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In practice, there are three types of adaptive methods using the finite element
approach, namely tHemethogp-methodandr-method In theh-method, the overall
method contains two parts, a solution algorithm and a mesh selection algorithm. These
two parts are independent of each other in the sense that the change of the PDEs will
affect the first part only. However, in some of the existing versions of tmethod
(also known as thenoving mesh methdthese two parts are strongly associated
with each other and as a result any change of the PDEs will result in the rewriting
of the whole code. In this work, we will proposar@ving mesh methaghich also
contains two parts, a solution algorithm and a mesh-redistribution algorithm. Our
efforts are to keep the advantages of thmethod (e.g., keep the number of nodes
unchanged) and of themethod (e.g., the two parts in the code are independent).

A framework for adaptive meshes based on the Hamilton—Schoen-Yau theory was
proposed by Dvinsky. In this work, we will extend Dvinsky’s method to provide an
efficient solver for the mesh-redistribution algorithm. The key idea is to construct
the harmonic map between the physical space and a parameter spadtebgtion
procedure. Each iteration step is to move the maebkerto the harmonic map.

This procedure is simple and easy to program and also enables us to keep the map
harmonic even after long times of numerical integration. The numerical schemes are
applied to a number of test problems in two dimensions. It is observed that the mesh-
redistribution strategy based on the harmonic maps adapts the mesh extremely well to
the solution without producing skew elements for multi-dimensional computations.
(© 2001 Academic Press
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1. INTRODUCTION

We consider the time-dependent partial differential equations (PDES) in a den@i!
U= L@@ inQx][0,T] (1.1)
with boundary and initial conditions

BU|3Q = ab in 982 x [0, T] (12)
L_j|t:0 = l_jo in Q. (13)

The difficulty of the problem appears when there are very rapid variations or sharp lay
in the solution. Adaptive methods are powerful in resolving these kinds of difficultie
by increasing the solution accuracy and decreasing the cost of numerical computati
Applications of the adaptive methods have been extended to many areas of research
as computational fluid dynamics [5, 6, 17, 19, 32], computational finance [34] and g
generation [21, 27].

Mesh adaptation can be static or dynamic (moving). In the static case a new mes
generated at a fixed time intervals. In a dynamic or a moving mesh adaptation [1, 13, 23
33], the mesh changes continuously in space and time to adapt to the dynamic change
time-evolving solutions. It is a challenging problem to generate an efficient moving me
in two or more dimensions, especially when the underlying solution develops complica
structures and becomes singular or nearly singular. In practice, there are three type
adaptive method using finite element approach, nameltmethodmesh refinement),
the p-method(order enrichment), and tiremethod(mesh motion). The-method which
will be studied in this work, is also known &soving mesh methodhe earliest work on
adaptive methods, based on moving finite element approach (MFEM) was done by Mi
[29, 30]. While the MFEM has been subject to some criticism because of its complex
and sensitivity with respect to certain user defined input parameters [18], proper choic
these parameters unquestionably leads to an efficient method. However, one disadval
of some existing moving mesh methods is that they mix the mesh-redistribution algorit
and the solution algorithm together and as a result any change of the given PDE (1.1)
lead to the rewriting of the whole code. Moreover, even if the given PDEs are linear t
resulting system of differential equations are strongly nonlinear; see, e.g., [11, 24, 35].

In this work, we will provide a moving finite element scheme which keeps the ma
advantages of thé- and r-methods: the efficiency of the moving mesh methods an
the simplicity of theh-method. To this end, we will follow thé&-method to form our
scheme with two independent parts: a mesh-redistribution algorithm and a solution a
rithm. The second part will be independent of the first one, which can be any of the stanc
codes for the given PDEs. Now the key question is how to make the first part efficit
and robust? Several moving mesh techniques have been introduced in the past, in whic
most advocated method is the one based on solving elliptic PDEs first proposed by Wins
[41]. Winslow’s formulation requires the solution of a nonlinear, Poisson-like equation
generate a mapping from a regular domain in a parameter Shatoean irregularly shaped
domain in physical spac@. By connecting points in the physical space corresponding 1
discrete points in the parameter space, the physical domain can be covered with a ¢
putation mesh suitable for the solution of finite difference/element equations. There h
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been also many applications and extensions of Winslow’s method; see, e.g., Brackbill
Saltzman [8, 9], Russell and co-workers [10, 22], Ren and Wang [36], and Thomps
et al. [40]. In these extensions the mesh is generated by usingatti@tional approach.
Specifically, the mesh map is provided by the minimizer of a functional of the followin
form

