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THE NUMERICAL ANALYSIS OF IMPLICIT
RUNGE-KUTTA METHODS FOR A CERTAIN NONLINEAR

INTEGRO-DIFFERENTIAL EQUATION

YUAN WEI *  AND TANG TAO **

Abstract. In this paper and in an earlier 1987 paper, the mathematical theory

and numerical methods for the nonlinear integro-differential equation

u (t) + p(t)u(t) + ( k(t,s)u(t-s)u(s)ds = q(t),        0<t<T,
Jo

"(0) = itQ

are considered. Equations of this type occur as model equations for describing

turbulent diffusion. Previously, the existence and uniqueness properties of the

solutions of the model equation were solved completely, and a class of implicit

Runge-Kutta methods with m stages for the approximate solution of the model

equation was introduced. In this paper, we give a further numerical analysis

of these methods. It is proved that the implicit Runge-Kutta methods with

in stages are of optimal approximation order p = 2m . Some computational

examples are given.

1. Introduction

We consider the approximate solution of the initial value problem for a non-

linear integro-differential equation

l.L
u'(t)+p(t)u(t)+ [ k(t,s)u(t-s)u(s)ds = q(t),        tel :=[0,T],

Jo'0

u(0) = u0,

where p(t), q(t) and k(t, s) are continuous functions in 7 and 5:={(í,í)|

0 < s < t < T}, respectively. Equations of this type arise as model equations
for describing turbulent diffusion problems (see [18] and [22]). In [8], Chang

and Day investigated the existence and uniqueness properties of the solution

of (1.1) under certain conditions and presented a linear multistep method for

obtaining an approximate solution with order of (local) convergence p = 4. In

[21] we have solved completely the existence and uniqueness properties of the

Received July 16, 1986; revised September 23, 1987, March 29, 1988 and October 14, 1988.
1980 Mathematics Subject Classification (1985 Revision). Primary 65R99, 45L10; Secondary

45J05.

* Current address: Center for Applied Mathematics, Cornell University, Ithaca, NY 14853,

U.S.A.

** Current address: Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT,

England.

©1990 American Mathematical Society

0025-5718/90 $1.00+ $.25 per page

155

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



156 YUAN WEI AND TANG TAO

solution of ( 1.1 ) and introduced a class of implicit Runge-Kutta methods with

m stages for obtaining an approximate solution of (1.1).

There has been a great deal of recent work in the numerical analysis of the im-

plicit Runge-Kutta methods for Volterra integro-differential equations. Nonop-

timal methods have been discussed by many authors: in [13] and [14], Lubich

presents a general theory concerning the structure of the order conditions of

Runge-Kutta methods for the nonlinear Volterra integro-differential equations

of the form

u'(t) = F\t,u(t), I k(t,s,u(s))ds\ ,       tel,

u(0) = u0,

and he lists a number of special explicit methods; Makroglou [15] investigates

related methods called block-by-block methods (compare also Mocarsky [17],

Brunner [3], Brunner and Lambert [5, pp. 84-87], and Feldstein and Sopka

[12]). In 1984, Brunner presented optimal methods and their numerical analysis

for a special form of (1.2),

u'(t) = f(t,u(t))+ i k(t,s,u(s))ds,        tel,
U-J) Jo

"(0) = u0,

by means of collocation techniques in certain polynomial spline spaces [4]. In

[1], Aguilar and Brunner present an optimal method for a class of second-

order Volterra integro-differential equations. The book of Brunner and van der

Houwen [6] reviews the state of the numerical solution of Volterra equations.

However, a complete convergence theory, including local superconvergence re-

sults and the discretization of the collocation equations, has now been obtained

by Brunner [4]. His paper has in many ways been a model for the present work.

