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Abstract

The method of calculating the system of gas dynamics equations coupled with the chemical reaction equation is con-

sidered. The flow parameters are updated in whole without splitting the system into a hydrodynamical part and an

ODE part. The numerical algorithm is based on the Godunov�s scheme on deforming meshes with some modification

to increase the scheme-order in time and space. The variational approach is applied to generate the moving adaptive

mesh. At every time step the functional of smoothness, written on the graph of the control function, is minimized.

The grid-lines are condensed in the vicinity of the main solution singularities, e.g., precursor shock, fire zones, intensive

transverse shocks, and slip lines, which allows resolving a fine structure of the reaction domain. The numerical examples

relating to the Chapman–Jouguet detonation and unstable overdriven detonation are considered in both one and two

space dimensions.
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1. Introduction

Modeling detonation wave motion in gases has started in 1940s, see, e.g. [26,59], based on the theory of

the steady one-dimensional detonation, referred to as the Zeldovich–Neuman–Doering (ZND) model. The

early computations were rather rough giving only a qualitative estimate to the solution. The main difficulty

of the numerical simulation is due to the different scales of the flow domain and chemical reaction zone.
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Thus, the simulation for the real objects requires using more powerful computers or more sophisticated

numerical algorithms.

Developing the numerical algorithms is executed in several ways. In the first group the burning zone is not

resolved by the grid points. Instead in [16] the chemical heat release is put into the Riemann problem. This

idea is used in [28] as well. In [15], the chemical reaction term is present only to the energy equation, the kinet-
ics equation is omitted and the Riemann problem is formulated for the non-reactive gas. Although the det-

onation wave speed is obtained rather inaccurately, the calculations of the real industrial objects with

complex geometry are found satisfactory. In the second group of the algorithms, the burning zone is resolved

by putting there several grid points in the normal direction. This requires to use very fine quasiuniform

meshes. In the most of these algorithms one applies the fractional step approach (also referred to as the

Strang splitting schemes). At each time step, first, the system of conservation laws is treated and then the

ODE to the kinetics equation is solved, e.g., see [8,17,30,44,45,54]. Although the convergence of the frac-

tional step method was justified theoretically for scalar conservation laws with source terms [19,52,53], the
application for this approach for hyperbolic system with stiff source terms generally produces the non-phys-

ical solution, e.g., see [17]. Another way is to treat the system of conservation laws coupled with the reactive

equation as a whole, i.e., using the unsplit schemes. In this approach the heat release term in the right part of

the system is treated as a source term. In [7], the generalized Riemann problem is introduced for the reactive

equations to provide the second-order approximation in time. In [20], the detonation process is simulated on

the Lagrangian mesh. Space-time paths are introduced in [43] on which the equations are reduced to the

canonical form about the ‘‘new’’ Riemann invariants. All the above methods are of Godunov-type (except

[16], where the random choice method is used), i.e., include solution of the Riemann problem that allows
obtaining the narrow wave front rather precisely. In contrast to it, the random projection method is used

in [6] where the Riemann problem is omitted from the consideration. However, justification of such a sim-

plification is still under the question. Some other non-Godunov-type algorithms can be found in [42].

In this work, we present an unsplit scheme for calculating the reactive flow equations on the moving

meshes. For this we utilize the idea of the Godunov�s scheme on the deforming meshes (see the monographs

[1,32]), when the conservation laws are written in the integral form using the so-called generalized formu-

lation in R3 space (x,y, t) (t is time). This allows updating the flow parameters directly on the moving cur-

vilinear mesh without using interpolation. One implementation of the first-order Godunov�s method on the
moving mesh with front tracking was performed in [27]. In some sense such a kind of schemes can be re-

ferred to as an ALE approach, cf. [29].

In [2], a modification of the Godunov�s scheme of the second-order accuracy in time and space was sug-

gested, because the first-order original scheme in [32] does not provide proper grid-nodes adaptation to the

solution singularities. The second order in space is achieved by interpolating the flow parameters inside

the cells, and in time by using the Runge–Kutta method with a predictor–corrector procedure. To obtain

the fluxes value at the cell sides the Riemann problem is solved. The kinetics equation is treated similarly,

namely we write it in the integral form and approximate it in the hexahedron cell in space (x,y, t).
The variational approach is employed to generate the moving mesh. The variational approach to gen-

erate two-dimensional meshes was suggested in the form of quasi-conformal mapping in [31]. In [56], the

variational principles for constructing the adaptive moving grids in the gas dynamics problems were formu-

lated. They introduced the measure (or functional) of mesh deviation from the Lagrange coordinates, mea-

sure of mesh deformation and mesh concentration. In [10], the functional of smoothness was applied, to

which the Euler–Lagrange equations coincide with the system used in [58]. In [40], the problem of minimiz-

ing the functional of smoothness (also referred to as the harmonic or Dirichlet�s functional) written for a

surface of the control/monitor function was formulated to construct an adaptive-harmonic mesh. Other
forms of the monitor functions for the harmonic functional have been considered in [11,21,51]. In contin-

uous approach the harmonic mapping, subject to some known conditions, is a homeomorphism. However,

its discrete realization, based on solving the Euler–Lagrange equations, suffers from mesh tangling in the
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domains with complex geometry (e.g., non-convex domains with singularities on the boundary). To provide

an one-to-one harmonic mapping at the discrete level, it has been suggested in [13] to use a variational bar-

rier method, which constructs the mapping by minimizing the harmonic functional. The functional is

approximated in such a manner that there is an infinite barrier ensuring all grid cells to be convex quadri-

laterals. In [36], the barrier method is also used together with some geometric constrains, since in the
corners of the cell that barrier disappears. The approach from [13] has been extended to the adaptive grid

generation in [14]. In [2–5], this approach has been applied to the two-dimensional problems of gas dynam-

ics in non-convex domains, where the control function is one of the flow parameters or superposition of

several parameters. In [4], the algorithm of redistributing the boundary nodes at adaptation, consisting

in constrained minimization of the functional, was suggested. In the present work, we demonstrate that

by condensing the grid lines we can better resolve main singularities in the vicinity of the detonation wave,

such as a precursor shock, fire zones, intensive transverse shocks and slip lines.

This article has the following structure: in Section 2, we will consider several aspects in the one-dimen-
sional case, including governing equations, boundary conditions, numerical scheme, the Riemann problem

on the moving mesh, and stability condition; the two-dimensional case will be considered in Section 3; in

Section 4, the grid generation method will be presented; and in Section 5, several detailed numerical sim-

ulations will be reported.
2. One-dimensional case

2.1. System of equations

The system of the conservation laws governing the gas flow in Euler approach and coupled with the irre-

versible chemical reaction equation reads
or

ot
þ oa

ox
¼ c; ð1Þ
where r = (q,qu,E,qZ)>, a = (qu,qu2+p,u(E+p),quZ)>, and c = (0,0,0,�qZK(T))>. Here, u, p, q, E, T, Z
are, respectively, the velocity, pressure, density, total energy, temperature, and mass fraction of the unburnt

gas. The total energy is E = q(e+0.5u2) + qoqZ, where e and qo are the specific internal energy and heat

release, respectively. The equation of state is p = (c � 1)eq, where c, the ratio of the specific heats, is as-

sumed to be the same in the burnt and unburnt gases. The temperature is T = p/qR, where R is the specific

gas constant. In order that the Cauchy problem to the system (1) without chemical reaction (added with the
law of increase of the entropy s across a shock) has an unique solution, the internal energy as a function

e = e(v, s) must be convex with respect to its arguments, i.e., the specific volume v = 1/q and entropy s. More

precisely
evv > 0; evvess � e2vs > 0: ð2Þ

Moreover, e(v, s) should satisfy the additional restrictions, suggested in [57]
evs < 0; evvv < 0: ð3Þ

Note that till now a strict mathematical justification for uniqueness of the Cauchy problem has not been

given (only in a linearized approach, see, e.g. [33]). On the other hand the statement of uniqueness has been
confirmed by over 50 years numerical practice.

The internal energy e of the ideal gas satisfies the conditions (2) and (3). The function K, referred to as

the reaction rate, depends on the temperature T via the Arrhenius kinetics
KðT Þ ¼ Ko expð�Eþ=T Þ; ð4Þ
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where E+ is the activation energy, and Ko is the rate constant. Sometimes this reaction rate is replaced by a

discrete ignition temperature kinetics model
KðT Þ ¼
0; if T < T ign;

1=so; otherwise;

�
ð5Þ
where Tign is the ignition temperature, so is the time scale of the chemical reaction.

For the steady ZND model, we can integrate the first three ODEs in (1) and obtain the algebraic equa-

tions connecting the values ahead and behind the Chapman–Jouguet (CJ) detonation wave moving with the

velocity DCJ [26,59]. As a result, the reactive equation becomes the ODE for the mass fraction Z. The result-

ing ODE can be integrated numerically, which yields an exact solution useful for the test modeling. This
model is also used in the case of the overdriven (also referred to as overcompressed [59]) detonation wave.

To construct the numerical scheme on the moving mesh, we will use the system (1) written in the integral

form. Integrating (1) over an arbitrary domain X in the x–t plane gives
Z Z
X

or

ot
þ oa

ox

� �
dxdt ¼

Z Z
X
cdxdt:
By virtue of the Green�s theorem we get
I
oX

rdx� adt ¼
Z Z

X
cdxdt; ð6Þ
where the line integration is performed along the boundary oX of the domain X in an anticlock-wise

manner.

