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are used to solve stochastic diffusion equations in random media, where some properties
for the coefficient matrix of the resulting system are provided. They also posed an open
question on the properties of the coefficient matrix. In this work, we will provide some
results related to the open question.
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In [5], Xiu and Shen consider simulations of diffusion problems with uncertainties, which yield the following stochastic
diffusion equation:

MOELD 5 (1(x.y) Vit 3,) + (X ,0), Ve 0, e (0.T) 0

u(x7.V7O) :uO(X,y), u('7y7 t)'BQ :07 (2)

where x = (x1,...,%)" € Q@ C R% d=1,2,3 are the spatial coordinates, and y = (y1,...,yn) € RY, N > 1, is a random vector with
independent and identically distributed components.
The steady state counterpart of Egs. (1) and (2) is

-V (K(va)vxu(xvyv t)) :f(x’.V# t)v u("y’ t)'BQ = 07 Vx € Q. (3)

It is assumed that the random diffusion field takes a simple form
N
K(X,Y) = Ko(X) + Y Ki(X)Y;, (4)
i-1
where {}ci(x)}?’zo are fixed functions with rxg(x) > 0, Vx. For well-posedness, the following assumption is made

K(X,Y) = Kmin >0, Vx,y. (5)
The Pth-order, gPC approximations of u(x,y,t) and f(x,y,t) are of the form
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M M
Uy 0 ~ 3 Un® OPu), FEY.OS fult)Buy), (6)
m=0 m=0
where M = < > ) are N-variate orthonormal polynomials of degree up to P. They are constructed as product of a

sequence of univariate polynomials in each directions of y;, i=1,...,N, i.e,

Pn(Y) = bm, (V1) Py Wn)s M1+ +my <P,

where m; is the order of the univariate polynomials of ¢(y;) in the y; direction for 1 < i < N. These univariate polynomials are
orthonormal (upon proper scaling), i.e.,

/¢i(Yi)¢k(Yi)Pi(Yi)in =0k, 1<i<N,

where p;(y;) is the probability distribution function for random variable y;. The type of the polynomials ¢(y;) is determined by
the distribution of y;. For example, Hermite polynomials are better suited for Gaussian distribution, Jacobi polynomials are
better for beta distribution. For detailed discussion, see [6].

For the N-variate basis polynomials @,,(y), each index 1 < m < M corresponds to a unique sequence my,...,My, and they
are also orthonormal

E[@n(y) Baly)] = / DY) Ba(y) pY)Y = S,

where p(y) = IT\, p;(¥;)-
Upon substituting Eq. (6) into the governing Eq. (1) and projecting the resulting equation onto the subspace spanned by

the first M gPC basis polynomials, we obtain for all k=1,...,M,

07/1(

Zv aJk )Vyk) +ﬁ<(X t) (7)
where
N
Qi = ZKi(X)eijh 1<kj<M,

euk—/y. )pWdy, 1<kj<M 0<i<N.
Denote v =(2,...,uy)" and A(x) = (aj)1<jk<m- By definition, A = AT is symmetric. The gPC Galerkin equations (7) can be writ-
ten as:

X0 =V(AV,0) +F, ®

(X7O) = Uo(X), 11(-7 t)‘i){) =0. (9)

This is a coupled system of diffusion equations, where vy(x) is the gPC expansion coefficient vector obtained by expressing
the initial condition of (2) in the form of Eq. (6).
Similarly, the following steady state decomposition can be obtained:

V- (AVyv)=f, v(x,0) = vo(x). (10)

After some simple algebra, it can be verified that the components of A(x) satisfy

N
a; = Ko(X) + Y Ki(x)by, (11)
i=1
N
> lawl = D Ikillay + ¢l (12)
k= i=1
where by, a;,c; are the coefficients of the recurrence relation of corresponding normalized polynomials in y; direction,
namely,
P‘?‘vﬁ — POC B b _P?(./i _P?(_[i 13
Xj ( ) aj J+‘1( )+ S} (X)+Cj’ jfl(x)' ( )

Since for every i, y; are assumed to be have the same distribution, we then have the same recurrence relation formula for
every direction, thus for donation simplicity, we can drop the subscribe i and just use a;, bj, ¢j in the recurrence relation.
We have the following lemmas [5]:
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Lemma 1. The matrix A(x) is positive definite for any x € D, moreover, each row of A(x) has at most (2N + 1) non-zero entries.