Volterra integro-differential equations arising in mathematical models of cer-

tain biological and physical phenomena are often of a "nonstandard" form, dif-

ferent from (1.2) (see, e.g., Volterra [23], Saaty [20, pp. 301-345], Prosperetti

[19], McKee [16], Elliott and McKee [11], and Dixon [10]). The collocation
methods described by Brunner [4] (compare also Brunner and van der Houwen

[6]) are readily extended to such equations. However, in some cases the con-

vergence analysis is still lacking. It is hoped that the present work will help in

dealing with such nonstandard forms of the Volterra integro-differential equa-

tion, using collocation methods.

The numerical methods to be analyzed can be obtained by fully discretized

collocation in the piecewise polynomial space

(1.4) S{°](ZN) = {y\y e C(I), yn= y\g¡¡ enm,  n = 0, ... , N - 1}.

Here, N > 1 and m > 1 are positive integers, nm denotes the space of real

polynomials of degree not exceeding m, h = T/N, tQ = 0, tn - t0 + n ■ h

(n = 0,\,...,N), ZN:={tn\n= \,...,N-l}, ZN = Zv U 7\ and on :=

[tn,tn+l]  (0<n<N-l).

Let *(7V) = Uto' Xn > where

(1-5) ^ = {/ll + c/A|0<c1<-"<cM<l})        n = 0,...,N-l,
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denote the set of collocation points at which the approximate solution y(t) e

S(m](ZN) is to satisfy the equation (1.1). Thus, the approximate solution y(t)
is determined recursively by

y'n(tn+Cifl)+P(tn+Cih)yn(tn+Cih)

/t„+c¡h
k(tn + cth, s)yn(s)y0(tn + cth - s)ds

"_l   rii+c,h"~ ■    rik+cin

(1.6) +¿2 k(tn + clh,s)yk(s)yn_k(tn + cih-s)ds
k=0J't

+ £ /       k(tn + cih,s)yk(s)yn_k_l(tn + cih-s)ds

= q(tn + cih),        i=\,...,m, n = 0, 1, ... , N - 1.

Since y(t) e C(I), we have

0-7) yn(tn) = yn_,(tn).

In this paper we show that the attainable order of collocation approximation

for the nonlinear equation ( 1.1 ) is p - 2m .

2. The attainable order of collocation approximation

In this section we shall present the attainable order of the collocation approx-

imation (1.6) and (1.7).
It is easy to see that for each yn(t), n = 0, ... , N - 1, Eq. (1.6) is linear

except for yQ(t). We first consider the case of n = 0. We shall use the well-

known contraction principle stated in the following lemma:

Lemma 2.1. Let (X, d) be a complete metric space and

B(x0, r) = {x e X\d{x, x0) < r}

a sphere in X with radius r, centered at xQ . Suppose that T : B(x0 , r) —► X

is a contraction mapping satisfying

d(Tx,Ty)<L-d(x,y),        0 < L < 1, Vjc, y G B(x0, r).

If d(TxQ, x0) < (1 - L) • r, then there exists a unique fixed point of T in
B(x0,r).

From (1.6) with n = 0, we get

o ix      y'Ycih)+p(cih)yo(cih) + h l k(cih' th)yo(xh)yo((ci-*)h)dx
(2.1) Jo

= q(cth),        i= 1,..., m.

From the definition of S(®\ZN), and y0(0) = w0 , we have

in

(2.2) y0(xh) = u0 + YlWJ-rY        tg(0,1),
7=1
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158 YUAN WEI AND TANG TAO

hence

(2.3)
-i j-] tg(o, i;y'o(xh) = h ' •Z^'-^V

7=1

Substituting (2.2) and (2.3) into (2.1), and following the lines of proof of The-
orem 2.1 in [4], we can show that there exists hx > 0 such that for h e (0, /z,)

the {(// } in (2.2), (2.3) satisfy

(2.4)

in
2   ^    .(/),y i - hS, ~h   ¿2cjîVjVi'        i=l,.-.,m,

where gi and c'¡  are bounded by constants which do not depend on h .