2.2. Boundary conditions

Assume the detonation wave moves from the left to the right. Then ahead the wave there is the unburnt

gas and behind (strictly speaking at the infinite distance) the completely burnt gas. Consider the matter that

under what boundary conditions ahead and behind the detonation wave then the IBVP is well posed. To

understand it, we analyze the linearized system of the gas dynamics equations written in the differential

form as it is usually performed, see, e.g. [32]
o

ot

q

u

p

0
B@

1
CAþ

uo qo 0

0 uo 1=qo

0 qoc
2
o uo

0
B@

1
CA o

ox

q

u

p

0
B@

1
CA ¼ 0; ð7Þ
where qo, uo, po are the constant values, q, u, p are small perturbations, and co is the sound speed. This

system in a standard manner can be reduced to the canonical form
oe

ot
þL

oe

ox
¼ 0; ð8Þ
where L is a diagonal matrix with the diagonal elements k� = uo � co, ko = uo, and k+ = uo + co. The com-

ponents of the vector e ¼ ðp � qocou; c
2
oq� p; p þ qocouÞ

>
are the Riemann invariants being constant along

three characteristics dx/dt = k�, ko, k+, respectively.
Now consider the detonation wave in the CJ solution. It moves with the supersonic speed relative to the

unburnt gas ahead the wave. For the burnt gas, behind the wave, it moves with the sonic speed. It can be
seen from Fig. 1, that the Rayleigh–Mikhel�son line is tangent to the Hugoniot curve for the burnt gas.

Note that the tangent line inclination to the Hugoniot curve is the isentropic derivative (op/oq)S at point



Fig. 1. On the (p,v) diagram, where v is the specific volume: the process passing the points 0,1,2 on the Rayleigh–Mikhel�son line

corresponds to the CJ solution; and the process passing points 0, 4, 5 is an overcompressed/overdriven detonation.
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2, i.e., the local sound speed squared in the burnt gas (for details of physics see [26,59]). In other words, the

detonation wave path is space-like with respect to the regions ahead and behind it [18]. Thus, the three char-
acteristics impinge on the wave from the unburnt gas and we should define the values of all three invariants

ahead the detonation wave, i.e., the values of u, q, p. From the burnt gas no characteristic impinges the

wave. Thus, no boundary conditions behind the detonation wave, say on the piston, should be specified.

In practical computations we set the transmissive boundary conditions there.

Let us analyze the overcompressed detonation wave flow. This process can also be steady subject to

supporting by the corresponding piston motion [59]. Here, the wave front moves with the supersonic speed

relative to the unburnt gas and with the subsonic speed for the burnt gas. This fact is reflected in Fig. 1,

where the Rayleigh–Mikhel�son line inclination is less than the tangent line inclination at point 5, while
for the weak shock the isentrope coincides approximately with the Hugoniot curve. From the burnt gas

the characteristic k+ arrives the wave, transferring the Riemann invariant value qocou + p. Thus, we need

to define its value, namely u and p on the rear boundary. In practice, one can define only the value of u,

the piston velocity. The value of p in the left endcell will be updated automatically from the finite difference

relation approximating the third equation of (8). Generally speaking, on the rear boundary we can define

the value of p. Then the velocity u in the left endcell is updated automatically. Another question is that we

do not know how to define the pressure in the left end. We may set the value of p equal the atmospheric

pressure if it is an open end of the tube, but the overdriven detonation can not occur in a free mode without
support. On the front boundary again we should define three conditions, i.e., the values of u, p, q. For the
fourth reactive equation of the system (1) the analysis is quite simple. The velocity u is the characteristic (in

the linearized analysis it is the constant value uo). It can be treated by analogy to the second equation of (8).

Therefore, we only need to define the value of Z for the unburnt gas but not for the burnt gas (simply one

uses the transmissive boundary condition). We will return to the discussion on the rear boundary condi-

tions at the end of this section after presenting the numerical scheme.

2.3. Numerical scheme

In the x–t plane, we introduce the moving mesh, see Fig. 2, with spacings at the nth time level

hniþ1=2 ¼ xniþ1 � xni and at the n + 1th level hnþ1
iþ1=2 ¼ xnþ1

iþ1 � xnþ1
i , and time step Dt = tn+1 � tn, where n, i are

positive integers. Furthermore, for conciseness whenever possible, we will omit the superscript and sub-

script for the time index and use convention that, for instance, to the spacing h, using the subscript

hi+1/2 denotes hniþ1=2, the value at the bottom time level n; and superscript hi+1/2 denotes hnþ1
iþ1=2, the value

at the top time level n + 1.



Fig. 2. A quadrilateral (trapezoidal) cell Xnþ1=2

iþ1=2 in the x–t plane, which corresponds to two states of the control volume (xi,xi+1) at time

tn and tn+1, respectively.
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Let at time tn the initial vector-valued function f iþ1=2 ¼ ðu; p; q; ZÞ>iþ1=2 be known at each zone mid point

xniþ1=2, where, for instance, ui+1/2 is the cell-average value of the velocity
uiþ1=2 ¼
1

hiþ1=2

Z xniþ1

xni

uðx; tnÞdx:
Consider the control volume (xi,xi+1) at time tn and tn+1. We can draw conceptually the quadrilateral cell

Xnþ1=2
iþ1=2 in the x–t plane, see Fig. 2. Integrating the system (6) along the contour oXnþ1=2

iþ1=2 , we obtain the system

of the finite difference equations
riþ1=2hiþ1=2 � riþ1=2hiþ1=2 � riþ1hiþ1 þ rihi þ Dtðaiþ1 � aiÞ ¼ 1=2Dt hiþ1=2 þ hiþ1=2

� �
c
nþ1=2
iþ1=2 ; ð9Þ
where the value of ri+1/2 is taken at point xnþ1
iþ1=2, ri and ri+1 at x

nþ1=2
i and xnþ1=2

iþ1 , respectively; hi ¼ xnþ1
i � xni

is the projection of the lateral edge xni x
nþ1
i (further referred to as the ith lateral edge) onto the x-axis. The

function c
nþ1=2

iþ1=2 is taken in the center of the quadrilateral cell. Eq. (9) can be interpreted as a discrete form of

the conservation laws on the moving mesh. Actually, the change of the vector-valued function r in the con-

trol volume (xi,xi+1) within time Dt (first two terms in the left-hand side of (9)) is due the following: motion

of the segment endpoints xi and xi+1 (third and fourth terms); convection (fifth term); and internal source

(right-hand side term).

To update the cell average values fi+1/2 with the second order of accuracy via (9) one needs to know the

fluxes through the endpoints, in other words the values fi, fi+1 at time tn+1/2. We will apply the predictor–

corrector procedure. Besides, one assumes the vector-valued discrete function f to be piece-wise linear with-
in the control volume (xi,xi+1).

At the first stage, predictor, in (9) we set fi = f1, i+1/2, and fi+1 = f2, i+1/2, i.e., take those values at the lat-

eral edges at time tn (superscript n is omitted) instead of at tn+1/2. To find the values at the left and right

zone ends, i.e., f1, i+1/2, and f2, i+1/2 (see Fig. 2), we use the interpolation involving a monotonicity procedure

[2,5]. Note that many interpolation procedures can be used here, for instance, minmod [39] reformulated on

the non-uniform mesh. All of them provide rather similar results for the discontinuous solutions (especially

on the curvilinear mesh in the two-dimensional case). Actually we find some ‘‘effective’’ derivative dfi+1/2

which is used to calculate the values at the zone ends
f 1;iþ1=2 ¼ f iþ1=2 � 0:5df iþ1=2hiþ1=2; f 2;iþ1=2 ¼ f iþ1=2 þ 0:5df iþ1=2hiþ1=2: ð10Þ
We also set c
nþ1=2
iþ1=2 ¼ cniþ1=2. Therefore, the intermediate values �f

iþ1=2
at the n + 1th level can be updated using

(9).

Next, at the second stage, corrector, we obtain the pre-wave values of f at the lateral edges i and i + 1 at
time tn+1/2. With this purpose we set the effective derivative at tn+1 equal to the one at tn [46], i.e.,

d�f
iþ1=2 ¼ df iþ1=2. Then at tn+1 the values at the zone ends for the intermediate function �f

iþ1=2
are obtained
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from the relations similar to (10). Taking the mean of the zone ends values at tn and tn+1 we obtain the pre-

wave states at the lateral edges i and i + 1 at time tn+1/2 as follows:
Fig. 3.

at tn+
f
nþ1=2
1;iþ1=2 ¼ 0:5 f iþ1=2 þ �f

iþ1=2 � 0:5df iþ1=2 hiþ1=2 þ hiþ1=2
� �h i

;

f
nþ1=2
2;iþ1=2 ¼ 0:5 f iþ1=2 þ �f

iþ1=2 þ 0:5df iþ1=2 hiþ1=2 þ hiþ1=2
� �h i

:
ð11Þ
Knowing the pre-wave values f
nþ1=2
2;i�1=2 and f

nþ1=2
1;iþ1=2 from the both side of every point xi, one obtains the end-

points values f
nþ1=2
i and f

nþ1=2
iþ1 by solving the Riemann problem (see Section 2.4). Now we can calculate the

values ri, ri+1, ai, and ai+1. Substituting them into Eq. (9) gives the final values fi+1/2.