.1 1 JEKN?
E(é)zzzk:AwZ(aii) dX, (1.4)

where the positive functiom is a weighted function depending on the physical solutior
to be adapted. The variational mesh is determined by the Euler—Lagrange equation o
above functional:

k
> 9 (185) = 0. (1.5)
i X' \ w ox!
The solution of the above system will be taken as the map between the physical don
and the logical domain. As an example, let us denot&&s ), y(¢, n)) the mesh map in
two dimensions. Herg ( n) are the computational coordinates. In 2-D, the functional (1.4
becomes

1 /1
El¢, 0] = 5/9;(|v;|2+|w|2)dxdy (1.6)

whereV := (dy, dy). In this case, the corresponding Euler-Lagrange equation is given b

0. (25) =0 v (2os) =0 o

By using the above equations, a map between the physical dékvaaid the logical domain
Q. can be computed. Typically, the map transforms a uniforms mesh in the logical dom
to cluster grid points at the regions of the physical domain where the solution has the lar
gradients.

Brackbill and Saltzman [8] formulated the grid equations in the variational form (1.-
to produce satisfactory mesh concentration while maintaining relatively good smoothn
and orthogonality. Their approach has become one of the most popular methods for n
generation and adaptation. In [9], Brackbill incorporates an efficient directional control in
the mesh adaptation, thereby improving both the accuracy and efficiency of the numer
schemes.

Dvinsky [15] suggests that harmonic function theory may provide a general framewc
for developing useful mesh generators. His method can be viewed as a generalization an
tension of Winslow’s method. However, unlike most other generalizations which add ter
or functionals to the basic Winslow grid generator, his approach uses a single functic
to accomplish the adaptive mapping. The critical points of this functionahammonic
mapsMeshes obtained by Dvinsky’s method enjoy desirable properties of harmonic ma
particularly regularity, or smoothness.

Motivated by the work of Dvinsky, a moving mesh strategy will be proposed and studi
in this work. Our approach is similar to Dvinsky’s scheme, except that (a) a more efficie
and robust mesh-redistribution algorithm will be designed and (b) a finite element appro
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rather than a finite difference discretization will be used. In part (a), we make sure that
map between the logical and the physical domains are kept harmonic, even after long:
of numerical integration. To this end, we construct the harmonic map between the phys
mesh and the logical mesh by daration procedure. Each iteration step is to move the
meshcloserto the harmonic map. The idea of iteration mapping was proposed by Tang &
Trummer [39], Liu and Tang [28], and Ren and Wang [36]. Each iteration consists of th
parts:

e (i) obtain the error off between the Euler-Lagrange solution mesh and the fixe
(initial) mesh,

e (i) obtain the new location of by using the error of, and

e (iii) updatel on the new mesh.

It is well known that one of the advantages of finite element methods over other numer
methods for solving PDESs (such as finite difference methods and spectral approximati
is that it can handle irregular solution domains. However, this is not the only reason
using part (b) above. Apart from the flexibility of solution domains, finite element approa
is found to be more reliable and efficient than finite difference method for mesh adaptati
In particular, with finite element method we can avoid the standard interpolation proced
used in the existing adaptive codes. After obtaining the numerical approximations in a gi
time level, we begin to move more grid points to the physical relevant regions, i.e., part
above. In part (iii) above, the essential assumption for updaiiog the new mesh is that
thesurface ofti onQ will be kept unchanged.

The paper is organized as follows. In Section 2, we first discuss harmonic function the
and its application to mesh generation. Some general discussion on our numerical sct
will be given in Section 3. The detail implementation of the numerical scheme is descrik
in Section 4. Numerical experiments on mesh generation and on solving PDEs with Iz
solution variations are reported in Sections 5 and 6, respectively. In Sections 7 and 8
discuss the difference between the present moving mesh code and some existing mc
mesh codes.

