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Abstract

Inviscid Boussinesq convection is a challenging problem both analytically and numerically. Due to the complex
dynamic development of small scales and the rapid loss of solution regularity, the Boussinesq convection pushes
any numerical strategy to the limit. In E and Shu (Phys. Fluids 6 (1994) 49), a detailed numerical study of the
Boussinesq convection in the absence of viscous effects is carried out using filtered pseudospectral method and a
high-order accurate ENO schemes. In their computations, very fine grids have to be used in order to resolve the
small-structures of the Boussinesq fluid. In this work, we will develop an efficient adaptive grid method for solving
the inviscid incompressible flows, which can be useful in resolving extremely small-structures with reasonably
small number of grid points. To demonstrate the effectiveness of the proposed method, the Boussinesq convection
problem will be computed using the adaptive grid method.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

There are several reasons for the study of two-dimensional Boussinesq convection. It is a simple
model to address the open problem about whether finite time singularity occurs for initially smooth
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flows in inviscid and incompressible three-dimensional Euler flows. The governing equations of the
Boussinesq convection are analogous to those of three-dimensional axis-symmetric Euler flow with
swirl, see, e.g., [14,15]. The understanding of the finite-time singularities may be crucial to explain small
scale structures in viscous turbulent flows. The Boussinesq convection has also potential relevance to
the study of atmospheric and oceanography turbulence, as well as other astrophysical situations where
rotation and stratification play a dominant role. As previous numerical studies have shown [6,10,11], the
complex dynamics and the rapid formation of small scales make this problem an extremely demanding
test for any numerical techniques.

Mesh adaptation can be in the form of local mesh refinement or through a mapping from a logical or
computational domain to the physical domain. In the local mesh refinement method (see, e.g., [3]), the
adaptive mesh is generated by adding or removing grid points to achieve a desired level of accuracy, which
allows a systematic error analysis. However, the local mesh refinement approach requires complicated data
structures and fairly technical methods to communicate information among different levels of refinement.
In the mesh redistribution approach, the adaptive methods keep the total number of grid points unchanged,
and can cluster more grid points to areas with singularities or large solution gradients, see, e.g., [1,5,23]
and a recent review article [17]. The basic idea of moving mesh method is to construct a transformation
from a logical domain (or called computational domain) to the physical domain. Recent applications of
this approach include Hamilton–Jacobi equations [19], incompressible flow simulations [7], multiphase
flow simulations [8,25], drop formation [20] and deformation [26].

In this work, we design an adaptive mesh redistribution scheme to compute accurately the Boussinesq
convection problems. Our solution-adaptive mesh is obtained by solving a set of nonlinear elliptic PDEs
for the mesh map. A conservative interpolation is used to obtain the approximate solution on the resulting
solution-adaptive mesh. The given PDEs are advanced one time step based on a second-order finite-
volume approach. In some of the previous studies, straightforward high-order approximations are used
but the conservation property of the original problem may be lost. In our adaptive algorithm, both the
mesh generation and the PDE evolution are solved in the computational domain, and the conservation
can also be kept. An immediate advantage of doing computations in the computational domain is that
some existing faster solver such as multigrid can be easily used.

This paper is organized as follows. In Section 2, we present the adaptive mesh algorithm for nonlinear
hyperbolic conservation laws. In Section 3, we apply the proposed algorithm to the Boussinesq system.
Numerical results will be presented and discussed. Some concluding remarks will be given in the final
section.