The above-described scheme is second-order accurate in both space and time provided that the solution
is smooth in the entire flow domain and the mesh is quasiuniform [2], i.e.
hiþ1=2 � hi�1=2 ¼ O ðhiþ1=2Þ2
� �

:

2.4. Riemann problem on the moving mesh

In the calculations we assume the detonation wave to be resolved by several grid points located in the

burning zone. On the Rayleigh–Mikhel�son line the burning zone is enclosed between the points 1 and 2
(or 4 and 5), see Fig. 1. Thus, we work with the model corresponding to the real physical process, where

the heating shock moves first and behind it is the burning zone. In this model, we can use the Riemann

solver developed for the non-reactive gas, because at point 1 (or 4), immediately behind the precursor

shock, the reaction has not taken place yet.

We apply the Riemann solver developed by Prokopov (published in [32]) based on the exact solution of

the non-heating PDE system (for description of this Riemann solver see also [37]). The ‘‘exact solution’’

means that we determine accurately the wave pattern emerging after left-side and right-side gases (each with

constant parameters) begin to interact.
To demonstrate how to take into account the grid nodes movement let us consider the ith lateral edge of

the cell Xnþ1=2
iþ1=2 within the time interval from tn+1/2 to tn+1. Assume that after solving the Riemann problem

at point xnþ1=2
i we have the wave pattern depicted in Fig. 3. There are five cases for the location of the seg-

ment ðxnþ1=2
i ; xnþ1

i Þ, or the upper half of the ith lateral edge, in the wave pattern depending on the velocity wi

of the ith node. As for the post-wave values f
nþ1=2
i , ðexcept Znþ1=2

i Þ, we take:
Five possible cases of location of the segment ðxnþ1=2
i ; xnþ1

i Þ in the wave pattern. Points 1, . . ., 5 indicate location of the ith node
1.
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1. f
nþ1=2
i ¼ f

nþ1=2
2;i�1=2 if wi < dsh, where dsh is the speed of the left shock.

2. f
nþ1=2
i ¼ f 2 if dsh < wi < dcont, where the vector f2 defines the flow parameters behind the shock, dcont is

the speed of the contact discontinuity which equals to the velocity u in that domain.

3. f
nþ1=2
i ¼ f 3 if dcont < wi < d lft

rar, where the vector f3 defines the parameters in the domain between the

contact discontinuity and left characteristic of the rarefaction wave expanding with the speed d lft
rar.

4. f
nþ1=2
i ¼ /ðx=tÞ if d lft

rar < wi < drght
rar , i.e., we calculate the flow parameters in the rarefaction wave using

the similarity variable x/t. Here, drght
rar is the speed of the right characteristic in the rarefaction fan.

5. f
nþ1=2
i ¼ f

nþ1=2
1;iþ1=2 if wi > drght

rar .

Note that in [32] the above algorithm is applied at time tn.

For the reactive equation, since the characteristic is dx/dt = u, we use the jump condition to find the post-

wave value Znþ1=2
i , see Fig. 4, namely
F

Znþ1=2
i ¼

Znþ1=2
2;i�1=2; if wi < dcont;

Znþ1=2

1;iþ1=2; otherwise:

8<
: ð12Þ
In the center of the quadrilateral cell we approximate the flow parameters by
f
nþ1=2
iþ1=2 ¼ 0:5 f iþ1=2 þ �f

iþ1=2
� �

:

at last, we update the final values fi+1/2 at time tn+1 by using (9).

2.5. Stability condition

In the one-dimensional case, the choice of the admissible time step Dt has a clear physical sense. On the

moving grid Dt is given by
Dt ¼ ccfl min
i

Dtiþ1=2; ð13Þ
where in every cell the local time step is determined by (cf. [32])
Dtiþ1=2 ¼
hiþ1=2

max drght
i � wiþ1;�d lft

iþ1 þ wi

� � : ð14Þ
Here, drght
i and d lft

iþ1 are the extreme right and left wave speeds at points xi and xi+1, respectively, obtained

by solving the Riemann problem, and wi is the velocity of the node xi. The condition (14) means that we

estimate the time within which the left characteristic (in the linearized analysis this is a straight line), ema-
ig. 4. Two possible cases of location of the segment ðxnþ1=2
i ; xnþ1

i Þ in the wave pattern for the chemical reaction equation.
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nating from the i + 1th node, achieves the ith node, as well as the time within which the right characteristic,

emanating from the ith node, achieves the i + 1th node. From these two time steps we take the minimal. If

in some cell Dti+1/2 < 0 (on the moving mesh it can happen), we exclude this cell from consideration in (13).

The condition (14) covers the stability condition for the kinetic equation as well, because here the charac-

teristic extends with the speed of the contact discontinuity. The CFL number ccfl (or coefficient of reserve
[32]) is a correction to the non-linearity of the PDE system. To calculate the node velocity wi, on one hand it

is necessary to know the time step Dt, and on the other hand wi participates in determining Dt. By this rea-

son at time level n + 1, we use Dt obtained at the preceding level n. The coefficient ccfl < 1, usually about 0.5,

may be corrected during the computation.

In the linearized analysis on the fixed grid, we use a sound approach to get Dti+1/2 in each cell
Dtiþ1=2 ¼
hiþ1=2

maxðuiþ1=2 þ ciþ1=2;�uiþ1=2 þ ciþ1=2Þ
; ð15Þ
where the sound speed is equal to c2iþ1=2 ¼ cðp=qÞiþ1=2. The formula (15) can be also used if the mesh-moving

speed is not too high.

Let us return to the matter on prescribing the boundary conditions at the end of the reaction zone.

Besides the �piston� condition, for instance in [38] for the linear stability analysis the �radiation� condition
is also applied. It requires that there is no perturbation to the steady state at the end of the reaction

zone that travels forward, towards the detonation wave from the piston. This, in turn, implies that

the third equation in (7) is excluded by assuming its linear dependence on the first and second ones.

However, such a condition can not be used in non-linear calculations for the following reason. Assuming

the flow is smooth at the end of the reaction zone, the numerical scheme can be constructed by approx-

imating the PDEs in the non-divergent form (7) and, therefore, by treating (8). Now qo and co are the

frozen coefficients in the numerical procedure defined by initial data at the predictor and corrector steps

and depending on the coordinates x, y. We can not eliminate the invariant p + qocou influence on the
forward solution. It would mean the third equation be excluded from the system (8). Besides, the over-

compressed steady detonation mode is only possible under the support provided by this invariant [59].

The unstable detonation mode, which will be considered in Sections 5.2 and 5.3, is only a deviation of

the basic steady state. Thus, one can only prescribe the invariant value at the left endpoint. Due to the

truncation errors this invariant always transfers perturbation to the forward state. The above analysis is

valid also when the third equation of (7) is inhomogeneous with the chemical term in the right-hand

part.
3. Two-dimensional case

3.1. System of equations

The governing system of the differential equations relating to the two-dimensional reactive gas flow is
or

ot
þ oa

ox
þ ob

oy
¼ c; ð16Þ
where r = (q,qu,qv,E,qZ)>, a = (qu,qu2+p,quv,u(E+p),quZ)>, b = (qv,quv,qv2+p,v(E+p),qvZ)>,
c = (0,0,0,0,�qK(T)Z)>, u and v are the velocity components. Now the total energy becomes
E = q[e + 0.5(u2 + v2)] + qoqZ.

We perform calculations utilizing the integral conservation laws which can be derived by integrating the

system (16) and transforming the volume integrals in R3 space (x,y, t) to the surface integrals with the use of

the Gauss�s theorem



Fig. 5. Domain X in space (x,y, t) with the boundary oX = o0X [ o1X [ o 0X. Here, o0X and o1X is the underlying control volume in the

x–y plane at time t0 and t1, respectively.
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Z Z Z
X

or

ot
þ oa

ox
þ ob

oy
� c

� 	
dX ¼ toXrdxdy þ ady dt þ bdtdx�

Z Z Z
X
cdxdy dt ¼ 0:
Here, the domain X with the boundary oX is a homeomorphic sphere in space (x,y, t), see Fig. 5. Hence, the

system can be rewritten in the integral form as follows (such generalized formulation for the non-reactive

gas flow has been suggested in [32])
toXrdxdy þ ady dt þ bdtdx ¼
Z Z Z

X
cdxdy dt: ð17Þ
The meaning of this form is the following. The boundary oX of the underlying domain consists of three

parts: oX = o0X [ o1X [ o 0X. The amount of the parameters (mass, momentum, total energy, and reactant

mass) in the two-dimensional domain, a control volume o0X, at time t0 is equal to
Z Z
o0X

rdxdy:
Since the control volume boundary moves, by time t1 the domain o0X becomes o1X and the corresponding

amount changes to
Z Z
o1X

rdxdy:
The change of the parameters is due to the flux through the moving boundary of the control volume and the

surface stresses (to the momentum and energy equations), which can be expressed as follows:
I
C

ady þ bdx:
Here, the contour C is the boundary of the two-dimensional control volume in the x–y plane, which

changes with time. At t = t0 the contour C is the boundary of the control volume o0X and at t = t1 of
o1X. The change of the parameters within the time (t0, t1) is
Z t1

t0

I
C

ðady þ bdxÞdt ¼
Z Z

o0X
ðady þ bdxÞdt:
Furthermore, we should take into account the reactant mass change due to burning, caused by the source

term in the right-hand side of (16). To this end, we formulate the integral conservation laws as follows. The
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change of the flow parameters (mass, momentum, total energy, or reactant mass) in the control volume is

due to the flux through the moving boundary of the control volume, surface stresses, and internal sources
Fig. 6.

time tn
Z Z
o1X

rdxdy �
Z Z

�o0X
rdxdy þ

Z Z
o0X

ðady þ bdxÞdt ¼
Z Z Z

X
cdxdy dt;
where the sign ‘‘�’’ with o0X indicates the change of the domain orientation. This system can be rewritten in

the brief form (17). The integral conservation laws extends the class of admissible functions since it is not

required that the solution to be differentiable as in (16), and it governs the discontinuous solutions as well.