Let y/ = {y/¡, ... , i//m}'. Define the operator T : Rm —» Rm as follows:

in.(7», = hg¡ -h2 J2 cfi -Vj-Vi'        i'=l,...,
i,i=\

We consider the set 77(0, r) = {\p e Rm[ [[y\\{ < r), where r > 0 and

(2.5) hi, = Ew
i=i

T is a continuous operator from 7?(0, r) into Rm , and for all X, y/ e 77(0, r)

we have
in

lira-7y||,=£ lira)/-™/!

*2£

i=i

(2.6)

EW)-^»';)
|7,/=1

m m

where L = 2h  ■ r ■ m ■ max(    ; |c/ ,.

On the other hand, let x0 = 0 ; then

K^m-msx^^Ul + imO-U-^
i,j,l   '

<L-\\X-xp\\x,

„(<)i

(2.7) \TxQ-xQ\\i = h¿~2\g¡\ <mh-max.\g¡\
i--1

Let F{ - m • max |^(| and F2 — 2 • m ■ max |cj.)'|. We seek to determine h

sufficiently small so as to have L< 1 and ||rx0-x0||, < (\ - L) • r. Since T7,

and F2 are bounded when h e (0, /¡,), if we let

A, = (4-F1.f,) ■1/3
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(so that h e (0, h2) implies 2 • 771 • h < (2 ■ F2 ■ h )    ), then it is easy to see that

when h e (0, h), where h - min-f/z,, h2) , and if r > 0 satisfies

(2.8) 2.Frh<r<(2-F2-h2Y[,

then

L = h2-F2-r< 1/2

and

l|ra-0-Jc0||, <h-Fx <{-r<(l-L)-r.

Therefore, from Lemma 2.1, we obtain that for r > 0 satisfying (2.8) there is

a unique fixed point y/* of T in 5(0, r) when h G (0, h), i.e.,

(2.9) y   = Tip*.

That is, if we compute the {y/.} by means of the iteration

(2.10)
r,W| = r/',     fe = 0,1,2,.

with iy/(0) G 77(0,/"),

then for any h e (0, h) we obtain a sequence y/ ' G 77(0, r) which converges

to y/* e 77(0, r), the unique solution of (2.4). Moreover, there exists a constant

B such that

(2.11) WO»«, < 5   VAe(0,A).

Thus we have

Theorem 2.1. Let p(t), q(t) and k(t, s) be continuous functions in their respec-

tive domains. If we compute y0(t) by (2.2) and (2.10) (z.e, using the simple

iteration method), there exists h > 0 skcA that for any r > 0 satisfying (2.8),

and for arbitrary starting vector y/(0) e 77(0, r), //ze iterates y/( ' converge to the

unique solution of (2.9) in B(0, r) for any h e (0, h). Furthermore, y0(t) is

bounded, i.e., || v^H^ < B, where B is a constant which is independent of h .

Using Theorem 2.1, we shall prove the following convergence theorem.

Theorem 2.2. Suppose that p(t), q(t) G Cm(I) and dJk(t, s)/dtJ~rdsr, 0 <

r < j <m, are continuous functions in 7x7. Then there exists h > 0 such that

for any choice of the collocation parameters {c;} with 0 < c, < • • • < cm < 1,

the error e(t) = u(t) - y(t) satisfies

f |k||00 = max{|^(1)||/G7} = 0(/zm),

(2-12)        |  \[el[\00 = suV{\e'n(t)\\teon,  n = 0, 1, ... , N - 1} = 0(hm)

{ ash^0+, N-h = T.