2. Adaptive grid method

In [12,13], a transformation from a logical domain to the physical domain is constructed by using
harmonic mappings, see also [9]. One of the primary features of the numerical scheme is that the mesh
redistribution part and the PDE evolution part are separated. In [24], the principle ideas used in [12,13]
were further developed by the authors to solve convection–diffusion problems with small viscosity. One
of the main objectives of this work is to extend the numerical schemes proposed in [24] to solve the
two-dimensional Boussinesq problem. Again, our adaptive grid algorithm is formed by two independent
parts: a mesh re-distribution part and a PDE evolution part, which can be demonstrated by Table 1.
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Table 1
Outline of the numerical algorithm

0. Determine the initial mesh based on the initial function
1. Determine �t based on CFL-type condition so that tn+1 = tn + �t

2. Advance the solution one time step based on an appropriate numerical scheme
3. Grid Restructuring

a. Solve the mesh redistributing equation (a generalized Laplacian equation) by one Gauss-Seidel iteration, to get x(k),n

b. Interpolate the approximate solutions on the new grid x(k),n

c. Calculate a weighted average of the locally calculated monitor at each computational cell and the surrounding monitor
values

d. Perform the iteration procedure (a.)–(c.) on grid-motion and solution-interpolation until there is no significant change
in calculating new grids from one iteration to the next

Start new time step (go to 1 above)

2.1. Mesh redistribution

The solution-adaptive mesh is obtained through a bijective map from a logical or computational domain
to the physical domain. A fixed uniform mesh is used in the logical domain. Denote by x(�, �), y(�, �)
the mesh map in two dimensions, where (�, �) are the coordinates in the logical domain. In the variational
approach, the adaptive mesh is to find the minimizer of the following functional:

E[�, �] = 1

2

∫
�p

[∇�TG−1
1 ∇�+ ∇�TG−1

2 ∇�] dx dy,

where G1 and G2 are given symmetric positive definite matrices called monitor functions. �p is solution
domain in the physical space. More terms can be added to the variational form to control the property of
the adaptive mesh [4].

In this work, the adaptive mesh is determined by the corresponding Euler–Lagrange equations:

∇ · (G−1
1 ∇�)= 0, ∇ · (G−1

2 ∇�)= 0.

One of the simplest choices of the monitor functions is of scalar type: G1=G2=�I , where I is the identity
matrix and � > 0 is called weight function. One typical choice of the weight function is �=√1+ |∇u|2,
where u is a solution of the underlying PDEs. This choice of the monitor function corresponds toWinslow’s
variable diffusion method [21]:

∇ ·
(

1

�
∇�

)
= 0, ∇ ·

(
1

�
∇�

)
= 0. (2.1)

The above system is defined in the physical domain �p. In practice, �p may have complex geometry, and
as a result it is difficult to solve the elliptic system (2.1) directly. To overcome this difficulty, we make
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coordinate transformation x = x(�, �) and y = y(�, �) for (2.1) to obtain:
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]
= 0. (2.2)

Note that system (2.2) is more complicated than the original Euler–Lagrange equation. An alternative
approach, as proposed by Ceniceros and Hou [6], is to consider a functional defined in the computational
domain directly:

Ẽ[x, y] = 1

2

∫
�c

(∇̃TxG1∇̃x + ∇̃TyG2∇̃y) d� d�, (2.3)

where G1, G2 are again the monitor functions and ∇̃ = (��, ��)
T. The corresponding Euler–Lagrange

equation is

(G1x�)� + (G1x�)� = 0,

(G2y�)� + (G2y�)� = 0. (2.4)

In the following computation, we take the monitor function with the simplest form G1=G2=�I . Then
the Eq. (2.4) is reduced to

∇̃ · (�∇̃x)= 0, ∇̃ · (�∇̃y)= 0. (2.5)

In our computation, we use Gauss–Seidel (GS) iteration to approximate the solution of the above system.
The iteration is continued until there is no significant change in calculating new grids from one iteration
to the next. In practice, a few iterations (say 3–5) are required at each time level, so the cost for generating
new mesh is not too expensive. In order to obtain a smooth mesh distribution, we need to apply the
following low-pass filter to the discrete monitor function:

�j,k ← 4

16
�j,k + 2

16
(�j+1,k + �j−1,k + �j,k+1 + �j,k−1)

+ 1

16
(�j−1,k−1 + �j−1,k+1 + �j+1,k−1 + �j+1,k+1).

