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THE HERMITE SPECTRAL METHOD FOR
GAUSSIAN-TYPE FUNCTIONS*

TAO TANGH

Abstract. Although Hermite functions were widely used for many practical problems, numerical
experiments with the standard (normalized) Hermite functions 1, (v) worked poorly in the sense that
too many Hermite functions are required to solve differential equations. In order to obtain accurate
numerical solutions, it is neccessary to choose a scaling factor o and use ¥, (av) as the basis functions.
In this paper the scaling factors are given for functions that are of Gaussian type, which have finite
supports [—M, M]. The scaling factor used is maxy<;<n{v;}/M, where {v; }§V=0 are the roots of

Yn41(v) and N + 1 is the number of the truncated terms used. The numerical results show that
after using this scaling factor, only reasonable numbers of the Hermite functions are required to solve
differential equations.
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1. Introduction. The normalized Hermite functions are

(1) inl0) = 2= oo (-2

where the H, (v) are the usual (unnormalized) Hermite polynomials. For physical
problems posed on v € (—o00,00) (i.e., infinite domain), a variety of spectral tech-
niques have been developed in recent years. These include the use of Fourier series
combined with domain truncation, sine function, Hermite functions, and algebraically
mapped Chebyshev polynomials. Previous results for these techniques are summa-
rized, for example in Boyd [5, Chap. 14]. Many researchers have noticed that the
close connection of Hermite functions to the physics makes them a natural choice of
basis functions for many fields of science and engineering. Numerical applications
include many problems in continuum mechanics(see, e.g., [3]), particle physics (see,
e.g., [9, 15] and [17]), tropical meteorology, and oceanography (see e.g., [2, 8], and
[14]). Also one reason for using Hermite spectral methods is that Hermite system has
some very attractive properties from the numerical point of view. For example, in a
recent paper, Weideman [19] showed that the spectral radii for the first and second
Hermite differentiation matrices are O(v/N) and O(N), respectively, where N + 1 is
the number of truncated terms used. This places rather weak stability restrictions
on the Hermite method. For example, if we consider the standard heat equation,
then a maximum step size in the time direction of order O(N 1) is required, whereas
for Fourier and Chebyshev methods it is of order O(N ~2) and O(N ~%), respectively.
In the actual calculations this means that we need not even consider implicit time
integration methods with the Hermite method. A theoretical study of the Hermite
method for the heat equation is given in recent paper, [11], which is concerned with
the stability and convergence properties of the method.
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Although the Hermite spectral methods have some attractive properties, the di-
rect spectral approach may not produce good approximations. In the practical cal-
culations, it is necessary to choose a scaling factor « since we can always use ¥, (av)
as the basis set for any finite . This freedom does not exist for a finite interval,
but after a change of scale in v, an infinite domain is still an infinite domain. It was
pointed out by Boyd [4]-[6] that a should increase with the truncated terms used, but
the theory of choosing an optimum scaling factor is still incomplete. In this paper,
we study how to choose a proper scaling factor for a class of functions that decay
at infinity at least like exp(—pv?) for some positive constants p (i.e., Gaussian type).
Solutions of many practical problems behave like Gaussian-type functions at infinity,
for example, the diffusion equations for heat flow and the Fokker-Planck equations
for particle physics (see, e.g., [10] and [17]). The idea underlying our approach is the
following: In using spectral collocation methods we choose a scaling factor a which
depends on the ratio of the maximum root of Hyy;(v) and the length of the finite
support of the function. The usual method for dealing with the infinite interval is
simply to truncate (—oo, 00) to a finite interval [— M, M]. The scaling factor « is cho-
sen so that all of the collocation points are within [—M, M]. The numerical results
show that after using the scaling factor, reasonable numbers of Hermite functions are
required to resolve a Gaussian-type function.

2. Hermite collocation methods. For a Gaussian-type function f, we have
the expansion

o0

(2.1) f(v) = Z anthn(av), [v] < o0,
=0

which is equivalent to

(2.2) fw/a) = Z anPn (v [v] < o0.

where « is a positive constant. The spectral method of order N is to approximate
the function f using the first N + 1 terms in the expansion series, i.e., the coefficients
{an}32 N4 are set equal to 0. Therefore, we have the spectral approximations

(2.3) N(v/a) = Z antn (v

When solving differential equations, we need to relate the coefficients of the derived
function to those of the original function, as given by

N
(2.4) Mw/a) = Z antp® (v Z alFap, (v).