Of course, logically we should begin the governing equations derivation with the integral form (17), since

the system (16) is a consequence of (17). However, the form (16) is more habitual and that is why it is
presented first.

3.2. Numerical scheme

We introduce the curvilinear moving grid in the x–y plane, and the (i+1/2, j+1/2)th cell at time tn and

tn+1 is shown Fig. 6. We draw mentally a domain X in R3 space (x,y, t), being a hexahedron with planar top

and bottom faces and four ruled lateral faces.

The bottom face of the hexahedron X is the control volume at time tn and the top face at tn+1. Integrat-
ing (17) over the oriented surface, i.e., the boundary oX of the hexahedron, gives a cell-centered finite-

volume discretization of the governing equations
riþ1=2;jþ1=2A10203040 � riþ1=2;jþ1=2A1234 þQ411040 þQ233020 þQ122010 þQ344030 ¼ c
nþ1=2
iþ1=2;jþ1=2X; ð18Þ
where ri+1/2, j+1/2 and ri+1/2, j+1/2 are the average values at time tn+1 and tn in the center of the top and

bottom faces, respectively; A1 02 03 04 0 and A1234 are the areas of the corresponding faces. Each of the four vec-

tor values Q411 04 0, Q233 02 0, Q122 01 0, and Q344 03 0 is the amount of the mass, momentum, energy, and reactant

mass which flows into and out the quadrilateral cell 1234 within time Dt through the corresponding moving

edges of the cell. The value c
nþ1=2
iþ1=2;jþ1=2 is defined in the center of the hexahedron (in other words in the center

of the quadrilateral cell at tn+1/2), and X is the hexahedron volume.
For example, Q122 01 0, the change of the parameters due to the flux through the edge 12 within time Dt, is

given by
Q122010 ¼ r
nþ1=2
iþ1=2;jA

xy
122010 þ a

nþ1=2
iþ1=2;jA

yt
122010 þ b

nþ1=2
iþ1=2;jA

tx
122010 ; ð19Þ
Hexahedron X in R3 space with bottom (1234) and top (1 02 03 04 0) faces, being the cell of the two-dimensional moving mesh at

and tn+1, respectively.
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where r
nþ1=2
iþ1=2;j; a

nþ1=2
iþ1=2;j; and b

nþ1=2
iþ1=2;j are calculated using the parameters f = (u,v,p,q)> in the center of the face

122 01 0, i.e., at the mid-point of edge 12 at time tn+1/2 (or at the mid-point of edge 100200);

Axy
122010 ; A

yt
122010 ; and Atx

122010 are the areas of the projections of the face 122 01 0 onto the coordinate planes x–

y, y–t, and t–x, respectively, given by
Axy
122010 ¼

Z Z
122010

dxdy ¼ 0:5 ðx20 � x1Þðy10 � y2Þ � ðx10 � x2Þðy20 � y1Þ½ �;

Ayt
122010 ¼

Z Z
122010

dy dt ¼ 0:5Dt y20 þ y2 � y1 � y10ð Þ;

Atx
122010 ¼

Z Z
122010

dtdx ¼ �0:5Dt x20 þ x2 � x1 � x10ð Þ:
These expressions are obtained from the formula for the quadrangle 1234
A1234 ¼ Aðx1; y1; x2; y2; x3; y3; x4; y4Þ ¼ 0:5½ðx3 � x1Þðy4 � y2Þ � ðx4 � x2Þðy3 � y1Þ�;

when passing its contour in an anticlock-wise manner.

As in the one-dimensional case, the values fi+1/2, j+1/2 are updated by two stages using a predictor–cor-

rector procedure. At the first stage, predictor, we compute the intermediate values at the n + 1th level
�f
iþ1=2;jþ1=2

by using (18).

Let us consider the curvilinear coordinate n. Assume the function f to be linear within the cell (i+1/
2, j+1/2) in the n-direction. The values fi, j+1/2 and fi+1,j+1/2, specified at the left and right ends of the seg-

ment ((i, j+1/2), (i+1, j+1/2)) at time tn, are defined via
f i;jþ1=2 ¼ f iþ1=2;jþ1=2 � 0:5df iþ1=2hiþ1=2; f iþ1;jþ1=2 ¼ f iþ1=2;jþ1=2 þ 0:5df iþ1=2hiþ1=2: ð20Þ
Here, dfi+1/2 is the ‘‘effective’’ derivative in the n-direction, and the spacing hi+1/2 is the length of the under-
lying segment. Note that dfi+1/2 and hi+1/2 are the short notations for (dfn)i+1/2, j+1/2 and (hn)i+1/2, j+1/2,

respectively. When determining dfi+1/2, to suppress spurious oscillations in the vicinity of discontinuities

the monotonicity algorithm should be applied as that of in the one-dimensional case. The spacing hi+1/2

is given by
hiþ1=2 ¼ 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xniþ1;j þ xniþ1;jþ1 � xni;j � xni;jþ1

� �2

þ yniþ1;j þ yniþ1;jþ1 � yni;j � yni;jþ1

� �2
r

:

By analogy, we calculate the values fi+1/2, j and fi+1/2,j+1, which are specified at the left and right ends of the

segment in the g-direction in the cell. Note, since we interpolate f along the curvilinear coordinate lines n
and g, in general, the order of interpolation is less then 2, and equal 2 only if the mesh is rectangular.

We substitute the determined values of f at the mid-point of the lateral edge 12 of the quadrilateral 1234,
i.e., at time tn instead of the ones at time tn+1/2, in (19) to find the values Q122 01 0. The values Q411 04 0, Q233 02 0,

and Q34403 0 can be found in a similar way. For the parameter c
nþ1=2

iþ1=2;jþ1=2, we use the one at time tn. A good

approximation to the volume X is given by
X ¼ 0:5 A10203040 þ A1234ð ÞDt:

Finally, from (18) we obtain the intermediate values �f

iþ1=2;jþ1=2
at the n + 1th level.

We now discuss the second stage, corrector. As in the one-dimensional case we obtain the values in the
center of the faces 122 01 0 and 344 03 0, i.e., at the mid-point of the edges 12 and 34 at time tn+1/2
f
nþ1=2
i;jþ1=2 ¼ 0:5 f iþ1=2;jþ1=2 þ �f

iþ1=2;jþ1=2 � 0:5df iþ1=2 hiþ1=2 þ hiþ1=2
� �h i

;

f
nþ1=2
iþ1;jþ1=2 ¼ 0:5 f iþ1=2;jþ1=2 þ �f

iþ1=2;jþ1=2 þ 0:5df iþ1=2 hiþ1=2 þ hiþ1=2
� �h i

;



60 B.N. Azarenok, T. Tang / Journal of Computational Physics 206 (2005) 48–80
where the spacing hi+1/2 is the length of the segment ((i, j+1/2), (i+1, j+1/2)) at time tn+1. We can obtain

f
nþ1=2
iþ1=2;j and f

nþ1=2
iþ1=2;jþ1 in a similar way. These four vector values are used as the pre-wave states in the center

of the corresponding lateral faces of the hexahedron for the Riemann problem.

Let us consider the face 122 01 0. To get the post-wave states fn+1/2 in the center of this face (for brevity we

omit subscripts), i.e., at the mid-point of the segment (100, 200), we solve the Riemann problem with the pre-
wave states (r,p,q)n+1/2 at this point on both sides of the face (one state relates to the underlying hexahe-

dron and the other to the hexahedron adjacent to the face 122 01 0). Here, rn+1/2 is the normal component of

the velocity to the segment (100, 200). We also use the tangential components of the velocity qn+1/2 on those

sides. The normal and tangential components of the velocity are given by
rnþ1=2 ¼ nxunþ1=2 þ nyvnþ1=2; qnþ1=2 ¼ nyunþ1=2 � nxvnþ1=2;
where nx, ny are the components of the outward unit normal vector to the segment (100, 200).