Usually, the above smooth technique is carried out 3–5 times at each GS iterative step.
After each GS iterative step, we need to pass the solution information from the old mesh (xj,k, yj,k)

to the newly obtained mesh (x̃j,k, ỹj,k). This can be realized by using the conservative interpolation
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technique proposed by Tang and Tang [18]:

|Ãj+ 1
2 ,k+ 1

2
|ũj+ 1

2 ,k+ 1
2
= |Aj+ 1

2 ,k+ 1
2
|uj+ 1

2 ,k+ 1
2
−
[
(cxu)j+1,k+ 1

2
− (cxu)j,k+ 1

2

]
−
[
(cyu)j+ 1

2 ,k+1 − (cyu)j+ 1
2 ,k

]
, (2.6)

where cx
j,k=xj,k− x̃j,k, c

y
j,k=yj,k− ỹj,k . The above formula is obtained using the classical perturbation

theory. It is obvious that the discretization form (2.6) satisfies the mass–conservation in the following
discrete sense:∑

j,k

|Ãj+ 1
2 ,k+ 1

2
|ũj+ 1

2 ,k+ 1
2
=
∑
j,k

|Aj+ 1
2 ,k+ 1

2
|uj+ 1

2 ,k+ 1
2
,

where |Aj+ 1
2 ,k+ 1

2
| and |Ãj+ 1

2 ,k+ 1
2
| means the areas of the corresponding control cells. Some theoretical

properties of this conservative interpolation can be found in [18].

2.2. Numerical solution to PDEs

The governing equations of the Boussinesq equations can be written in conservative form. To demon-
strate the principal ideas for the PDE evolution, let us consider the 2D conservation system in general
form:

ut + f (u)x + g(u)y = 0, (x, y) ∈ �p, (2.7)

where �p denotes the physical domain. To allow flexibility in handling complex geometry and in using
fast solution solvers (such as multi-grid methods), we transform the underlying PDEs using the coordinate
transformations x=x(�, �), y=y(�, �) and then solve the resulting equations in the computational domain
equipped with a (fixed) uniform mesh. The cell-centered finite volume method will be employed to solve
the transformed PDEs. Note that

ux = 1

J
[(y�u)� − (y�u)�], uy = 1

J
[−(x�u)� + (x�u)�],

where J = x�y� − x�y� is the Jacobian of the coordinate transformation. Using the above formulas, the
(2.7) becomes

ut + 1

J
(y�f (u)− x�g(u))� + 1

J
(x�g(u)− y�f (u))� = 0, (�, �) ∈ �c, (2.8)

where �c is the computational domain with a uniform grid (�j , �k). For convenience, we write the above
equation in a simpler form:

ut + 1

J
F(u)� + 1

J
G(u)� = 0. (2.9)
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The above system is again of the conservative form and can be solved using a finite-volume approach.
Denote the control cell [�j , �j+1] × [�k, �k+1] by Aj+ 1

2 ,k+ 1
2

and the cell average value by

ūn
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= 1
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where a mid-point rule is used in the first step. Similar approach can be used to treat the term involving
J−1w�. Integrating Eq. (2.9) over the cell [tn, tn+1] × Aj+ 1

2 ,k+ 1
2

in the computational domain leads to

ūn+1
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= ūn

j+ 1
2 ,k+ 1

2
− �tn

Jj+ 1
2 ,k+ 1

2

⎛
⎝ F̄ n

j+1,k+ 1
2
− F̄ n

j,k+ 1
2

��
+

Ḡn
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The one-dimensional Lax–Friedrichs numerical flux

f̄ (a, b)= 1
2 [f (a)+ f (b)−max |f ′(u)|(b − a)]

will be applied to F̄ , Ḡ respectively:
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2
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2
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)
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)
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In order to compute (2.11), we construct a piecewise linear approximation as follows:
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A semi-discretized difference equations can be obtained from the fully discretized (2.10), which will be
solved by a 3-stage Runge–Kutta method proposed by Shu and Osher [16]. More precisely, for the ODE
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system u′(t)= L(u) we use

u
(1)
jk = un

jk + �tL(un
jk),

u
(2)
jk =

3

4
un

jk +
1

4

[
u

(1)
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The above ODE solver satisfies the total variation non-increasing property.