Proof. Set / = tn+c¡h in (1.1) and note (1.6). Then

Ùtn+CiV+PVn+C.hKCn+Cih)
f'n+cih

(2.13) + / k(tn + cfi, s)\u(s)u(tn + cfi -s)- y(s)y(tn + c,h - s)] ds
Jo

= 0,        i = \, ... , m,
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160 YUAN WEI AND TANG TAO

and it is not difficult to obtain

ft+c,h

/ k(tn + cth, s)[u(s)u(tn + cffi -s)- y(s)y(tn + c;h - s)] ds
Jo

= / k(tn + C¡h,s)en(s)ds + 22 k(tn + C¡h,s)ek(s)ds
2 14) " k=°   "

fc'' -
= h\   k(tn+cth,tn + xh)en(tn + xh)dx

Jo
«-i  /-i

+ A£ /   k(tn + cth, tk + xh)ek(tk + xh)dx,
k=0

where

k(tn + cfi, s)

( k(clh,s)u(cih-s) + k(cih,cih-s)y0(clh-s)   if « = 0,

= I [k(tn + cth, tn + cth -s) + k(tn + c¡h, s)]y0(tn + cfi - s)

I if n > 1, tn < s < tn + c¡h,

and

(2.16)

k(t„ + c¡h,s)

{ k(tn + cth, s)u(tn + cJh - s)

+k(tn + c¡h , tn + cfi - s)y(tn + cth - s),       cfi <s<tn,

[k(tn + c¡h , s) + k(tn + c¡h, tn + cth - s)]u(tn + cth - s),

0 < 5 < eh.

Therefore,

(2.17)

e'n(tn + C,h)+P(tn+C,hK(tn+Cih)

+ h i "k(tH + c,h, tn + xh)en(tn + xh)dx
Jo
n-1    r\

+ hY\ /   k(t- + cA, tk + xh)ek(tk + xh)dx = 0,

i = I, ... , m,

k=0'

where  en  = e\a .    From (2.15), (2.16) and (2.17), we can easily see that

k(tn + eft , tn + xh) depends only on the functions k(t, s), u(t) and y0(t), and

k(tn + c¡h, tk + xh) (k = 0, ... , n - 1 ) depends only on the functions k(t, s),

u(t),yn_k(t) (k = \,...,n-l) and yn_k_x(t) (k = 0,..., n - 1). There-

fore, if the functions yk(t) (k = 0, ... , n- 1 ) are bounded, it will be obvious

that k(tn + cfi, tk + xh) and k(tn + cfi, tk + xh) are bounded. In this case,

using the same method as in the proof of Theorem 2.1 of [4], one easily gets

\en(tn + xh)[ = 0(hm) and \e'n(tn + xh)\ = 0(hm) (0 < x < 1), provided h is

sufficiently small.
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Now we prove inductively that there are constants 7), , D2 independent of

h , N, and n , and h > 0, such that

' \en(tn + xh)\<Drhm

(2.18) I  \e'n(tn + xh)\<D2-hm VO < n < N, h e (0, h).

, |yA + *A)l<IMOIIoo + i
( 1 ) When n = 0, then (2.17) can be written as

e0(cih)+P(cih)eo(cih) + h I   k(cih,xh)e0(xh)dx = 0,        i=\,...,m.
Jo

From Theorem 2.1 we have \y0(xh)\ < B . Therefore, using the same method

as in the proof of Theorem 2.1 of [4], we have [e0(xh)[ = 0(hm) and \e'Q(xh)[ =

0(hm). Thus, by the definition of en(t), when h is sufficiently small we have

W^)l<N0lloo + i-
(2) We now assume that the results of (2.18) hold when 0 < n < M - 1,

where M > 1 is a positive integer. Then

\k(tn + cih,tk + xh)\<2\\k(t,s)\\o0(\\u(t)\\00 + l),

\k(tn + C¡h , tk + xh)\ < 2\\k(t,s)\\00(\[u(t)\[oo + 1),

i = I, ... , m; k = 0, ... , M - 1.

Using the same method as in [4], we can show the existence of constants Z),,

D2, and h > 0, such that the results of (2.18) hold for n = M. This proves
Theorem 2.2.   D

While every choice of the collocation parameters {c;} guarantees the same

global convergence rate p — m, there exists a special set of these parameters

for which one obtains a higher order of convergence at the nodes of the approx-

imating piecewise polynomials. This is made precise in

Theorem 2.3. Suppose that p(t), q(t) e C2m~l'(I),  k(t, s) e C2m~"(I x 7),

where u e {0, 1,2}.

