N scheme for p P 8. Again, we assume that

Z. Yin et al. / Journal of Computational Physics 210 (2005) 325–341 337
tc remains roughly the same for different schemes. The complete explanation has to take ‘‘cache effect’’ into

consideration.

3.3. Numerical results for the Boussinesq convection

In this section, we will show some numerical simulations calculated by our parallel codes. To avoid the

instability of the pseudo-spectral code [38], we adopted the same filter technique used in [23]. Also, we took

the similar initial condition in [23] for easy comparison with former results:
xðx; y; 0Þ ¼ 0; ð20Þ
qðx; y; 0Þ ¼ 50q1ðx; yÞq2ðx; yÞ½1� q1ðx; yÞ�; ð21Þ
where
q1ðx; yÞ ¼
exp 1� p2

p2�y2�ðx�pÞ2

� �
if y2 þ ðx� pÞ2 < p2;

0; otherwise;

(

q2ðx; yÞ ¼
exp 1� ð1.95pÞ2

ð1.95pÞ2�ðy�2pÞ2

� �
if jy � 2pj < 1.95p;

0; otherwise.

(

The initial cap-like contour of q will develop into a rising bubble during the evolution, with the edge of

the cap rolling up. At t. 3.16, the density and vorticity contours develop into the shape of ‘‘two eyes.’’ Fig.

5(a) and (b) shows the results with the resolution of 10242. For spectral methods with different resolutions

(e.g. 15002 run of [23]), some good agreements have been observed. Arguments arise when the computa-

tions are carried on. At t. 3.7, the smooth edge of the rolling eyes becomes unstable (see Fig. 5(c) and

(d)). Whether this phenomenon is physically real or not is still an open question. It was argued that this

collapse is due to the numerical effect [23,24].
As discussed above, the most straightforward way to investigate this problem is to increase the resolu-

tion of simulations. Therefore, we also adopted grids of 20482 and 40962 in the simulations. For the 10242

run, the time step used is 0.0008, which is determined by the CFL condition. It took the parallel 2-N scheme

20 h to reach t = 3.7 with 32 processors. It takes 25 h for PFFT schemes, and 28 days for the serial code.

For the 20482 run, the time step used is 0.0004. The speed of the 1-N scheme and the 2-N scheme with 32

nodes are very close (a difference of 2%). We use the 1-N scheme because it is slightly faster. The code lasted

for 13 days before it reached t = 3.7. For serial code, it may take one year provided the memory of the com-

puter is large enough. For the 40962 run, the time step used is 0.0002. The 1-N scheme is the only choice
because other schemes require larger computer memory: in principle, the memory sizes of the 2-N, 4-N, and

8-N schemes are 2, 4, and 8 times as large as that of the 1-N scheme. For this run, it is even a burdensome

job for the parallel computation with 32 processors, which may last for four months in total. We actually

use the interpolated data of the 20482 run at t = 3.4 as the initial condition. It is believed that the solution at

t = 3.4 is smooth. The code lasted for three weeks before it reached t = 3.7.

Fig. 5(e) and (f) shows contour plots of the 40962 run at t = 3.7, on which the collapse is observed in the

smooth edge. It is noticed that more rolling vortices are observed on the edge of the ‘‘eyes’’ in Fig. 5(e) than

those in Fig. 5(c). There are some trivial differences if we make a detailed comparison within these three
runs, but Fig. 5(e) and (f) clearly indicates that the collapsing process is not a non-physical phenomenon

from the numerical artifacts. If we started the 40962 run from t = 0 using Eqs. (20) and (21) to get the initial

data, the contour plots might be slightly different from what we obtained in Fig. 5(e) and (f). The main task

here is to determine the possibility of the collapse phenomenon, the potential small difference in the flow

pattern will not hurt the general conclusion. Some further details of the physical phenomenon will be dis-

cussed in another work. Here, we will try to focus our topic on the parallel solver.

1 2 3 4 5 6

1

2

3

4

5

6

(a) density contours at t=3.16

1 2 3 4 5 6

1

2

3

4

5

6

(c) density contours at t=3.7

1 2 3 4 5 6

1

2

3

4

5

6

(e) density contours at t=3.7

1 2 3 4 5 6

1

2

3

4

5

6

(b) vorticity contours at t=3.16

1 2 3 4 5 6

1

2

3

4

5

6

(d) vorticity contours at t=3.7

1 2 3 4 5 6

1

2

3

4

5

6

(f) vorticity contours at t=3.7

Fig. 5. (a)–(d) show the contour plots of density and vorticity in the resolution of 10242. (e) and (f) are the contour plots with the

resolution of 40962.