After solving the Riemann problem, the post-wave values ðr; p; qÞnþ1=2
R in the face center are defined. The

post-wave tangential component of the velocity qnþ1=2
R is given by
qnþ1=2
R ¼ qnþ1=2; if w12 6 dcont;

~qnþ1=2; otherwise;

(
ð21Þ
where dcont is the contact discontinuity speed in the Riemann problem, w12 is the velocity of the edge 12 in

the normal direction to this edge, and ~qnþ1=2 is the pre-wave tangential component of the velocity in the

hexahedron adjacent to the face 122 01 0. This condition expresses the fact that the tangential component

of the velocity is discontinuous across the tangential discontinuity, cf. [18]. The velocity w12 can be derived
from the equality
Dtl100200w12 ¼ Axy
122010 ; ð22Þ
where l100200 is the length of the segment (100, 200). Next we restore the Cartesian components of the post-wave

velocity in the center of the face 122 01 0
unþ1=2
R ¼ nxr

nþ1=2
R þ nyq

nþ1=2
R ; vnþ1=2

R ¼ nyr
nþ1=2
R � nxq

nþ1=2
R :
We treat the mass fraction Z using (12) and find Znþ1=2
R on this face.

Given the post-wave values ðu; v; p; q; ZÞnþ1=2
R in the center of the face 122 01 0, we calculate Q122 01 0 via (19).

Similarly, we treat the Riemann problem in the center of the other three faces to obtain Q411 04 0, Q233 02 0, and

Q344 03 0. When calculating c
nþ1=2
iþ1=2;jþ1=2, the values of f

nþ1=2
iþ1=2;jþ1=2 are given by
f
nþ1=2
iþ1=2;jþ1=2 ¼ 0:5 f iþ1=2;jþ1=2 þ �f

iþ1=2;jþ1=2
� �

:

The final values of fi+1/2, j+1/2 at time tn+1 are obtained by using (18).
3.3. Stability condition

In the two-dimensional case, the choice of the admissible step Dt may be estimated in the energetic norm

to the underlying Eq. (16), written as a t-hyperbolic by Friedrichs�s system [32]. The step Dt for non-reactive
gas flow calculation in the (i+1/2, j+1/2)th cell is given by
Dtiþ1=2;jþ1=2 ¼
Dt0Dt00

Dt0 þ Dt00
; ð23Þ
where
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Dt0 ¼ h0

max dright
14 � w23;�d lft

23 þ w14

� � ; Dt00 ¼ h00

max dright
12 � w34;�d lft

34 þ w12

� � ; ð24Þ

h0 ¼ A1234

0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx4 þ x3 � x1 � x2Þ2 þ ðy4 þ y3 � y1 � y2Þ

2
q ;

h00 ¼ A1234

0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx3 þ x2 � x4 � x1Þ2 þ ðy3 þ y2 � y4 � y1Þ

2
q :
Here, Dt 0 and Dt00 are the admissible time steps to the one-dimensional scheme in the n- and g-direction,
respectively; h 0, h 0 are the ‘‘average heights’’ of the bottom face 1234, and w is the velocity of the corre-

sponding cell edge. For example, w12 is the velocity of the edge 12 in the normal direction determined

via (22). Next, dright
12 and dright

14 are the ‘‘extreme right wave’’ speeds defined from solving the Riemann prob-

lem to the faces 122 01 0 and 11 04 04, respectively; d lft
23 and d lft

34 are the ‘‘extreme left wave’’ speeds to the faces

233 02 0 and 433 04 0, respectively.
The resulting time step over the mesh is given by
Dt ¼ ccfl min
i;j

Dtiþ1=2;jþ1=2:
3.4. Discussion on accuracy

As in the one-dimensional case, this scheme is second-order accurate in both space and time provided

that the solution is smooth in the entire flow domain and the mesh is quasiuniform and close to rectangular.

In real applications, however, the smoothness of the flow is violated even if initially it was so. The flow

parameters and their derivatives suffer discontinuity across the singularities: shock, contact discontinuity,

and rarefaction wave extreme left and right characteristics. Thus, the linear interpolation (10) or (20),

constructed via the Taylor expansion to the underlying functions, is generally incorrect for determining

the fluxes at the cell boundaries, that is, the order of weak convergence falls in the entire flow domain. This

effect was observed by Godunov at the end of 1950s [34]. The first-order Godunov�s scheme in the smooth
domain of the rarefaction wave exhibited the weak convergence rate r � 2/3 instead of 1 as it is followed

from the formal approximation of the system of equations. For high-order schemes, the reduction of accu-

racy in the smooth subdomains in the presence of shocks was also observed, for instance, in [12,22,41]. In

[2], the present scheme was tested in the shock tube problem with the flow pattern consisting of the shock,

contact discontinuity, and rarefaction fan. When tracking the extreme left and right characteristics and

calculating within the rarefaction fan only, the convergence rate r is 2 in the L1 norm and is close to 2

in the L1 norm. However, when calculating the entire flow domain with this scheme in the shock capturing

manner, it falls down to 1 (in L1 norm) even if to estimate r only within the rarefaction wave, where the flow
is smooth. From the standpoint of numerical calculations this effect can be explained as follows. In the

vicinity of the singularity, due to the use of the limiter, in several cells (usually in two) the order of approx-

imation falls down to 1. This is because the piece-wise linear reconstruction inside the cell is changed to

piece-wise constant. In addition, in one of these two cells the scheme may be even unconditionally unstable

[46]. This leads to the disturbances from those cells that extend along the characteristics into subdomains of

the smooth flow and they deteriorate the accuracy of the solution. Thus, the term ‘‘second-order’’ is rather

conditional. The remedy to support the high accuracy is to fit every shock by a special shock fitting pro-

cedure, which treat the discontinuities using the Rankine–Hugoniot jump conditions. Examples of such cal-
culations will be presented in Sections 5.2 and 5.3. One more way to prevent accuracy deterioration in the

presence of shocks is to use the adaptive meshes. This effect will be discussed in Section 5.3.
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If the ‘‘second-order’’ scheme only yields first-order results, why use it? We keep in mind two reasons.

The first one is obvious. The second-order error is significantly smaller than the first-order one. In [4], we

performed calculations of the steady supersonic gas flow in the channel, where several oblique shocks divide

the flow into subdomains with a known exact solution, by using four successively refined quasiuniform

meshes. The present scheme exhibited the convergence rate r = 0.92–0.96, while the first-order scheme gave
r = 0.35–0.68. The second reason is that we aim to use the adaptive mesh coupled with the flow solver.

Treating the one-dimensional flow on the moving meshes with the first- and second-order schemes increases

significantly the accuracy relatively to fixed mesh calculation [4]. In the two-dimensional flow, our scheme

on the adaptive meshes increases the accuracy by factors up to 5, while the first-order scheme does not

provide enhancement at all.
4. Grid generation

The variational approach is employed to generate the moving adaptive mesh. It is from the class of so-

called r-refinement methods. There is one more class of the adaptive mesh method, so-called h-refinement,

which is outside of the present study.

4.1. Problem formulation

The regular adaptive-harmonic mesh is constructed by minimizing the harmonic functional written for a
surface of the control/monitor function f(x,y) [40]. The relevant notations are shown in Fig. 7. The func-

tional defining the adaptive grid, clustered in regions of large gradients of the function f, is (for derivation

see [4,14])
I ¼
Z 1

0

Z 1

0

x2n þ x2g
� �

ð1þ f 2
x Þ þ y2n þ y2g

� �
ð1þ f 2

y Þ þ 2f xfyðxnyn þ xgygÞ

ðxnyg � xgynÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2

x þ f 2
y

q dndg: ð25Þ
The problem of grid adaptation is formulated as follows. Let in the parametric square the coordinates of

the grid nodes be given, which is formed by quadrilateral elements. Given the mapping of the parametric

square boundary onto the domain boundary oX, we seek a harmonic mapping of the surface Sr2 of the

graph of f(x,y) onto the parametric square, by minimizing the functional (25). In the results, we obtain
Fig. 7. Adaptive grid generation.
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the quasiuniform mesh on the surface Sr2, which, being projected onto X, defines the adaptive mesh in the

physical domain X. Subject to some known conditions, e.g., see [48], such a harmonic mapping exists and is

a homeomorphism (one-to-one and onto). In unsteady problems such a formulation is considered at every

time step.

In the one-dimensional case, to generate the inverse mapping of the graph of f onto the unit segment on
the parametric axis n requires us to minimize the following functional (see [40]):
I ¼
Z 1

0

1

xn
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2

x

p dn: ð26Þ
With the purpose of controlling the degree of grid condensing in the domains of large gradients, it is con-

venient to use caf instead of f, where ca is a coefficient of adaptation, which can depend on the variables x, y.

Thus, we work with the control function multiplied by some coefficient ca in order to increase or decrease

adaptation.

4.2. Minimization of the functional

The functional (25) is approximated in such a way that its minimum is attained on a grid of convex quad-

rilaterals, referred to as a convex grid [5,14]
Ih ¼
Ximax

i¼1

X4

k¼1

1

4
½F k�i; ð27Þ
where Fk is the integrand evaluated in the kth corner of the ith cell. If the set of convex meshes is not empty,

the system of the algebraic equations written at every interior node
Rx ¼
oIh

oxi
¼ 0; Ry ¼

oIh

oyi
¼ 0; ð28Þ
where i is a global node number, has at least one solution that is a convex mesh. To find it an initial convex

mesh should be given and an unconstrained minimization method needs to be used. Assuming the grid is

convex at the pth iteration step we find the coordinates of the ith node at the p + 1th step using the quasi-

Newton method (see [5,14] for details)
xpþ1
i ¼ xpi � s Rx

oRy

oyi
� Ry

oRx

oyi

� �
oRx

oxi

oRy

oyi
� oRy

oxi

oRx

oyi

� ��1

;

ypþ1
i ¼ ypi � s Ry

oRx

oxi
� Rx

oRy

oxi

� �
oRx

oxi

oRy

oyi
� oRy

oxi

oRx

oyi

� ��1

;

ð29Þ
where the iterative parameter is 0 < s 6 1.