Lemma 2. Assume that the random variables y;, 1<i<N, have either an identical Beta distribution in (- 1,1) with
p(vi) = (1 —y)(1 +y,;)% or an identical Gamma distribution in (0, +co) with p(y;) = y*e™V, where o. > —1 and the scaling constants
are omitted. Then, the matrices A(x) derived via the corresponding gPC basis are strictly diagonal dominant Vx € Q. More precisely,
we have
M
QG = Kimin + Z lapl, 1<j<M, VxeQ. (14)
k=1 k#j

Open questions in [5]: it is stated in [5] that it is an open question whether Lemma 2 holds for general Beta distributions
in (—1,1) with p(y;) ~ (1 —y)*(1 +y)%, o # B, o, > —1.

The purpose of this paper is to provide an answer to the above open question. More precisely, we will prove the following
result:

Theorem 1. (I) Assume that the random variables y;, 1<i<N, have an identical Beta distribution in (- 1,1) with
o) = (1 —y)%(1 +y;)!, satisfy that

1
2 b
or (1) the random variables y;, 1 <i< N, have an identical Gamma distribution in (0, +oc) with p(y;) = y*e™i, where a.> —1 and

the scaling constants are omitted.
Then, the matrices A(x) derived via the corresponding gPC basis are strictly diagonal dominant Vx € €, i.e,

Gj = Kmin+ »_laxl, 1<j<M, VxeQ (15)
k#j

@ >3, Ifl>5. (of course f, o> 1)

Proof. We recall the classical Jacobi-polynomials (see, e.g., [1,3,4]) {P**}>*,, which the terminal value follows
n+o
= ("), (16)

where for integer n,

z\ I'z+1)
<n>*r(n+1)r(n—z+1)’ (17)

and I'(z) is the usual Gamma function. For notation simplicity, we will denote w =2n+ o + f in the following. The Jacobi-
polynomials satisfy the orthogonality condition

and recurrence relation
XPy(X) = APty (%) + baP () + oy, () (19)
with
2t Dntetprl) B — o ¢, =2+ +p) (20)

(w+ 1) (w+2) T o+2) o(w+1)

To work with the L?(o, §)-normalized polynomials, we define

T)gﬁ _ pz,/f/ /h:-ﬁ7 (21)

where

wp 2PN T a+ DI+ f+1)

" 2n+oad+p+1 I(nto+p+Tnt (22)

which are orthonormal.
By Egs. (18)-(22), after some algebra, we can drive the recurrence relation for the normalized Jacobi-polynomials

XPHH(x) = @, P27 (X) + baP4P (X) + €. P2, (x) (23)
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with

(0 + 1) (w+2)*(w+3) ' (24)

P e o [nn+a)(n+p)(n+otf) (25)
ww+2) "7 (- (@+1)

. 2\/(n+l)(n+oc+1)(n+ﬁ+l)(n+oc+ﬂ+1)

h =

It is easy to see that

Gp =Cni1, Gn,Cn =0, 0<b, <1, Vo, f>-1, n>1. (26)

(Li): Case o = p. For this special case, we have

. Jm+D(n+20+1) .
an_¢ @t w3 @ =0 b= -

and
~ n+1)(w+1) 1 1 — 402
a, = =y|st 28
\/(n+2a+1)(w+3) I Ao Do 3) (28)
We can see that 3, < 1/2, when 1 — 402 < 0, for all n, which yields
1

0<On+Ci=0n+0y1 <1, |af = vn = 1. (29)

i )
Then, substituting y; = i(al +¢;) into Eq (5) separately and using together Eqgs. (11) and (12) yields the inequality (15).
(Lii): Case o # . We first assume that % > o%. Note

an2\/(n+1)(n+oc+1)(n+ﬂ+1)(n+oc+ﬁ+1)21 1—(a+p)> \/1+—(a_ﬂ)2

(@+1(@+ 27 (0+3) Vi Gor D+ g0 27

We know form the above equations that 3, < 1/2 if 1 — (a + )* < 0. Therefore,
A <@g+ —bya<1, vn

Now we check for @, + d_1 + b,. We have

1 1—@+p?* 1 —(@-p 1 1—(@+p* 1 —(@-p)°
””*a"’_z\/4 4(w+1)(w+3)\/71+4(w+2)2+2\/4_1+4(a)—1)(w+1) 47 o

—=p) ——p’ 1 (atp)
w2 A T2e-n3)

Consequently,

(=p°  (@=p’ (+p’-1 -0
dwr27 | d0r 2o-D@+3) owt2)
_ (80 —2)[w* + 4w + 0] + P’ +vor + 4

402 (w — 1) (w + 2)*(w + 3)

E=1—(an+0n1+by) =

: (30)

where

2=12[(f — 2w — (o — B2,
= 6[(oc+[)’)2 ~ 1]+ 40— B,

8B(B— o) +8(B — o).
Note that flmw), 4, u, v are all positive due to the assumption $2 > ¢ and the facts (« + )> > 1 and @ > 1, Vn > 1. Furthermore,
it is clear that ¢ > 0 if we require that (for the leading term w*) 8¢> —2 > 0, i.e.,

N N ~ 1
[(Gn + Gn1 +by)| < 1, V|ﬂ\>|a\>j, n>1.