338 Z. Yin et al. / Journal of Computational Physics 210 (2005) 325–341
Unlike the simulations in Section 2, most computations (two of the three) in this section use the tradi-

tional PFFT scheme mainly due to the limitation of the maximum CPU number. If more processors are

available, the computer memory will present no problem to the PTF scheme. In this situation, the speed

of PTF will also be faster than PFFT.
4. Some extended studies of PTF

� The platform of our research above is on SGI Origin3800 which has a large cache (8 M) and pretty fast

interconnect (0.5 GB/s of data bandwidth). For those small cache and low interconnect computers, e.g.

PC cluster with 0.5 M cache and 100-baseT (0.1 GB/s of data bandwidth), it will be difficult to obtain

super-linear speedup. However, it is likely that PTF will have a greater advantage over PFFT because

Tcomm will have a larger fraction of Tsum on PC clusters than on SGI 3800.

� We use 64 processors to test our 2D Boussinesq code with the resolution of 40962 on Lenovo DeepComp

1800 (P4 Xeon 2 GHz – Myrinet; tdelay . 3.0 · 10�6 s; tsendrec . 1.3 · 10�8 s). The 2-N scheme is 80%

faster than PFFT, while 4-N is 20% slower than PFFT. This validates our prediction that PTF will con-
tinue to be fastest for large resolutions and large number of processors. It is worth mentioning that 40962

equals to 2563, which means PTF might be faster than PFFT for intermediate resolution of 3D simula-

tion on about 100 processors. This observation is different from the conclusion in [16].

Z. Yin et al. / Journal of Computational Physics 210 (2005) 325–341 339
From the speedup plots in lower resolutions (642–10242) of pseudo-spectral codes on DeepComp 1800,

we can draw roughly the same conclusions as those in Section 2.3 and 3.2, which will not be discussed

here to make the paper concise.

� PTF is especially suitable to deal with low resolutions with longtime evolution. The 10242 run in Section

2 lasts for 1.6 · 106 time steps. We are merely dealing with the pseudo-spectral method based on Fourier
transform with uniform grid in this paper. In simulations of a Chebyshev expansion with non-uniform

grid [39], time steps have to be very small to meet the CFL condition on smallest grid. For example, for a

2562 resolution run with non-uniform grid in a most recently published paper [40], the time step is

2.0 · 10�4, which is the same value as our 40962 run in this paper. As a result, the 2562 simulation in

[40] lasted for 5 · 106 time steps, and the traditional PFFT scheme will not have a good parallel effi-

ciency. As a first try, we parallelized the code of Clercx [39] by using the PTD scheme, and obtained

a speedup of 1.5 for the resolution of 1282, and 2.5 for 2562 with 4 processors on SGI 3800. In the future,

the PTF scheme will play an important role in this kind of studies.
� It should be noticed that Foster has proposed a similar scheme based on a three FFTs model (see Chap-

ter 4 of [34]), but the parallel efficiency of their scheme is rather limited because too few FFTs are

involved: there is no choice but to divide the code into three main tasks. In a sense, the model of Foster

is rather misleading because the third FFT should be calculated after the first two FFTs are finished.

When dividing the available processors into three groups to calculate these three FFTs independently,

the third group will be idling while the first two groups are busy, and the first two groups will be idling

while the third group is busy. Thus, the idling time will occupy half of the total cpu time and spoil the

efficiency of the parallel scheme (Foster actually measured the performance of their code by making the
three groups of processors work simultaneously). In our PTF scheme, ten or twenty FFTs are consid-

ered. By skillfully arranging the FFTs based on their logic sequences in calculation (see Tables 1, 3

and 4), there are several choices to divide the groups of processors and there are no idling group through-

out the calculation.

� It is well known that the speed of single processor increases much faster than the speed of memory access

(five times faster in the last decade). Hence the latency of memory access in terms of processor clock cycle

grows by a factor of 5 in the last 10 years [37]. For a fixed type of parallel scheme, the speedup curves (see

Figs. 1, 2, and 4) for high resolution (e.g. 10242) in future machines may be similar to those of low res-
olutions in current computers (642 or 1282). In the case of PFFT scheme applied on a 10242 resolution, it

is possible that the speed of 64-nodes run is slower than that of the serial code in the future. On the other

hand, the PTF scheme which has much less Tdelay than that of the PFFT scheme will have greater advan-

tage over the PFFT scheme in parallel computing. In other words, the PTF strategy is also a scheme for

the future.
5. Conclusions

To sum up, the PTF scheme takes the advantages of the PTD and PFFT schemes, and can significantly

increase peak speed of codes. The PTF scheme works best for low resolution run, or relatively large reso-

lution with large number of CPUs. For very high resolutions, the PTF scheme is most likely slower than