2. HARMONIC MAPS BETWEEN RIEMANNIAN MANIFOLDS

Let @ and Q. be compact Riemannian manifolds of dimensiowith metric tensors
dij andz,z in some local coordinate$ andé, respectively. Following Dvinsky [15] and
Brackbill [9], we define the energy for a mgp= & (X) as

-1 L dEY AP
EE) = é/x/ad”raﬁ aii %dx, (2.1)

whered = det(d;;), (dij)z(d‘j)‘l, and the standard summation convention is assume
The Euler-Lagrange equations, whose solution minimizes the above energy, are giver
1 9 aEk « 07 9Er

Jd axi o Vad’ axl +diry, axi 9xi 0 (2.2)

Wherel“gy is the Christoffel symbol of the second kind, defined by

pko_ Lia [s | 0Ny 3Ty

2 |oagr T 9gF 9Er
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Existence and unigueness of the harmonic map are guaranteed when the Riemanniat
vature ofQ2. is nonpositive and its boundary is convex (see Hamilton [20] and Schoen a
Yau [37]). Since2. is obtained by construction, both requirements can usually be satisfie
With a Euclidean metrid,“'gy =0, the Euler-Lagrange equations become

9 ij OEX
X \CL axl

=0. (2.3)

we emphasize that = detd;;) = 1/detd"). In 2-D, if we use the same notations as usec
in the last section, then the energy functional is given by

EREH]==%LK;VdeKD)(VETD_lV§4—VnTD‘1Vn)dxdy

whereD~1 = (d'}) is a symmetric positive definite matrix depending Bny)). In this case,
the corresponding Euler—Lagrange equation is given by

V. (y/detD)D"Vve) =0, V.(y/detD)D~vy) =0.

For ease of notation, we |&" = /ddi. The inverse of G'/) is calledmonitor functions
Therefore, the Euler—Lagrange equations, with Euclidean metric for the logical d@yain
are given by

agk
i <G” 8€> =0. (2.4)
ax! ax!

The simplest harmonic mapping is obtained by assuming Euclidean metric in both doma
which gives

Gl =6, (2.5)

with §' the Kronecker delta. In [9], itis shown that the generator suggested by Winslow (1
forms a harmonic mapping and hence the Hamilton—Schoen-Yau existence and unique
theories ([20, 37]) can be applied. The equations (1.5) and (2.4) are identical when
metric in (2.1) andv in (1.4) are related by

G =4 /w. (2.6)
Another monitor function proposed by Dvinsky [15] is

f(F)

VF.VFT,
IF 112

dhH =1+

where f (F) is a function of the distance from a given point to the given cl¥¢g) = 0.
More general forms of monitor functions are proposed and studied in Brackbill [9] al
Huang and Russell [22].

To solve the Euler-Lagrange equations numerically, one usually interchanges depen
and independent variables. The solution of (2.4) requires evaluating derivatigesitf
respect to the physical coordinatésin moving mesh computation, however, one usually
specifies the logical arrangement of grid points and computes the physical coordinate
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the grid points. In other words, we solve fﬁ(é), the inverse mapping df, because it
directly defines the mesh an. For the variational approach (1.4)—(1.5), the componen
of the physical coordinates are governed by

9 gxk

gIJ 8_5'608_};:] = 0, (27)

where

ij _ 9E' 9E!
X Ixe’

The detailed derivation for the equation (2.7) can be found in [9].

In developing the theory of harmonic maps, a deformation from a given homomorphi
to the harmonic map by the heat equations has been investigated by several researt
see, e.g., [16]. Solving the heat equation

AEX 9 L DEK
9" =—(G" i tou — oo (2.8)
I ax! ax!

will lead to the harmonic map defined by (2.4). The reason for not solving the elliptic systt
(2.4) directly but instead solving the heat equation is again to provide a useful way to ob
a map from¢ to X, as to be demonstrated below. Using the identity

92k agk 92xP gev 9&’

axioxi IXP JEYOES 9xi 9xI

and noting that for an arbitrary functioh(?((g, W), 1)

of - of of an
O [fixeds O lfixed 2 axk ou’
we can obtain from (2.8) that
ax' &k 9x
e Ap 9K
_ D g gk ax o 9%k X
axi — 9xl gEk axioxi ggk
K a2y8 5 ayl
_ 0 Giigh _ i 987 97T 987 98 9x°
axi IXP QEVIES OXI axI DEX
= i i X 9808,
axi JEVIE® IXI X
_ 9 i ;95 0g” og°
C X AEYAES Ixi axi’
wheres' is the Kronecker delta. By lettinGg?? = Gl %% we obtain the equation
ax . o %! d
=G” - —G", (2.9)

- dEvoEt  ax
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or equivalently

X mys 9X0E€9GT (2.10)
M AEVIES X QEK

The equation (2.10) gives the desired map frg)m X. In our computation, the equation
(2.9) will lead to a finite element formula for computing such a map; see (4.13).