For cases of n = 0,1 the proof is trivial. So again we can substitute y; = 5],,» + ((1],,» + Eji) into Eq. (5) separately and this will lead
to the inequality (15).
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As to the case o > f2, we can use the same methods as above and we will arrive at || > |§| > 1/2. Using together the two
cases yields the desired results of part I in Theorem 1.
(I): Case of the Gamma distribution.
Now we recall the generalized Laguerre polynomials

[ ey Z <o<+n+z>.%"’ (31)

which satisfy the orthogonality condition

/ e LD (0L (x)dx = w(m (32)
0 .
and the recurrence relations

LY () = —(n+ VLY, (%) + 20+ o0+ LY (x) = (n+ o)L, (x). (33)
We shall prefer to work with the normalized polynomials, that is

= (o)

100 (x) = L, (x)7 hz:F(nJrochl). (34)

hi n!

For the normalized gLPs, we have the following recurrence relations
XLP (X) = anLy), (%) + baLi? (x) + caL”; (x) (35)
with
ap=—-Mn+o+1), by=2n+a+1, c,=-n (36)
For the Gamma distribution, since y € [0,00), letting y =0 and y — oo in Eq. (5) leads to
Ko(X) > Kmin, Ki(x)>0, 1<i<N, VxeD. (37)
This, together with the facts that a, + ¢, = —b,, and Eqgs. (11) and (12), lead to the desired result (15).

Remark 1. We remark that in the proof for the Beta distribution, it is essential to make sure that a, + ¢, < 1. Otherwise, we
may fail to get a strictly diagonal dominant matrix. To see this, let us recall normalized Legendre polynomials (o= =0)
which satisfy

~ n+17> = n2 -
XLy (x) = anﬂ(xH mLM(x). (38)

We can see that for a fix n (for example, n = 3), a, + ¢, > 1. We assume one dimension for the parameter space and set in Eq.

(4)

1
e <l <
such that
KX, y) =1+ K1(x)y. (39)

It is clear that x(x,y) satisfy assumption (5). Moreover, it is also true that

> lani] = 11 (%)[(@n + Cn) > 1 = Ko(X) = Qun,
k#n

which means that the matrix A(x) is no longer strictly diagonal dominant.

Remark 2. Note that the random media is assumed to have a structure of truncated K-L expansion [2], namely,

(X y = KO + Z le yn (40)

where Kg(x) > 0 is the mean diffusivity, Zf’ﬂ /7 is the fluctuations, and {y;} are independent random variables, and {4;, xi(x)}
are the eigenvalues and eigenfunctions for

/ C(x,2)ki(2)dz = Jiki(x), i=1,2,..., (41)
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where ((x,z) is the covariance function for x(x,y), and usually 4; decay to zero as i goes to infinity. The point is that if the
fluctuation is small, we have that
Ko(X) = Kmin >0, VX, y.

Assume, especially,

Ko(X)
2 b

Then we can prove in this case that the resulting matrix A(x) is strictly diagonal dominant for all «, > —1 for the Beta dis-
tribution. More precisely, we have

Ko(X) = Kmin > VX,y. (42)

Theorem 2. If the random field satisfies a further condition like Eq. (42), then the matrix A(x) is strictly diagonal dominant for all
o, f>—1.

Proof. In fact, we only need to fill the gap of |«|, || < 1. Indeed, for these cases, we have for all n
~ (n+(n+o+1)(n+p+1)n+a+p+1) 1 1—(a+p)>° 1 —(o—p)>
a, =2 5 =24/ -+ 5
(@ +1)(w+2)*(w+3) 4 4do+1)(w+3)4 4w+2)
2
<\/]+ 1 @rp 2

4 4w+1)(w+3) 3

where w =2n+ o + 8, and

F-o? 1
h=——"a-<73.
ww+2) 3
Consequently
by £ (an + Cn) -1
2
Then substituting y; = (~j, + (flj, +;1))/2 into Eq. (5) gives
KoX) & by K)o (@G
2 KNG > K =5 D R = (43)
which implies
N N
Ko(x) + > Ki(X)by > Y [i(X)|(a; + ;). (44)
i—i i=i

This completes the proof. O

Remark 3. It is noted that the numerical example used in [5] for steady state case satisfies condition (42), which explains
why the authors find their method is stable for all cases of o and p.
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