When generating a curvilinear mesh without adaptation in the physical domain X (if no adaptation, we

substitute fx = fy = 0 in (25)), the discrete functional (27) has an infinite barrier on the boundary of the set of

convex grids [13,14]. This is caused by the condition of positiveness to the Jacobian of the mapping

J = xnyg � xgyn. This property allows for generating the unfolded mesh in domains of any geometry. When

adapting, due to discontinuities in the solution the infinite barrier disappears [4], which causes some grid
cells to fold and modeling to break. To prevent it, first, we use a regularization procedure to the discrete

functional [4]. The second way was suggested in [3] for unsteady problems. We specify Dmax, the maximal

value of the modulus of the gradient of f, as follows
Dmax ¼ kmaxðjr~f jÞ;
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where ~f ¼ caf h, fh is an interpolant of f, the coefficient k < 1 and jr~f j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~f
2

x þ ~f
2

y

q
. Next, the gradient of

the function is updated via
r~f
� ¼ Dmaxr~f =jr~f j; if jr~f j > Dmax;

r~f ; otherwise;

(
ð30Þ
and the resulting values of ~f
�
x and ~f

�
y are substituted into (25) to replace fx and fy.

In the one-dimensional case we minimize the following discrete functional for (26) (see [4] for details):
Ih ¼
Ximax

i¼1

Dn

ðxnÞiþ1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð~f xÞ

2

iþ1=2

q ;
where the subscript i + 1/2 means that the derivatives are determined in the mid point of the ith spacing, by
applying the Newton�s method
xpþ1
i ¼ xpi � s

oIh

oxi

o2Ih

ox2i

� 	�1

: ð31Þ
4.3. Boundary nodes redistribution

In [4], it is demonstrated that the one- and two-dimensional discrete functionals are inconsistent, in the
sense that the grid-nodes may move in a different way in the interior of the domain X and on its boundary

oX. Thus, when adapting, the cells near the boundary oX may degenerate. This happens when a shock hits

the boundary oX. To perform consistent redistribution of the grid nodes inside X and on oX it is suggested

in [4] that the constrained minimization should be used. In this approach we minimize the following

functional:
~I
h ¼

Ximax

i¼1

X4

k¼1

1

4
½F k�i þ

X
l2L

klGl ¼ Ih þ
X
l2L

klGl; ð32Þ
where Ih is the functional (27), the constraints Gl = G(xl,yl) = 0 define the boundary oX, kl are the Lagrange
multipliers, L is the set of the boundary nodes. If the set of convex grids is not empty, the system of the

following algebraic equations has at least one solution being the convex mesh
Rx ¼
oIh

oxi
þ ki

oGi

oxi
¼ 0; Ry ¼

oIh

oyi
þ ki

oGi

oyi
¼ 0; Gi ¼ 0: ð33Þ
Here, ki ¼ 0 if i 62 L and constraints are defined at the boundary nodes i 2 L. The method of solving the

system (33) is described in [4].

Note that using the constrained minimization without adaptation (when f = const.) means that we seek

the conformal mapping x(n,g), y(n,g) of the parametric square onto the domain X with an additional

parameter, so-called conformal modulus. This is because according to the Riemann theorem under the
conformal mapping we can define correspondence only between three points on the boundary contour

of the physical and parametric domains, and in our case there is a correspondence between four corner

points on the boundary. That is why such a mesh is said to be rather a quasi-conformal grid, and, therefore,

the mapping is quasi-conformal.
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4.4. Coupled algorithm

Solving the one- or two-dimensional gas dynamics equations with grid adaptation at each time step con-

tains the following stages:

(i) Generate the mesh at the next time level tn+1.

(ii) Compute the gas dynamics values at time tn+1.

(iii) Make one iteration to compute the new grid coordinates (x,y)i at t
n+1.

(iv) Repeat steps (ii) and (iii) using a given number of iterations.

(v) Compute the final gas dynamics values at tn+1.

Note that in step (iv) in principle we should repeat the steps (ii) and (iii) up to convergence of the min-

imization procedure (29). But in this kind of problems we can not achieve convergence to the mesh within
reasonable number of iterations. Moreover, for the two-dimensional problems with discontinuous solution

the discrete functional (27) has no minimum at all [4]. Nevertheless, the iterative procedure (29) allows us to

condense significantly the grid lines towards the discontinuity and guarantee the grid to be unfolded.
5. Numerical results

5.1. One-dimensional Chapman–Jouguet detonation

We consider the CJ detonation with the following gas parameters [7,17] (in CGS units)
ðu; p; q; ZÞ ¼ ðq; u; p; ZÞbnt ¼ ð4:162� 104; 6:270� 106; 1:945� 10�3; 0Þ; if x ! �1;

ðq; u; p; ZÞunb ¼ ð0; 8:321� 105; 1:201� 10�3; 1Þ; if x ! 1;

(
ð34Þ
where ‘‘bnt’’ represents the completely burnt gas and ‘‘unb’’ the unburnt gas with c = 1.4 and R = 1. The

heat release is qo = 5.196 · 109. We use the kinetics model (5) when so = 1.717 · 10�10, and Tign =

1.155 · 109. With these parameters the width of the reaction zone is approximately 5 · 10�5. The mesh

has I = imax = 100 spacings and we set the rear boundary in 40 cells to the left from the point x = 0 (corre-

sponding to the peak coordinate of the ZND profile), and define there the transmissive boundary condi-

tions to all flow parameters. On the front boundary, we define (u,p,q,Z)unb.
In the first calculation, we use the uniform mesh with h = 5 · 10�6, which uses about 10 cells in the reac-

tion zone with a time step Dt = 5 · 10�12. The pressure and density profiles at time t = 10�8 are shown in

Fig. 8, and the corresponding error is presented in Table 1. The error is estimated within the interval

0.008 < x < 0.011. Fig. 9 gives the results at t = 10�7 by using the coarse mesh with h = 5 · 10�5 (only

�1 cell in the reaction zone) and Dt = 5 · 10�11, which seem rather similar to the ones obtained in [7]. There

is no spike in the ZND profile of the solution (in [7] a very small spike is observed, but we consider it as an

insignificant difference) and the wave velocity is determined incorrectly. The reason is that on the under-

resolved mesh hitting into the burning zone gives the front shift by one cell. This phenomenon has been

discussed in a number of works, e.g., see [17,28].
Next, we perform calculations on the adapted mesh. We start on the same coarse uniform mesh with

h = 5 · 10�5 and piece-wise initial data (34). After achieving the steady state, this solution and its induced

adapted mesh are used as initial data for the adaptive modeling. Otherwise we would obtain an incorrect

DCJ velocity. The results are presented in Fig. 10 and Table 1. The mass fraction Z is used as the control

function f. Here, at every time step we perform 20 mesh iterations, the coefficient of adaptation used is

ca = 0.7, and the iterative parameter in (31) is s = 0.4. It is seen from Fig. 10 that the spike profile is better
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Fig. 8. Pressure (a) and density (b) profiles at t = 10�8 calculated on the uniform mesh with h = 5 · 10�6. Solid line is the ZND

solution.

Table 1

Numerical error for the pressure and density relative to ZND solution

kErðpÞkL1 kErðqÞkL1
Unifrom mesh, h = 5 · 10�6 1.22 · 102 3.28 · 10�8

Adapted mesh, hmin = 1.56 · 10�6 1.37 · 102 4.00 · 10�8

(a)

P
re

ss
ur

e

0.0095 0.01 0.0105 0.011
0

2E+06

4E+06

6E+06

8E+06

1E+07

(b)

D
en

si
ty

0.0095 0.01 0.0105 0.011
0

0.001

0.002

0.003

0.004

0.005

Fig. 9. Pressure (a) and density (b) profiles at t = 10�7 calculated on the uniform mesh with h = 5 · 10�5.
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resolved than that of in Fig. 8 since after the mesh adaptation the minimal spacing in the reaction zone is

hmin = 1.56 · 10�6 which is about 3.2 times smaller than the uniform mesh spacing in Fig. 8. Thus, the spac-

ing in the critical zone is decreased by a factor of 32 relative to the initial mesh. Note that the time step
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Fig. 10. Pressure (a) and density (b) profiles at t = 10�8 calculated on the adapted mesh with initial spacing h = 5 · 10�5 as in Fig. 9.
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decreases approximately by a factor of 32 as well that follows from (14). In fact the effective reduction of h

is about 45, because ahead the detonation wave (already over 2 cells) the spacing is h � 7.1 · 10�5 and be-

hind the burning zone h � 2.5 · 10�5. Despite these facts the error to the adapted solution is slightly larger
than that to the uniform mesh solution with h = 5 · 10�6, as observed in Table 1. This is due to the lack of

nodes in the smooth part of the reaction zone. Nevertheless, due to adaptation, on the coarse mesh we

obtained nearly the same accuracy as that of on the refined one. It is of interest to see that from the side

of the heating shock the mesh is sharply condensed, within one cell the spacing is reduced by several tenths

of times. In this manner the mesh is condensed for the non-reactive gas flow problems with shock waves [4].