3. E and Shu’s problem revisit

E and Shu [10] studied the small-scale structures in two-dimensional Boussinesq convection in the
absence of viscous effects. The governing equations of continuity and motion for an incompressible,
inviscid fluid in the presence of gravity are, respectively,

�t + u · ∇�= 0, (3.1)

ut + u · ∇u=−∇p + �gj, (3.2)

∇ · u= 0, (3.3)

where p is the pressure, � is the density (usually this should be the temperature and denoted by T or �,
but we are accustomed to call it density, and therefore denote it by �), u = (u, v) is the velocity, g is the
gravitational constant, and j is the unit vector in the upward vertical direction.

In two-dimensional, the above system of equations can be re-written using the stream function-
vorticity formulation. Let �=vx−uy be the vorticity. The velocity u=(u, v) is determined by the stream
function �:

u= �y, v =−�x . (3.4)

It is convenient to re-write (3.1)–(3.3) in the stream-function vorticity formulation:

�t + u · ∇�= 0, (3.5)

�t + u · ∇�=−�x , (3.6)

−��= �. (3.7)

Several existing studies show that this problem is extremely difficult both numerically and analyti-
cally. Although short time existence can be shown for sufficiently smooth initial conditions, it is un-
clear if a solution can lose regularity and become singular in finite time. Following Beale et al. [2], E
and Shu [10] proved that if a singularity develops in the Boussinesq flow at a finite time T ∗, such as
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‖u(·, T ∗)‖m + ‖�(·, T ∗)‖m =+∞, then∫ T ∗

0
|�(·, t)|∞ dt =+∞,

∫ T ∗

0

∫ t

0
|�x(·, s)|∞ ds dt =+∞, (3.8)

where ‖f (·)‖m denotes the m-norm in Sobolev space and |f (·)|∞ =max(x,y)∈R2 |f (x, y)|. It is assumed
that m > 2 and that the initial conditions for u and � lie in Hm(R2). In particular, E and Shu provide the
minimum rate of self-similar blow-up if a singularity develops at T ∗:

|�(·, t)|∞ ∼ c1

T ∗ − t
, |�x(·, t)|∞ ∼

c2

(T ∗ − t)2 . (3.9)

In [10], the gravitational constant g is normalized to be 1 and the following initial boundary conditions
are considered:

�(x, y, 0)= 0, �(x, y, 0)= 50�1(x, y)�2(x, y)[1− �1(x, y)], (3.10)

where

�1(x, y)=
{

exp

(
1− �2

�2 − x2 − (y − �)2

)
x2 + (y − �)2 ��2

0 otherwise,
(3.11)

�2(x, y)=
⎧⎨
⎩exp

(
1− (1.95�)2

(1.95�)2 − (x − 2�)2

)
|x − 2�|< 1.95�

0 otherwise.

(3.12)

The initial density contour and the corresponding adaptive mesh are plotted in Fig. 1. Obviously, the
given data are smooth. The initial adaptive grid is obtained by using 100× 100 mesh.

In this work, we will apply the adaptive mesh method to the system (3.5)–(3.7). All the three equations
are transformed to the computational domain on which the resulting system is solved with a uniform
mesh. The density �, vorticity � and stream-function � are defined at the cell center, while the velocity
u is defined at the cell edges. The discretization for the stream-function Eq. (3.7) leads to a large sparse
positive definite linear system. We use a multigrid preconditioned conjugate gradient (MGPCG) iteration
method to calculate the stream-function �, and compute the velocity u using the Eq. (3.4) with a central
difference approach. Both the mesh equation and the Boussinesq equations (3.5)–(3.7) are discretized in
the logical domain which is equipped with a (fixed) uniform mesh.