Using the recurrence formulas of Hermite functions we can obtain that

(8%
(25) a%l) = % (_\/Eanfl +Vvn+ ].Cln+1) )
2

26) o = % (\/(n " Dnan—s — 2n+ an + VI + (0 + 2) an+2) :
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with a, = 0 whenever n < 0orn > N.

In pseudospectral methods, the optimum pseudospectral points are the roots of
Hpn 1 (v), which are denoted by {v; ;-V:O with the order y9 > 71 > --- > 7n. Assuming
that (2.3) is satisfied at the collocation points we have

N
(2.7) In (%) :nz::()afnz/}n(')/j)a 0Sj=N.
Noting that
N
(2.8) > n(vi)n(v;) = Cidij, 0=d,j <N,
n=0 N
(2.9) Ci=Y [Wa(w)’, 0Zi<N,
n=0

we obtain from (2.7) that

N
(2.10) an:Z%fN (%) Yn(v), 0=n<N.

j=0 7

The above relations between {a,} and {f~(v;/a)} give a simple evaluation of the
derivatives of fx(v) at the points {73-/04};-\’:0. Once {fN(yj/a)}éV:O are known, the
coefficients {a,}_, can be obtained by (2.10). Then, the first and second derivatives
of fn at points {7;/a}y can be computed by (2.4)-(2.6). A higher order of deriva-
tives can be obtained in a similar way. If {a,}Y_, are given, the function fy(v) is
computed by

N
(211) fN(v) = Zarﬂ/}n(av)'
n=0

3. The scaling factor. Suppose that the function f has a finite support [—M,
M], i.e., f(v) ~ 0 for [v] > M. In order to compute {a, }_, by (2.10), we need to use
information from the interval [—M, M] only, since outside of this region the function
is almost zero and will not contribute much to a,. This simple motivation suggests
that

(3.1) %‘gM, for all 0<j<N.
The above condition is satisfied by choosing

(3.2) a=ay= Orénja;{w} =/M.

Since y9 ~ V2N (see, e.g., [1]), we obtain that
(3.3) ay ~ V2N /M.

The Hermite spectral methods were rejected before because of their poor resolution
properties. Gottlieb and Orszag [12] investigated the rate of convergence of Hermite
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series by considering the expansion of the sine functions. They found that to resolve
p wavelengths of the sine function requires O(p?) polynomials. In the case when the
function decays rapidly, we need to consider the sine functions which oscillate rapidly
in a finite interval(i.e., |v| £ Const.). Consider

o0
(3.4) sin(pv) = Z Con+1Hont1(v),
n=0
where
2n+1 oy (—p2 /4
(3.5) eomin = (—1)72 p(—p°/4)

22n+1(2n 4+ 1)1 7
for n =0,1,.... Using the asymptotic expansion of Hy(v) [1],
! 1
(3.6) Hy(v) ~ exp(y2/2)ﬁ cos <\/2n +1lv— §n7r> ,
ETL .
and Sterling’s formula
(3.7 n! ~V2rn" 2 exp(—n),
we obtain the asymptotic behavior of the nth term of the right-hand side of (3.4) as

1
V2

It can be seen from the above equation that if n ~ p?/4 then the nth term behaves
like exp(v?/2)/+/2, which is in general not small. That is, to resolve p wavelengths of
the sine functions requires more than 0.25p% Hermite functions. This result is similar
to that observed by Gottlieb and Orszag [12]. However, if we use the scaling factor
ay of the form (3.2), i.e., if we expand

p2 n+1/2
< ) exp (n —p*/4+0%/2).

3.8 t ~ —
( ) ermy an

(3.9) sin(pv) = Z dop+1Hopnt1 (anv),

n=0

with ay = 79, then the nth expansion term is of the asymptotic form

1 p? nt3 p? v2
3.10 t ~— ——+—.
(3.10) erm, o (4nal2v> exp <n ) + 5

Noting that a2 ~ 2N, we obtain

2 2 n 2
p p p v
3.11 t ~— 1-— — .
(3.11) N [SnN P ( anﬂ P ( 2 )

The right-hand side of the above equation decays exponentially when n > N = p.
This result shows that using the scaling factor can reduce the number of required
polynomials to the best possible case. The above analysis is only given for the ex-
pansion in Hermite polynomials, but similar behavior can be seen for the expansion
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Fic. 1. (a) Hermite spectral approzimation for f(v) = cos(20v) exp(—v2) with N
a = v0/3; (b) Hermite spectral approzimation for f(v) = cos(30v) exp(—v?) with N
a=/3.