From the side of the burnt gas, where the solution is smooth, the nodes concentrate gradually. For the

smooth solution as ca ! 1, we get the optimal grid in the sense that the error in the norm L1 on such

a mesh is minimal [3].

5.2. Unstable one-dimensional detonation

First experiments and then a theoretical analysis, see [23,38], have shown that overdriven detonation

may be unstable in a gas for some range of the parameters. Now we calculate one such a case of the unsta-

ble detonation for the Arrhenius kinetics model (4). The dimensionless parameters by reference to the uni-

form state ahead the detonation shock, moving to the right, are c = 1.2, qo = 50, E+ = 50, the degree of

overdrive f = (D/DCJ)
2 = 1.6, where D is the shock speed, Ko = 230.75, R = 1, (u,p,q,Z)unb = (0,1,1,1). This

problem was also simulated numerically in [8,25,30,43,45].

We conduct calculations in two ways: first, on the fixed mesh, and, second, with shock tracking on the

moving mesh. In both cases the spacing h is equal 0.05, which corresponds to having 20 cells per half-

reaction length for the ZND profile (20 pts/L1/2), which is used as initial data. At the rear boundary, we

define the piston velocity as that of for the ZND profile, i.e., set u = ubnt, and the transmissive boundary

conditions for p, q, Z. On the front boundary, we define (u,p,q,Z)unb.
In the first case of the fixed mesh simulation we set ccfl = 0.5. The modeling is performed in the lab-

oratory frame. The shock pressure history is depicted in Fig. 11(a). For comparison, the result obtained
in [8] using the piece-wise parabolic method (PPM) with shock fitting on the fixed mesh is also depicted.

We observe a good agreement in the amplitude (the difference of peak pressure 63%) and in the wave

velocity.
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Fig. 11. Peak pressure history for unsteady flow. Symbol ‘‘x’’ indicates the solution in [8], solid line is the present results. Calculation

on the fixed mesh (a). Calculation with front tracking on the mesh moving with the shock speed D (b).
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Consider the length of the computational domain which we should retain behind the shock during mod-

eling. By theory, see [59], the steady overcompressed detonation mode is possible if the formation of the

rarefaction wave is not allowed after the burning process is ended. Therefore, one needs to move the piston

with the medium velocity ubnt at point 5 in Fig. 1 to support the overdriven detonation, which can not occur
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in the free mode without support. This value can be corrupted due to the disturbances moving from the

flow domain to the burning zone left end with the speed of ubnt � cbnt, where cbnt is the sound speed in

the burnt gas. It is the left characteristic motion that defines the computational domain length. In addition,

the zone right endpoint moves to the right with the shock velocity D being not constant due to pulsations.

Finally, the computational domain size Ldom is estimated as
LdomðtÞ ¼ Ldomð0Þ � ðubnt � cbntÞt þ
Z t

0

DðsÞds; ð35Þ
where Ldom(0) is the initial zone length which is equal to 100 cells (5L1/2). The value of the precursor shock

speed D periodically changes about the initial value of 8.613 due to pulsations from 7.9 to 10.5. In reality

the left characteristic moves to the right with the velocity ubnt � cbnt = 6.2489 � 4.2497 = 1.9992. Integrat-

ing (35) numerically simultaneously with modeling we obtain Ldom � 534 L1/2 at t = 80. When simulating

we remove the left endcell when the characteristic ubnt � cbnt crosses the right node of this cell and add one

cell to the zone right end when the shock crosses the left node of this cell (because of shock smearing we
keep several cells ahead the heating shock). The numerical experiments confirm the validity of (35). It is of

interest that substituting the constant value Do = D(0), taken from the ZND solution, in (35) gives nearly

the same length Ldom (with difference of several cells). Thus, with good approximation one can use the

estimate
LdomðtÞ ¼ Ldomð0Þ � ðubnt � cbntÞt þ Dot; ð36Þ

instead of using (35). If to calculate in the shock frame, i.e., define the initial and boundary velocity values
as ushock = ulab � Do, some high frequency instability in the solution arises.

In the second case, we use front tracking and calculate on the uniform mesh, which moves to the right

with the heating shock velocity D. The value of D is determined using the Rankine–Hugoniot jump condi-

tions. Actually, we obtain the shock velocity after solving the Riemann problem at the right endpoint xnþ1=2
Iþ1 ,

where D is the speed of the right shock in the wave pattern (likewise dsh is the speed of the left shock in Fig.

3). At the predictor stage, to construct the preliminary grid at tn+1, one uses the velocity D determined at

the preceding time level. The mesh moves to the right and when the left characteristic ubnt � cbnt remains

behind the 1st mesh node at the distance of h we add one cell to the left. The estimate (35) is suitable to this
case as well. We begin modeling with ccfl = 0.5. However, after t = 45 it is reduced down to 0.45 in order to

escape overflow in computations. The shock pressure history is presented in Fig. 11(b). We see that the re-

sults are the same as that in [8] where the fourth-order scheme (PPM) with front tracking is applied. Thus,

this modeling confirms the idea stated in [1], namely the loss in accuracy occurs mainly in the shock smear-

ing zone when a shock capturing method is used as in the case presented in Fig. 11(a). If we apply front

tracking, the numerical scheme in the subdomains of the smooth flow provides the same accuracy as the

method of characteristics does. Modeling in the shock frame provides a bit less accuracy. Here, the average

value of the front peak pressure is �100, meanwhile, in the laboratory frame calculation, depicted in Fig.
11(b), it is �101.

It may be of interest to note that the admissible time step Dt in the moving mesh calculation is substan-

tially larger than that of on the fixed mesh. In fact, if we perform estimation of Dt at t = 0, from (14) in the

left endcell, where
drght
1 ¼ ubnt þ cbnt ¼ 10:499; d lft

2 ¼ ubnt � cbnt ¼ 1:9992; w1 ¼ w2 ¼ D ¼ 8:613;
we obtain
Dt3=2 ¼
h

max drght
1 � w2;�d lft

2 þ w1

� � ¼ 7:55� 10�3:
Meanwhile on the fixed mesh, where wi = 0, we have Dt3/2 = 4.76 · 10�3.
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In the right Ith cell, immediately behind the shock, with the values obtained from the Riemann problem

on the moving mesh drght
I ¼ 10:626 and d lft

Iþ1 ¼ 4:782, we have DtI+1/2 = 1.31 · 10�2. On the fixed mesh with

drght
I ¼ 10:635 and d lft

Iþ1 ¼ 4:76, the time step is DtI+1/2 = 4.70 · 10�3. Thus, the time steps ratio grows from

1.59 in the left endcell to 2.78 in the right endcell. This is due to the left characteristic moves in the same

direction as the grid nodes on the moving mesh. Indeed, by (13) we should use the minimal step and
multiply it by ccfl. Finally, by t = 80 we perform 35597 time steps on the fixed mesh and 23488 steps on

the moving mesh.

5.3. Unstable two-dimensional detonation

As in one-dimensional case the planar flow is also unstable in a range of the flow parameters, e.g., see

[49,50]. The theory of this phenomena, giving rather qualitative sketch, can be found e.g., in [26]. The

structure of the two-dimensional flow is rather complicated. Thus, a precise numerical simulation is of
interest.

We present the results of modeling the unstable detonation in a channel drawn in [9,45], when the trans-

versed waves (or cellular structure) are produced. The gas with degree of overdrive f = 1.2 flows in the chan-

nel with the height equal 10L1/2. We use the kinetics model (4) with dimensionless parameters c = 1.2,

qo = 50, E+ = 10, Ko = 3.124, (u,v,p,q,Z)unb = (0,0,1,1,1). The ZND profile is used as initial data. On

the top and bottom of the channel the periodic boundary conditions are applied. On the rear boundary,

we define the piston velocity u = ubnt, and transmissive boundary conditions for the other parameters.

The rectangular mesh is hx = hy = h = 0.05, i.e., 20 pts/L1/2. The planar detonation front is disturbed allow-
ing it within the first 103 time steps to ingest a small region of fluid (five cells in width and 100 in height)

with the rate constant K 0
o ¼ 0:8Ko.

The question of interest is how far should we place the rear boundary, i.e., piston. The fact is that we

perform calculations up to time t � 62 and, therefore, with the steady ZND�s mode values Do = 7.459,

ubnt = 4.704, cbnt = 4.0 and initial Ldom(0) = 5L1/2 via (36) one estimates the length of 424L1/2 or 8480 cells

to be used in the end. It is not realistic to calculate on such a mesh. To overcome this difficulty, we per-

formed the following numerical experiment. First, it was conducted three calculations on the rough mesh

with h = 0.2 till time t = 40 when the flow structure is developed. In the first case we calculate throghout the
domain of Ldom � 275L1/2 (1375 cells) determined via (36). In the second case we set Ldom = 60L1/2 (300

cells), and in the third case Ldom = 40L1/2 (200 cells). By the reason stated in Section 5.2, we calculate in

the laboratory frame and keep eliminating cells at the left end and adding cells ahead the shock front.