3.1. Evolution of the bubble

In [10], E and Shu employed two high-order numerical methods, namely Fourier-collocation spectral
method and ENO3 method, to solve the Boussinesq system (3.5)–(3.7) with initial values (3.10)–(3.12)
on a uniform mesh. The small structures are resolved with very fine meshes, namely 15002 mesh points
for the spectral method and 5122 points for the ENO3 method. In this subsection, we will present some
adaptive results, hoping to resolve the small structures of the Boussinesq flow with less mesh points. The

monitor function used for (2.5) is �=
√

1+ 0.2|∇̃�|2.
In Fig. 2, the density and vorticity contours at t = 1.6 are plotted using 3002 and 4002 mesh points,

respectively. At this time, the flow looks like a rising bubble. It is observed that there is almost no
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Fig. 1. Initial density contours (left) and adaptive mesh redistribution Nx =Ny = 100.

difference between the numerical solutions obtained by using 3002 and 4002 mesh points, implying that
it is sufficient to resolve the flow at t = 1.6 with the 3002 mesh points.

The solution contours at t = 3 is plotted in Figs. 3 and 4. By now the outer boundary of the bubble
has become a sharp front, and the flow becomes more complicated and many small scale structures are
formed. It is observed in [10] that as the bubble rises, it leaves behind a long and thin filament of light
fluid. They claimed that the thin filament is a check on the amount of numerical diffusion present in
a numerical scheme: a low-order method with numerical viscosity will destroy the thin filament. It is
seen from Fig. 3 that the thin filament is obtained by using 3002 grid. In fact, the numerical results with
finer grids are graphically indistinguishable with those presented in [10] which were computed on a
15002 grid.

It is observed in Fig. 5 that the maximum and minimum density are almost preserved, which is in
good agreement with the physical property. Relatively speaking, the maximum of density is not perfectly
satisfactory, which is caused by the numerical scheme. Our algorithm is only second order accurate, thus
numerical viscosity is introduced, and consequently sharpness is slightly smeared.

In Figs. 6 and 7, we plot the solution at some selected cut-lines in order to see the detailed small
structures. Clearly, at t = 2.5, both the density and the vorticity are very steep in some local regions.
Also it is seen that the density is axis-symmetric and the vorticity is anti-axis symmetric. No oscillation
is caused by the numerical scheme. It is seen from Fig. 7, the density along the symmetry axis becomes
sharper, while the maximum is preserved. The density reaches its maximum at the top of the cap. The
evolution of the density along the symmetry axis is similar to the formation of a one-dimensional shock
out of smooth initial data.

In Figs. 8 and 9, we plot the solution at t=3.16. At this time, the flow becomes even more complicated,
and many sharp small structures are developed.
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Fig. 2.Adaptive solution for the Boussinesq problem at t=1.6. Left: density contour; right: vorticity contour. Top: Nx=Ny=300;
bottom: Nx =Ny = 400.

3.2. Some computational details

In Table 2, we show the compressed ratio of the adaptive mesh at different time levels. From this table,
it is found that at the initial time the adaptive mesh is almost uniform due to the smoothness of the initial
data. As the time gets larger, the compressed ratio becomes bigger, which implies the regularity of the
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Fig. 3. Adaptive solution for the Boussinesq problem at t=3. Left: density contour; right: vorticity contour. Top: Nx=Ny=300;
bottom: Nx =Ny = 400.

solution becomes poorer. In Table 2, the maximum and minimum meshes are defined as

max �x =max
j,k
{�xj,k}, min �x =min

j,k
{�xj,k},

where �xj,k =maxp,q∈{1,2,3,4} {|xp − xq |}, with xp, xq the four nodes of the cell Aj,k . The max �y and
min �y are defined similarly. Also in Table 2 |Aj,k| denotes the area of the cell Aj,k .
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Fig. 4. Adaptive solution for the Boussinesq problem at t = 3 with Nx =Ny = 500. Top: density � contour; bottom: vorticity �
contour.