Since the fundamental work of Eell and Sampson [16], harmonic maps have attrac
considerable attention from both mathematicians and physicists. Dvinsky is the firstto n
the practical importance of using harmonic map theory for mesh adaptation [15]. A g
feature of the adaptive methods based on harmonic mapping is that existence, unique
and nonsingularity for the continuous map can be guaranteed from the theory of harmc
maps. The existence and uniqueness of harmonic maps are established by Hamilton
and Schoen and Yau [37]; the existence of the solution for the problem (2.8) is addresse
Eell and Sampson [16]; The singularity of three-dimensional harmonic maps is discus
by Liao and Smale [25, 26]. Such theoretical guarantees are rare in the field of adap
mesh generation. In a recent work of Bertalmsioal. [7], harmonic maps, together with
level-set techniques, have been used successfully to solve variational problems and F
onimplicit surfaces, with particular application to image processing and computer graph

3. THE FRAME OF OUR NUMERICAL SCHEME

In this work, we will employ finite element methods together with moving mesh strate
to solve problem (1.1)—(1.3). The non-uniform mesh of finite element methods is mc
flexible than that of finite difference methods that enables us to handle more complice
physical domains. Moreover, as to be demonstrated in next section, with finite elem
methods we can avoid the standard interpolation procedure used in most existing ada
codes.

To solve problem (1.1)—(1.3), we will separate the computation into two parts: mes
moving and time-stepping. The mesh-moving is a procedureidtion to construct the
harmonic map between the physical mesh and the logical mesh. Each iteration step
move the meshloserto the harmonic map. In the process of the numerical computation, v
always keep the initial mesh in the logical domain fixed. This mesh is not used to solve :
PDEs, but its error with the solution of the Poisson equation (2.4) is used to move the m
in the physical domain. More precisely, in the first step we choose a convex d@pasthe
logical domain on which an initial mesh will be constructed. By solving the Poisson equati
AE = 0 with some Dirichlet boundary condition, we obtain a mesh in the logical domai
Once this initial mesh is obtained, it will be kept unchanged throughout the computatit
The role of this initial mesh 2, denoted bf@, is used as a reference grid only. Once
the solutioru is computed at time step=t,,, the inverse matrix of the monito®'! (which
in general depends an, can be updated. By solving the Euler—Lagrange equation (2.4
we will obtain a mesh in the logical domain, denotedEbyf the difference between this
£* and the initial mes§ @ is not small, we move the mesh in the physical space and obta
the updated values farin the resulting new grid based on the following principles:

e (a) obtain the error between the solution of (2.4) and the fixed (initial) mesh in ti
logical domain,
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o (b) obtain the direction and the magnitude of the movemenk foy using the error
of &, and
¢ (c) updatei on the new grid by solving a system of ODEs, see (4.12).

This procedure igepeateduntil the difference betweeé* and the initial mesif“’) is
sufficiently small. Then we can use some appropriate numerical methods, with the upd
mesh in the physical space, to solve the given problems to obtain solutibe-fgy, ;. This
procedure is also illustrated by the following flowchart:

Solve the given PDE problems foe= t,
i}
Update the mesh and solution based on an iteration procedure

4

Solve the given PDE problems foe= t, 1

The first step above involves a solution algorithm, which is essentially irrelevant wi
the second part. The solution algorithm can be any standard finite element codes or a s
discretized finite element method in conjunction with the method of line. In other words, \
can clearly separate mesh-moving and time-forwarding so that the code is easy to prog
In the time-forwarding part, the numerical methods used have no difference with the
without mesh redistribution; and for different PDE problems the only possible change
the mesh-redistribution part of the codes is to change the monitor function. It is relevan
point out that some ideas of the so-calledving space—time finite element metftjdnay
be implemented in our moving mesh scheme.

In second step above, the iteration procedure is given by the following algorithm:

ALGORITHM 1.

(i) Solve the Euler—Lagrange equation (2.4) to obéﬁn

(i) Judge if Lo-norm of €* — £© is small. if yes, the iteration is over. otherwise, do
(iii)—(vi).

(iii) Using the differenc&* — £© to compute the mesh-moving vectx.

(iv) Move the mesh to a new location based on the result in (jii).

(v) Update the numerical approximations at new grids obtained in (iv).

(vi) Go to (i).