PFFT if not many processors are involved; PTF also needs more memory than that for PFFT, which pre-

sents some limitations on the scale of the highest resolution that one particular parallel computer can han-

dle. These two disadvantages of PTF explain why similar schemes are not very popular in the 3D
simulations, where the array sizes may be even larger than those for the 2D simulations with high

resolutions. It is advisable to treat PFFT as a special case of PTF. Thus, the combined version of the par-

allel codes will always yield the best performance after a small amount of preparing work (e.g. making a

340 Z. Yin et al. / Journal of Computational Physics 210 (2005) 325–341
table similar to Tables 2 and 5 on the particular parallel machine to be used). In the meanwhile, the simple

analytical model of the parallel scheme, which divides Tsum into three parts: Tsendrec, Tdelay, and Tcomp, is

useful in explaining the performance of the parallel codes.

The parallel code of the NS equations helps us to find another example of double-valued x–w structure;

and the parallel Boussinesq code reveals the insight of an open question, which suggests that the collapse of
the bubble cap may be a candidate for the finite time singularity formation. Both sets of investigation show

that the parallel computing is useful in large scale 2D numerical simulations.
Acknowledgments

We thank Linbo Zhang, Zhongze Li, and Ying Bai for the support of using local parallel computers.

Z.Y. also thanks Professor W.H. Matthaeus who supplied the original serial FORTRAN 77 Navier–Stokes
pseudo-spectral codes. This work is supported by National Natural Science Foundation of China

(G10476032). T.T. thanks the supports from International Research Team on Complex System, Chinese

Academy of Sciences, and from Hong Kong Research Grant Council.
References

[1] Z. Yin, H.J.H. Clercx, D.C. Montgomery, An easily implemented task-based parallel scheme for the Fourier pseudospectral

solver applied to 2D Navier–Stokes turbulence, Comput. Fluid 33 (2004) 509.

[2] S.A. Orszag, Accurate solution of the Orr–Sommerfeld stability equation, J. Fluid Mech. 50 (1971) 689.

[3] G.S. Patterson, S.A. Orszag, Spectral calculations of isotropic turbulence: efficient removal of aliasing interaction, Phys. Fluid 14

(1971) 2538.

[4] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods in Fluid Dynamics, Springer, New York, Berlin, 1987.

[5] J.P. Boyd, Chebyshev and Fourier Spectral Methods, second ed., Dover, Mineola/New York, 2001.

[6] S. Chen, G.D. Doolen, R.H. Kraichnan, Z. She, On statistical correlations between velocity increments and locally averaged

dissipation in homogeneous turbulence, Phys. Fluid A 5 (1993) 458.

[7] Y. Kaneda, T. Ishihara, M. Yokokawa, K. Itakura, A. Uno, Energy dissipation rate and energy spectrum in high resolution

direct numerical simulations of turbulence in a periodic box, Phys. Fluid 15 (2003) L21.

[8] P. Moin, K. Mahesh, Direct numerical simulation: a tool in turbulence research, Annu. Rev. Fluid Mech. 30 (1998) 539.

[9] R.B. Pelz, The parallel Fourier pseudospectral method, J. Comput. Phys. 92 (1991) 296.

[10] E. Jackson, Z. She, S.A. Orszag, A case study in parallel computing: I. Homogeneous turbulence on a hypercube, J. Sci. Comput.

6 (1991) 27.

[11] P.F. Fischer, A.T. Patera, Parallel simulation of viscous incompressible flows, Annu. Rev. Fluid Mech. 26 (1994) 483.

[12] M. Briscolini, A parallel implementation of a 3-D pseudospectral based code on the IBM 9076 scalable POWER parallel system,

Parallel Comput. 21 (1995) 1849.

[13] P. Dmitruk, L.P. Wang, W.H. Matthaeus, R. Zhang, D. Seckel, Scalable parallel FFT for spectral simulations on a Beowulf

cluster, Parallel Comput. 27 (2001) 1921.

[14] M. Iovieno, C. Cavazzoni, D. Tordella, A new technique for a parallel dealiased pseudospectral Navier–Stokes code, Comput.

Phys. Commun. 141 (2001) 365.

[15] A.J. Basu, A parallel algorithm for spectral solution of the three-dimensional Navier–Stokes equations, Parallel Comput. 20

(1994) 1191.

[16] W. Ling, J. Liu, J.N. Chung, C.T. Crowe, Parallel algorithms for particles-turbulence two-way interaction direct numerical

simulation, J. Parallel Distributed Comput. 62 (2002) 38.

[17] E. Fournier, S. Gauthier, F. Renaud, 2D pseudo-spectral parallel Navier–Stokes simulations of compressible Rayleigh–Taylor

instability, Comput. Fluid 31 (2002) 569.