To compute the stream function Eq. (3.7), we need to write it in the computational domain, which
leads to a large sparse positive definite linear system of the form Lx = f . Since the coefficient matrix
L depends on the coordinate transformation, we have to solve the linear system at each time level. This
requires a fast solver for the calculation of Lx = f . We employ the MGPCG method which is briefly
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the numerical result is stable and no oscillation occurs. Right: �x at t = 2.5, y = �.

outlined below:

• Given the initial guess x0, r0 = f − Lx0, Ll r̃
0 = r0, p0 = r̃0.

• 	i = (r̃ i , ri)/(pi, Llp
i).

• xi+1 = xi + 	ip
i .

• ri+1 = ri − 	iLlp
i , check convergence.
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• relax Llr̃
i+1 = ri+1 using multigrid method.

• 
i = (r̃ i+1, ri+1)/(r̃ i , ri).
• pi+1 = r̃ i+1 + 
ip

i .
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Table 2
Boussinesq problem: adaptive mesh with Nx =Ny = 400

t = 0 t = 1.6 t = 2.5 t = 3

�x max �x 0.0158 0.0436 0.0732 0.0798
min �x 0.0157 0.0109 0.0043 0.0028
max/min 1.0058 4.0032 7.0691 28.1504

�y max �y 0.0158 0.0475 0.0904 0.2476
min �y 0.0156 0.0122 0.0039 0.0027
max/min 1.0131 3.8882 22.8822 91.2458

|Ajk | max |Ajk | 2.4756e−04 6.4874e−04 0.0011 0.0036
min |Ajk | 2.4459e−04 1.2542e−04 3.8312e−05 2.6960e−05
max/min 1.0121 5.1727 28.6289 133.1909

The largest and smallest sizes and their ratio at t = 0, 1.6, 2.5, 3.

In the first step the initial guess for x0 can be taken as the related numerical results obtained in the previous
time level. The matrix Ll is an approximation to the original problem matrix L. In our computation, we
employ a robust multigrid method that uses matrix-dependent prolongation written by Zeeuw [22]. This
particular multigrid method can efficiently handle the high-contrast variable coefficients introduced by
the mesh map. Zeeuw’s multigrid code is designed for 9-point scheme with Dirichlet boundary condition.
Here, the Boussinesq problem is subject to periodic boundary condition, so we apply the multigrid
method to Llr̃= r with homogeneous boundary condition. The outer CG loop satisfies periodic boundary
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Fig. 11. Adaptive mesh for Boussinesq problem with Nx =Ny = 300 at t = 3.

condition. Both the tolerances for the outer CG loop and the inner multigrid loop are taken as 10−8.
In average, when the MPPCG is called at each time level, it takes 2–3 CG iterations and 3–4 multigrid
iterations. Therefore, the cost for computing the stream function is not too expensive.
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In our computation, the CFL number is chosen as 0.5. The variation of time step with time is plotted
in Fig. 10. As expected the time step becomes smaller when the solution singularity is developed. In this
case, the minimum size of the cell volume will become very small, see Table 2. In Fig. 11, we present the
mesh redistribution at t = 3. Obviously, more grid points are clustered in the regions with sharp solutions
or small structures.

4. Concluding remarks

In this work, an adaptive moving mesh method is applied to the two-dimensional incompressible
Boussinesq system. Both the mesh generation equation and the underlying Boussinesq problem are
solved in the computational domain. Particular attention is paid to preserve the conservation properties
of the system. A fast solution solver MGPCG is applied to solve the large linear system. The numerical
results demonstrate that our numerical approach can resolve the small-scale structures developed in the
Boussinesq convection. There is no numerical oscillation occurred throughout the bubble evolution.
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