The difference of the maximal peak pressures for the first and second cases at t = 40 is less than 0.01%,

and for the first and third cases is less than 1%. We believe that for our calculations on the refined mesh

it is sufficient to keep the rear boundary at the distance of 40L1/2 behind the detonation wave front. Thus,

the problem is computed on the 800 · 200 mesh. In all calculations the CFL number is ccfl = 0.5.

First, the calculation is executed on the rectangular mesh. For t = 60 the running time on PC Pentium 2.0
GHz is about 36 h. Figs. 15(a) and 17(a) show the pressure contours at t � 60.44 and 61.59, respectively.

The general structure of the solution is similar to that of in [9,45].

The moving mesh calculation is executed in two ways. In the first, the front tracking procedure is em-

ployed. As that of in [32] (with some correction to the second order), the right edges of the right row cells

are the precursor shock front and their velocity is obtained from the Rankine–Hugoniot jump conditions.

At every time step after the precursor shock front has been shifted, the functional (32) is employed to redis-

tribute the boundary nodes and (27) to move the internal nodes. In addition we can switch on the adaptive

procedure, see examples of the meshes in Fig. 12. In the second case we apply the global adaptation without
front tracking, see the meshes in Figs. 14 and 16.

When adapting, as a control function f it is used the density, see mesh in Fig. 12(a), and pressure, Figs.

12(b), 14, and 16. The choice of f is defined by what traits of the flow pattern to be investigated in detail.



(a) (b)

Fig. 12. Front tracking and adaptation. Meshes at t � 60.44 with density (a) or pressure (b) as a control function f. Only 60 front cells

in the x-direction are depicted.
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The parameter Dmax in (30) is set from 10 to 15. At every time step we perform 2 mesh iterations (therefore,

update the gas dynamics parameters three times), and set s = 0.9 in (29), coefficient ca is set from 0.07 to 0.1.

When adapting, at first mesh iteration the initial mesh at tn + 1 is determined by the formulas



(a) (b)

(c) (d)

Fig. 13. Density plots at t � 60.44 for rectangular mesh (a), front tracking (b), front tracking with adaptation (c) (mesh in Fig. 12(a))

calculation. Mass fraction for front tracking calculation (d).
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(a)

(b) (c)

Fig. 14. Global adaptation with p as a control function f. Mesh (a) and close-up (b and c) at t � 60.44; time step Dt � 10�10–

10�5 · Dtrect.
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(a) (b)

(c) (d)

Fig. 15. Pressure plots at t � 60.44 for rectangular mesh (a), front tracking (b), front tracking with adaptation (c) (mesh in Fig. 12(b)),

and global adaptaion (d) (mesh in Fig. 14) calculation.
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(a)

(b)

Fig. 16. Global adaptation with p as a control function f. Mesh (a) and close-up (b) at t = 61.59.
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xnþ1
i;j ¼ xni;j þ D0Dt; ynþ1

i;j ¼ yni;j:
Using adaptation we aim to resolve as much as possible the main (i.e., most intensive) singularities

in the solution and by this reason we condense strongly the grid lines. Admissible time step Dt falls

from �1.5 · 10�3 on the rectangular mesh by 5–10 orders of magnitude, i.e., practically goes to zero.
Note that Dt is not a constant even for the steady problems, the mesh constantly ‘‘breaths’’, and,

accordingly, the value of Dt periodically decreases and then increases, etc. Indeed, we can not calculate
(a) (b)

(c) (d)

7. Pressure plots at t = 61.59 computed on the rectangular (a) and adapted (b) mesh. Close-up for the rectangular (c) and

d (d) mesh (domain, depicted in Fig. 16(b)).
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within a long period of the ‘‘flow’’ time with such an infinitesimal Dt. Thus, we can operate in two

ways: first, starting the adaptation when necessary from the initial state, obtained on the rectangular

mesh, or, second, weakening adaptation by reducing the coefficient of adaptation ca and, therefore,

increasing Dt.
Further, we will be concern with some particular features of the flow pattern and compare the results of

the fixed and moving mesh calculations. The density plots for the rectangular mesh modeling at t = 60.44

are depicted in Fig. 13(a). The flow structure behind the Mach stem, inside the cell, is rather unclear due to

the presence of oscillations. We can not observe neither how close the fire zone approaches the precursor

shock nor the slip lines emanating from the upper and lower triple points. Results of front tracking, see Fig.

13(b), show the front part of the fire zone and slip lines impinging on it. It is of interest that the form and

location of the fire zone differs from qualitative results predicted in [26]. In [26], the fire zone lays immedi-

ately behind the Mach stem and is parallel, meanwhile in Fig. 13(b) it bends strongly. Evidence that it is the

fire zone one can find in Fig. 13(d) with the mass fraction plots depicted. The fire zone has no a structure
behind the incident shock. Among all flow parameters the density plots have the most complicated struc-

ture, which can be better seen in Fig. 13(c) of the adaptive mesh calculation. Indeed, we can not resolve all

the solution traits by grid lines condensing, but the main discontinuities are reflected in the mesh structure

rather well, see Fig. 12(a). Meanwhile the density ‘‘feels’’ the fire zone and a bit slip lines, see Fig. 12(a),

using the pressure as f gives a better resolution of the transverse waves, both intensive and weak, emanating

from the triple points and beginning to emerge behind the incident shock, see the meshes in Figs. 12(b), 14,

and 16. Capturing the slip lines by grid lines condensing is not subject to an instability, as may be expected.

As shown in [4] for the example of the contact discontinuity in the one-dimensional linear model, our adap-
tive method can not prevent slip lines smearing with time. Besides, the ‘‘barrier’’ property of this grid gen-

erator prevents the mesh cells from infinitesimal refinement [4,14], which is regulated by the coefficient ca
value.

Between two transverse shocks, depicted in Fig. 14(b) (one intensive and the other weak), the grid cell

size changes sharply in the normal direction to those shocks. It seems possible that the approximation

on such a mesh is to deteriorate. However, first, as shown in [4], a large ratio of the neighboring cells

size (one in the smeared-out shock zone and the other in the domain of smooth flow), does not dete-

riorate the solution. Second, the narrow cells in the shock zone lead the scheme, based on the integral
conservation laws, to update the flow parameters nearly as the shock fitting procedure via the Rankine–

Hugoniot jump conditions [4]. This conclusion can be drawn from the following consideration. If to

draw a closed contour along the shock, one side to the left of the discontinuity and the other to the

right, and to direct the contour width to zero, from the system of conservation laws, written in the inte-

gral form, in the limit we get the Rankine–Hugoniot jump conditions [32,47]. The imaginarily drawn

line, passing through the centers of narrow cells in the shock zone, looks like that contour when the

width-to-length cell ratio tends to zero. Thus, due to adaptation, the flow solver, by grid cell size var-

iation, is adjusted to perform the habitual calculations in the domains of smooth flow and to operate as
the front fitting procedure in the shock zone. The experimental evidence of this statement can be seen by

comparing the pressure contours obtained on the rectangular and adapted meshes. Oscillations in pres-

sure behind the precursor shock, observed in Fig. 15(a), disappear in Fig. 15(d). In this regard the glo-

bal adaptation, Fig. 15(d), works like front tracking, Fig. 15(b) and (c). Note that with front tracking

one can only treat the precursor shock (and it is a special procedure), meanwhile the global adaptation

operates with the ‘‘intensive singularities’’ throughout the flow automatically.

The fragment of the mesh near the top boundary is shown in Fig. 14(c). If the constrained

minimization is not used to the boundary nodes redistribution, we can not obtain such a fine-mesh
structure. Numerical experiments have shown that instability in the adaptive mesh generation on the

boundary (if no constrained minimization) leads to interior domain instability, rather far from the

boundary.
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6. Concluding remarks

In this work, the unsplit scheme to model the reactive gas flow on the moving meshes has been presented.

This scheme allows for calculations coupled with front tracking, which enhance the accuracy of simulation.

Using the moving adaptive meshes allows us to concentrate locally the grid points in the vicinity of singu-
larities: shocks, slip lines, rarefaction waves, and fire zones, while keeping the simple mesh structure and

invariable number of nodes. Numerical experiments have shown that using adaptive meshes allows effi-

ciently resolving the thin structures of the solution. Strongly condensed grid lines in the vicinity of shocks

lead the flow solver is adjusted to perform calculations like using the jump conditions and this, in turn, gives

significant accuracy enhancement of the modeling.

In the three-dimensional calculations, some principal difficulties in mesh generation still need to be over-

come. First, it concerns with the search of a transformation providing a homeomorphic mapping of the unit

cube onto an arbitrary domain in the continuous approach. Note that in the three-dimensional case it is
unknown yet whether a harmonic mapping of an arbitrary domain onto a convex domain (unit cube) with

a given one-to-one mapping between the boundaries is always a homeomorphism. There is an example (see

[24]), when, subject to some conditions imposed on the boundaries, the harmonic mapping is not a homeo-

morphism. Second, for a hexahedral cell there unknown a finite number of conditions using which one can

definitely say whether this cell is invertible or not [55]. One of possible ways to overcome these difficulties is

to seek directly a discrete mapping. One such example was considered in [35]. Anyway, an additional thor-

ough study is required to execute in this direction.
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