40 and
40 and

in the normalized Hermite functions (in this case, if the function has a finite support
[-M, M], then N = Mp). To see this, we expand

N
(3.12) cos(pv) exp(—v?) = Z antn(av).
n=0

The coefficients {a,, })_, are obtained by using (2.10) and the numerical curve is given
by (2.11). Tt can be seen from Fig. 1 that, after scaling (i.e., « = ay = 70/3), 20 and
30 expansion terms give good approximations to the function cos(pv) exp(—v?) is an
even function and the number of the expansion term is N/2 since the odd terms are
zero). However, approximations without scaling (i.e., & = 1) require more than 100
terms in case p = 20; see Fig. 2. Furthermore, in Fig. 3 and 4, we have plotted the
absolute values of the even coefficients in (3.12) (noting that the odd coefficients are
zero) as a function of n in the case p = 20. In these two figures a log scale was used.
Since ¥, (av) = O(n~'/*), the nth term of (3.12) is small only when its coefficient
is small. Figure 3 suggests that in order to have the nth term less than 10~3, for
all n 2 N, we need about 25 expansion terms (i.e., N = 50) when the scaling factor
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FIG. 3. The even coefficients of the Hermite expansions for f(v) = cos(20v) exp(—v?). (a)
N =50 and a =v0/3; (b) N =60 and o = y0/3.

is used. However, Fig. 4 shows that about 140 expansion terms are required for the
conventional expansion (i.e., « = 1).

Many practical problems require to approximate the distribution function of the
form exp(—pv?) with moderate and large values of p, for example, the heat equa-
tions with Gaussian-type initial distribution with small viscosity coefficients, and the
Fokker-Planck equations with small thermal velocity (cf. [17]) or with small particle
response time (cf. [10]). Since

(313) exp(—pv2) = Z C2n¢2n(v)>
n=0

where

(V" (p=3\" o)
3.14 Con = 2 ,
o 220(20)!(p + ) <p+§>

we obtain the asymptotic behavior of the nth term of the right hand side of (3.13) as
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Fic. 4. The even coefficients of the standard Hermite expansions (i.e., a = 1) for f(v) =
cos(20v) exp(—v?), N = 350.

(3.15)

term,, ~

1
1 (p— 5
VTP \p+ 3

)".

The above result is bad: for large p about O(p) terms are required. This can be seen
from the following. Since

(3.16)

then only when n 2 N &~ C'p with a positive constant C' (which is quite large),

(3.17)

However, when applying the scaling technique to the same function, we obtain

(3.18)

with ay = v9/M, as given in (3.2). The asymptotic form of the nth term is

(3.19)

which yields that

(3.20)

(

1-—

1)y <
~) <

1\" 1
lim <1__> .
a—00 a €

term,, ~

for all x > 1,

1
e “.

/NP

exp(—pv?) = Z dantpan(anv)

term,, ~

. 2N
erm,, ~
napM?2

an

n=0

nwp

(p/ al —

p/az +

1\
2
1 )
2

M?p/N — %)”
M?2p/N + %

If p is large, then M can be chosen as one. If n 2 N, the right-hand side of (3.20)

decays rapidly to zero when N 2 C'(p/N + %) with a positive constant C"

(3.21)

term,, ~

A

2N (1 _ #)n

nwp p/N+%

1 <1 B 1 )C(P/N+1/2)
p p/N +3

1
aec
p
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The requirement N = C(p/N + ) is satisfied when N = O(,/p). In Figs. 5 and 6 we
consider a test function f(v) = exp(—2v?) + exp(—20v2). It can be seen from Fig. 5
that after scaling ten expansion terms (again, since the function f is an even function,
the number of expansion terms is N/2) give a good approximation. However, Fig. 6
shows that approximations without scaling need more than 50 expansion terms.

2 T T T v
Y 0y solid: Exact
ﬁ;felp( 2v v&-rexp( 20vev) ek N=20

a=gamma_{

f(v)

-2 -1.5 -1 0.5 0 0.5 1 15 2

FiG. 5. Hermite spectral approzimation for f(v) = exp(—2v2) + exp(—20v2), with o = v0/2
and N = 20.