(a) If v = 0, and if y e ^'(Z^) denotes the collocation approximation

determined by (1.6), where the collocation parameters are the zeros of

n\n   }(2s- 1)   ( Gauss points on (0, 1)), then

(2.19) e(tn) = 0(h2m),        tneZNash^0+, Nh = T.

(b) If v — 1, and if y e Sm (ZN) denotes the collocation approximation deter-

mined by (1.6), where the collocation parameters are the zeros of s ■ n(®Y\(2s - 1 )

or of (s- 1 ) • n\n_,'(2s - 1 )   ( Radau points on [0, 1 ) and (0, 1 ], respectively ),

then

(2.20) e(tn) = 0(h2'"-1),        tneZNash^0+,  Nh = T.

(c) If v = 2, and if y e S{J(ZN) denotes the collocation approximation

determined by (1.6), where the collocation parameters are the zeros of (s - l)s •

n{°'_[2(2s - 1)   (Lobatto points for [0, 1]), then

(2.21) e(tn) = 0(h2'"-2),        tneZNash^Q+,  Nh = T.
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162 YUAN WEI AND TANG TA0

Proof. According to (1.6) the collocation solution y G S(J(ZN) satisfies

(2.22)    y'(t) + p(t)y(t) + f k(t, s)y(s)y(t -s)ds = q(t) - ô(t),        tel,
Jo

where the defect S(t) vanishes at / = 0 and on the set X(N) of collocation

points.
Subtraction of (2.22) from (1.1) leads to

' e'(t)+p(t)e(t) + ^G(t,s)e(s)ds

(2-23) l      =ô(t) + Jçk(t,s)e(s)e(t-s)ds,        tel,

. <?(0) = 0,

where G(t, s) - (k(t, s) + k(t, t - s))u(t - s).

The integro-differential equation (2.23) can be viewed as a perturbation of

the linear equation

(2.24) e(t) + p(t)e(t) + f G(t, s)e(s) ds = S(t)
Jo

with perturbation term y/(t) := /0' k(t, s)e(s)e(t - s)ds.

For t = tn, n = 0, ... , N - 1 , we may write

e(tn) = R(tn , 0)e(0) + ['" R(t„, s){ô(s) + y/(s)}ds
Jo

(2.25) = A ¿ f R(tn, L + xh)ô(tk + xh) dx
TT^Jo

+ £"R(tn,s)[J*k(s, x)e(x)e(s - x)dx ds,

where R(t, s) denotes the resolvent kernel associated with the linear equation

(2.24). By Theorem 2.2 we know that H^H^ < Chm . On the other hand (cf.
[7, pp. 93-98] or [6]), R(t, s) is a bounded function for 0 < 5 < / < T. It

follows that

jl" R(tn, s) \^jS k(s, x)e(x)e(s - x) dx ds<Qh
2m

where the constant Q depends only on the functions p(t), q(t) and k(t, s).

Therefore, (2.25) implies

e(t„)<h ¿/ R(tn,tk + rh)ô(tk + xh)dx
<.=0'

A-=0  ^

+ Q,h
2m

ÈWJR(tn^k+Yh^tk + Cjh^ + EnK
7=1

+ Q7h
2m

n-\

<hE\EJ + Qh2m,
k=0
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where Enk denotes the error term associated with the quadrature formula based

on the abscissas {tk + c A} and the weights {w }, j = 1, ... , m. Now the

arguments used in the proof of Theorem 2.2 of [4] complete the proof.   □

3. The discretized collocation equation:

implicit runge-kutta methods and numerical examples

In most cases the integrals occurring in the collocation equation (1.6) can-

not be evaluated analytically and must be approximated by suitable quadra-

ture formulae. This means that, instead of y, we compute an approximation

y e S\n\ZN) from a perturbed collocation equation

y'n((n+^ih)+P(tn+C,h)yn(tn+Cih)