[18] A. Bracco, J.C. McWilliams, G. Murante, A. Provenzale, J.B. Weiss, Revisiting freely decaying two-dimensional turbulence at

millennial resolution, Phys. Fluid 12 (2000) 2931.

[19] P. Dmitruk, D.C. Montgomery, Numerical study of the decay of enstrophy in a two-dimensional Navier–Stokes fluid in the limit

of very small viscosities, Phys. Fluid 17 (2005) 035114.

Z. Yin et al. / Journal of Computational Physics 210 (2005) 325–341 341
[20] Z. Yin, D.C. Montgomery, H.J.H. Clercx, Alternative statistical–mechanical descriptions of decaying two-dimensional turbulence

in terms of ‘‘patches’’ and ‘‘points’’, Phys. Fluid 15 (2003) 1937.

[21] Z. Yin, On final states of two-dimensional decaying turbulence, Phys. Fluid 16 (2004) 4623.

[22] A. Pumir, E.D. Siggia, Development of singular solutions to the axisymmetric Euler equations, Phys. Fluid A 4 (1992) 1472.

[23] W. E, C. Shu, Small-scale structures in Boussinesq convection, Phys. Fluid 6 (1994) 49.

[24] H.D. Ceniceros, T.Y. Hou, An efficient dynamically adaptive mesh for potentially singular solutions, J. Comput. Phys. 172 (2001)

609.

[25] D. Montgomery, G.R. Joyce, Statistical mechanics of negative temperature states, Phys. Fluid 17 (1974) 1139.

[26] D. Montgomery, W.H. Matthaeus, W.T. Stribling, D. Martinez, S. Oughton, Relaxation in two dimensions and the ‘‘sinh-

poisson’’ equation, Phys. Fluid A 4 (1992) 3.

[27] S.A. Orszag, Numerical simulation of incompressible flows within simple boundaries. I. Galerkin (spectral) representation, Stud.

Appl. Math. 50 (1971) 293.

[28] P.N. Swarztrauber, Multiprocessor FFTs, Parallel Comput. 5 (1987) 197.

[29] R.M. Chamberlain, Gray codes, Fast Fourier Transforms and hypercubes, Parallel Comput. 6 (1988) 225.

[30] R.B. Pelz, Parallel compact FFTs for real sequences, SIAM J. Sci. Comput. 14 (1993) 914.

[31] C. Mermer, D. Kim, Y. Kim, Efficient 2D FFT implementation on mediaprocessors, Parallel Comput. 29 (2003) 691.

[32] E. Chu, A. George, Inside the FFT Black Box, CRC Press, Boca Raton, London, New York, Washington, DC, 2000.

[33] C.Y. Chu, Comparison of two-dimensional FFT methods on the hypercubeProceedings of the Third Conference on Hypercube

Concurrent Comput. Appl., Pasadena, CA, United States, 1988, vol. 2, ACM Press, New York, NY, USA, 1989, p. 1430.

[34] I. Foster, Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering, Addison Wesley,

Pearson Education, Inc., 1995.

[35] D. Roose, R. Van Driessche, Parallel computers and parallel algorithms for CFD: an introduction, Special Course on Parallel

Computing in CFD, AGARD R-807, NATO, 1995, p. 1.1.

[36] B.B. Fraguela, R. Doallo, J. Touriño, E.L. Zapata, A compiler tool to predict memory hierarchy performance of scientific codes,

Parallel Comput. 30 (2004) 225 (and references therein).

[37] D.E. Culler, J.P. Singh, A. Gupta, Parallel Computer Architecture, Morgan Kaufmann Publishers, Inc., San Francisco, 1999.

[38] S. Ghosh, M. Hossain, W.H. Matthaeus, The application of spectral methods in simulating compressible fluid and magnetofluid

turbulence, Comput. Phys. Commun. 74 (1993) 18.

[39] H.J.H. Clercx, A spectral solver for the Navier–Stokes equations in the velocity–vorticity formulation for flows with two

nonperiodic directions, J. Comput. Phys. 137 (1997) 186.

[40] D. Molenaar, H.J.H. Clercx, G.J.F. van Heijst, Angular momentum of forced 2D turbulence in a square no-slip domain, Physica

D 196 (2004) 329.

	A new parallel strategy for two-dimensional incompressible flow simulations using pseudo-spectral methods
	Introduction
	Parallel 2D pseudo-spectral code for the NS equations
	The governing equations and pseudo-spectral methods
	A brief discussion for the PFFT scheme
	A new parallel strategy ndash PTF
	Numerical results for 2D decaying turbulence

	Application of PTF scheme to 2D inviscid Boussinesq equations
	The application of the new strategy to Boussinesq equations
	Benchmarks and comparisons
	Numerical results for the Boussinesq convection

	Some extended studies of PTF
	Conclusions
	Acknowledgments
	References