4. Numerical Applications. Consider the eigenvalue problem [3, p. 126]
(4.1) —u" (v) + vtu(v) = Mu(v).
By the WKB method, the solution of the above equation has the asymptotic behavior
(4.2) u(®) ~ exp(~[o[*/3).

It is obvious from (4.2) that u ~ 0 if |[v| 2 M = 5. In order to obtain accurate
solutions of (4.1) efficiently, we need to choose the scaling factor A = /M, where
Yo = maxy<;<n{7vj}, with 7; the roots of Hy,,(7). Since the solutions of (4.1) are
even functions, only N /2 expansion terms are required in the actual calculations.
For N = 60, we predict that the scaling factor a ~ 10.16/5.0 =~ 2.0. Birkhoff and
Fix[3] used Galerkin’s method with 30 Hermite functions (i.e., N = 60) to solve
(4.1). They found that the standard Hermite functions (i.e., without scaling) gave
the first 18 eigenvalues to only three decimal places, whereas using a scaling factor
a = 2.154 gave the same eigenvalues to 10 decimal places. That is, an increase of
1077 in accuracy is obtained. They obtained the optimum scaling factor through trial
and error (the procedure requires a considerable amount of computer time), but the
present work provides an accurate scaling factor in a very simple way.

Finally, we apply the scaling technique to the one-dimensional heat equations.
The numerical methods for heat equations have been studied extensively in the past
(see, e.g., [16] and [18]). Consider the equation

ou 0 Ou

where v is the viscosity coefficient. If an initial temperature distribution is known,
then the problem is to determine the temperature distribution at later times. If the
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F1G. 7. Comparison between the ezact (lines) and numerical (marks) solution for the diffusion
equation at different times. (a) At =0.1 and N = 24; (b) At =0.01 and N = 24.

viscosity coefficient is a constant and the initial distribution is given as

(4.4) u(v,0) = \/ly_ﬂ exp <—§> ,

then the exact solution of (4.3) and (4.4) is

1 v2
T ()

Problem (4.3), (4.4) has been chosen since it has an analytic solution and this al-
lows us to compare our numerical results with the exact solution (4.5). We use the
pseudospectral method introduced in §2 to compute the numerical solutions. The
numerical procedure can be applied to more complicated initial distributions and to
variable viscosity coefficients. It can be seen from the previous section that the Her-
mite spectral methods work well for moderate values of v, but about O(1/v) expansion
terms are needed when v is small. However, if we apply the scaling technique, then
fewer terms are required. To illustrate this, we shall consider the case when v = 0.01.

(4.5) u(v,t) =
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Let U(t) = [u(vo/an,t), ..., u(yx/ay,t)]". Then (4.3) may be semidiscretized as

dU

4, W _ ,p®@
(4.6) o~ P,

where D®) is the second-order differentiation matrix, which can be computed by
(2.4), (2.6), and (2.10). When an explicit method is used to integrate (4.6) in time,
the maximum allowable time step needs to satisfy

where sr(D(?)) denotes the spectral radius of the matrix D). Since sr(D®)) =
O(a2 N) (see [19]) and N = O(y/1/v) (see §3), ay = O(V/N), we obtain At = O(1).
This suggests that the time-step size can be independent of N when v is small, which
is unlike the finite difference methods [16] and the particle methods [18]. Figure 7
gives a comparison between the exact solution and the numerical results. The solution
domain is [v] £ 1 and N is 24 (which corresponds to 12 expansion terms, since the
solution is an even function). Figure 7(a) shows that even for a quite large step size,
At = 0.1, stable numerical results can be obtained. The results differ only slightly
from those obtained by using a smaller time-step size (see Fig. 7(b)). The numerical
results are obtained by using the forward Euler method with constant time-step size
At.

5. Discussions. The method presented in this paper cna be used in solving
differential equations with solutions that decay exponentially as v — co. The idea of
using a scaling factor can also be extended to other spectral methods for unbounded
intervals, for example, Laguerre spectral methods (see, e.g., [13]) and rational spectral
methods (see, e.g., [7] and [19]). It is known that Hermite spectral methods cannot
handle functions that decay algebraically with v, but Laguerre and rational spectral
methods are appropriate in approximating slowly decay functions (see, e.g., [5]). It is
expected that the use of Laguerre or rational spectral methods with a similar scaling
technique can approximate solutions of some practical problems (e.g., problems in [7],
[8], and [13]).
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