m

+ hJ2 wuk(tn + cth, tn + cjCjh)yn(tn + c¡Cjh)fi0((ct - c¡Cj)h)
7=1

«-1    i

+ h ££>,.*('„ + c,h, tk + Cjh)yk(tk + Cjh)yn_k(tn_k + (c, - Cj)h)
(3.1) k=0j=l

n — 1     m

+ ÄEE  WM'n + Cih > '* + Cjh)Uh + Cjh)
k=0j=i+\

x yn_k_x(tn_k_x + (\+C¡-Cj)h)

= q(tn + cih),        i=\,2,...,m;  n = 0, 1, ... , N - 1.

For (3.1) the same results as in Theorem 3.1 and Corollary 3.1 of [4] hold.

Before presenting numerical examples, we rewrite the discretized collocation

equation (3.1) in a form which is convenient for numerical computation and

which exhibits more clearly the fact that (3.1) defines a class of implicit Runge-

Kutta methods for the solution of Eq. (1.1). Let T = y'„(tn + c(A) (where

K enm-\ ) and set

'"     x-c
(3.2) p\(x)    H    —^,        j=\,...,m.

r= 1 ; r¿j   7        '

Since y'n(tn + xh) = E^, ßfr) • YJ"], we have

m

(3.3) ^ + t/I) = y„ + ÇQ/t).I;w,

7=1

where we have set yn = yn(tn) (= yn_x(tn)) and

(3.4) <*j(T) = f ßj(v)dv,        j=\,...,m.
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Thus, the fully discretized collocation equations can be written in the form:

for n — 0,

7=1 L

A/7(c;A)q7(c;)+j>0A

m ^

£ wirk(cth, c,.crA)(ay(c(.cr) + aj(ci - c¡cr)

(3.5)
.r=I

+*JE£
k=\ j=\

J2WiMCih > ̂K^rK^, - C,Cr)
i = l

AO)

v(0)v(0)
Ii    *k

= Q(c¡h) - y0P(c¡h) - hy0 £ w¡jk(c¡h, c¡Cjh),        i=l,...,m,

7=1

where yñ = uñ, and for n > 1,

(3.6)

where

An)

7=1

i=l,... ,m; n = I,..., N-l,

^7 = Ap(?n + c,A)a/c;)
m (m

+ h2J2^,rk(tn + c,h, tn + cicrh)aj(cicr) [y0 + h^2ak(ci(l-cr))Yt
(0!

r=\ k = \

+ h   ¿2wMtn+C.h>Crh)aj(Ci-Cr)[yo + hl2ak(Cr)Yk
(0)

r=l k=\

r=\

B\n) = p(t„ + c,h) + A £ wirk(tn + C¡h, t„ + c,crh)

f m >

k = \

+ A £ u;,*^ + c;A , c,A)   j>0 + A £ a^c,)^
(0) \

A
r=l k=\
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Cf = 9{t„ + cth) - A "¿ ¿ wrk(tn + cth, tk + crh)
k=\ r=l

/

yk + hY,aÁcr)Yjk)
7 = 1

• fyn-k+ht«j^-<r)yrk)

n—1    m I m

A£ £ u;rfc(/„ + Ci.A,^ + crA)   j),+ÄEa;.(cf)^
/c=0r=/+l \ j=\

m

7 = 1

We also have

m

(3.7)     y„=vl(í„.,+A)=v,+AE«i(l)í"1,1       « = 1,...,tV.
7=1

Note that (3.5) is a nonlinear system.   Fortunately, we can compute Y¡

and y   ( n > 1, / = 1, ... , m ) by (3.6) and (3.7) by solving systems of linear

equations if we know the initial value Y¡ , i = I, ... , m . Simple iteration, or

Newton's iteration can be employed to determine the initial value from (3.5).

It can be shown that for arbitrary given starting yalues Y¡ '' , i = \, ... , m ,

the simple iteration method converges whenever A > 0 is sufficiently small. We

usually choose Y¡ = 0, i = I, ... , m; then Newton's iteration converges

whenever A > 0 is sufficiently small.

The implicit Runge-Kutta method (3.5)—(3.7) for (1.1) is characterized by

the following arrays: the collocation parameters {c}.; / = 1, ... , m} and the

Gauss quadrature weights {it;..; i, j = 1, ... , m} , {Wj; j = I, ... , m) . We

choose them appropriately so that the results Theorem 3.1 and Corollary 3.1 of

[4] are valid:  m = 2, c, = (3 - \/3)/6, c2 = (3 + \/3)/6, w{ = w2 = 1/2, and

W-(W )_A3-v^)/12   (3-^3)/12\

{   -j'     V(3 + v^)/12   (3 + ̂ 3)/12y '
(a,(r), a2(T)) = (t(t - 2c2)/[2(c2 -c,)], t(t - 2c,)/[2(c2 - c,)]).

We consider the following examples.

Example 1.

"(0 + k~2'«(0+  /   V_('+í)M(/-5)M(5)aÍ5 = -ie"'+3Le~2', 0 < / < 4,
70

"(0) = Y

The exact solution is u(t) = \ • e~'.
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Example 2.

u(t) + u(t) - l i u(t- s)u(s) ds = 30 • ( 1 + t) ■ cos(3i),        0 < t < 4,
7o

u(0) = 0.

The exact solution is u(t) = 10 • sin(3/).

There are some difficulties in obtaining accurate approximations in Example

2, since the derivative of the exact solution changes rapidly on the interval

[0, 4] ; see the results in Table II.

Example 3.

f' Y
u(t) + u(t) + /  tsu(t - s)u(s) ds = — ■ (Y - 10/ + 20) + C - 2,    0 < / < 4,

7o 60

i/(0) = 0.

The exact solution is u(t) = t(t - 2).

We list in Tables I, II, and III the resulting errors. By error we mean

error = (Exact value - Approximate value).

The examples were solved on the HONEYWELL DPS8 in double precision. It
appears that the implicit Runge-Kutta method we used has two major advan-

tages: stability and accuracy. The main drawback is that the algorithms we used

above are a little complicated compared with the multistep method presented

in [8].

Table I

Errors for Example 1

¿         h = 0.1 A = 0.05         A = 0,025

0.5 4.04 xlO"9 2.19 xlO"10 3.97 xlO"'2

1.0 4.18 xlO"9 2.12 xlO"10 7.45 xlO"12

2.0 3.31 x 10"9 1.64 xlO"10 1.17x10""
3.0 2.81 x 10~9 1.34 xlO-10 1.36x10""
4.0 2.64 xlO"9 1.23x10"'° 1.43x10""

Table II

Errors for Example 2

t         A = 0,1          A = 0.05 A = 0,025

0.5 3.99 xlO"5 2.36 xlO"6 1.44 xlO"7

1.0 6.85 x 10~5 4.31 x 10"6 2.69x10"'
2.0 7.24 xlO"4 4.54 xlO"5 2.84 xlO"6
3.0 4.29 xlO"3 2.68 xlO"4 1.68 x 10"5
4.0 2.84 xlO"2 1.79 xlO"3 1.12 x 10"4
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Table III

Errors for Example 3

t        A = 0.1          A = 0.05 A = 0.025

0.5 1.99 xlO"9 1.84 x 10"'° 1.39x10""
1.0 4.31 x 10"8 3.17 xlO"9 2.20 xlO"10

2.0 7.87 x 10~7 5.32 xlO"8 3.50 x 10"9

3.0 6.74 xlO"6 4.47 xlO"7 2.87 x 10"8
4.0 7.00 x 10"5 4.62 x 10~6 2.94 x 10~7

Bibliography

1. M. Aguilar and H. Brunner, Collocation methods for second-order Vollerra integro-differential

equations, Appl. Numer. Math. 4 (1988), 455-470.

2. C. T. H. Baker, Initial value problems for Vollerra integro-differential equations, in Modern Nu-

merical Methods for Ordinary Differential Equations (G. Hall and J. M. Watt, eds.), Clarendon

Press, Oxford, 1976, pp. 296-307.

3. H. Brunner, On the numerical solution of nonlinear Vollerra integro-differential equations, BIT

13(1973), 381-390.

4. _, Implicit Runge-Kutta methods of optimal order for Volterra integro-differen-

tial equations, Math. Comp. 42 (1984), 95-109.

5. H. Brunner and J. D. Lambert, Stability of numerical methods for Volterra integro-differential

equations. Computing 12 (1974), 75-89.

6. H. Brunner and P. J. van der Houwen, The numerical solution of Volterra equations, CWI

Monographs, vol. 3, North-Holland, Amsterdam and New York, 1986.

7. LI. G. Chambers, Integral equations: A short course, International Textbook Co., London,

1976.

8. S. H. Chang and J. T. Day, On the numerical solution of certain nonlinear integro-differential

equations, J. Comput. Phys. 26 (1978), 162-168.

9. C. W. Cryer, Numerical methods for functional differential equations, in Delay and Functional

Differential Equations and Their Applications (K. Schmitt, ed.), Academic Press, New York,

1972, pp. 17-101.

10. J. A. Dixon, A nonlinear weakly singular Volterra integro-differential equation arising from a

reaction-diffusion study in a small cell, J. Comput. Appl. Math. 18 (1987), 289-305.

11. CM. Elliott and S. McKec, On the numerical solution of an integro-differential equation arising

from wave-power hydrolics, BIT 21 (1981), 318-325.

12. A. Feldstein and J. R. Sopka, Numerical methods for nonlinear Volterra integro-differential

equations, SIAM J. Numer. Anal. 11 (1974), 826-846.

13. C. Lubich, Diploma Thesis, University of Innsbruck, 1981.

14. _, Runge-Kutta theory for Volterra integro-differential equations. Preprint No. 131, Sonder-

forschungsbereich 123, University of Heidelberg, 1981.

15. A. Makroglou, Convergence of a block-by-block method for nonlinear Volterra integro-differen-

tial equations. Math. Comp. 35 (1980), 783-796.

16. S. McKee, The analysis of a variable step, variable coefficient linear multistep method for

solving a singular integro-differential equation arising from the diffusion of discrete particles in

a turbulent fluid, J. Inst. Math. Appl. 23 (1979), 373-388.

17. W. L. Mocarsky, Convergence of step-by-step methods for nonlinear integro-differential equa-

tions, J. Inst. Math. Appl. 8 (1971), 235-239.

18. A. S. Monin and A. M. Yaglom, Statistical hydromechanics. Part 2, "Nauka", Moscow, 1967.

(Russian)

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



168 YUAN WEI AND TANG TAO

19. A. Prosperetti, A numerical method for the solution of certain classes of nonlinear Volterra

integro-differential and integral equations, J. Numer. Methods Engrg. 11 (1977), 431-438.

20. T. L. Saaty, Modern nonlinear equations. McGraw-Hill, New York, 1967.

21. Tang Tao and Yuan Wei, The further study of a certain nonlinear integro-differential equation,

J. Comput. Phys. 72 (1987), 486-497.

22. B. A. Velikson, Solution of a nonlinear integro-differential equation, U.S.S.R. Comput. Math,

and Math. Phys. 15 (1975), 256-259.

23. V. Volterra, Theory of functionals and of integral and integro-differential equations, Dover,

New York, 1959.

Department of Mathematics, Peking University, Beijing, China

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use