In part (i), two methods will be used in our computation. Method I is to solve Eq. (2.9
This method works in spack formed by all homomorphism fror to .. The energy
functional is defined ort{. Equation (2.9) goes down along the direction of the negativ
gradient ofE(§): see, e.g., [16]. Method Il is to use the harmonic map itself. After solvin
Eq. (2.4), we can obtain the harmonic mép‘rom Q to Q.. Then we interpolate the
nodes of the new mesh as the images of the nodes for the logical mésh dhe detail
implementation for both methods will be given in next section. Itis found that both Metho
I and Il work well for the test problems in Sections 6 and 7. The difference is that Meth
Il is easier than Method | in coding.

In part (ii), in order to guarantee the quality of the harmonic map, we repeat the me
moving process until the,-norm for the distance between the solution of Eq. (2.4) and th
initial logical meshe©@ is smaller than a preassigned toleramoe.

In part (V), the node values at new grids are updated based on the assumption tha
surfaceof U on Q will be kept unchanged at each fixed time step. Based on this principl
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the approximate solutions are re-distributed nicely on new grids based on a linear sys
of ordinary differential equations (ODES), see Eg. (4.12).

4. THE NUMERICAL SCHEME

In this section, we will discuss the detail numerical procedures for our moving me
scheme. The following steps provide the key ingredients for our numerical scheme.

4.1. Prepare the Initial Mesh on the Logical Domain

Let the physical domaife be triangularized into some simple finite elements, denoted b
T. The finite element space is chosen dis@ar finite elemenspace. LeiX = (X;) be the
nodes, an@® = (®1) be basis functions such th&i (X;) = §'l, wheres'l is the Kronecker
delta. We also choose a convex domginas the logical domain. By solving the Poisson
equation

AE=0, XeQ (4.1)
with Dirichlet boundary condition
Elag = &b, (4.2)

we obtain a mesh in the logical domain, with noded = (A4;).

4.2. Prepare the Initial Mesh on the Physical Domain

Once an initial mesl© = T, is obtained as described in the above section, the initiz
adaptive mesh on the physical dom&irtan be computed as the numerical solution of the
inverse map of (2.4). With the choice of Winslow’s monitor function (2.6), the equation f
the inverse map is given by (2.7). For more general choic&s;othe equations governing
the inverse map can also be formulated, by following the similar derivations in [22]. V
can also avoid deriving and directly using the inverse map equations. This can be don
using steps (B and (B), described in the following section.

In the case where the initial functian is stiff (or near singular), we use a method basec
on continuation on the initial function. Without lose of generality, &t= (G') be the
function of i only, i.e. G = G(U). Then we decompose (2.4) at the initial step into the
following iteration procedure:

V- (G(tn-1lio(*1-1))VE) =0. n=>1 (4.3)

To start with, we letg = 0 andX, be the uniform mesh. The inverse map of (4.3) is define
asX, which can be computed by some standard methods mentioned above. By increa
{zn} from O to 1, we will end up with a desired initial mesh n

4.3. Mesh-Moving

Suppose now we have obtained the valud&Jpf= TG(X;) on the current nodeX; at a
time stept = t,. We now need to obtain the new location of the nodés= (X;*) and the
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new value olU* = (U;") on the new nodes. The operation can be divided into the followin
three parts if we use Method II.

(P;) Obtain the error of. We first solve the following generalized Poisson equatiol
3 . DEK
— | G" i =0 (4.4)
ax! ax!

with the boundary condition (4.2). By doing so, we can obtain a new logical fgs¥ith
its nodesA*. We are interested in the error f

SA=A- A"
The above error function will be used in the next step to predict the movement of 1
numerical grid in the physical spa€k see (4.6) below.

(P>) Obtainthe movementdf. For agiven elemeriin T, with Xg,, 0 < k < nasits
vertexes, the piecewise linear map fréfn (2¢) to Vr (2) such thatd;’ — X; has constant
gradient ork and satisfies the linear system

axt  axt ax*
*,1 *,1 *,1 *,1 *, *, 9eL 92 EN
AEI - AEO AEz - AEO e Enn - E: 9 0% 9%
*,2 *,2 *,2 *,2 *,2 *,2 ax2  ax? NG
AEl _ AEO AEz _ AEO e A n _ AEO B—El 8—52 e a_é-n
#,N #,N #,N #,N #,N #,N : : ’
Ex — ‘AEo E2 ~ Y'BEo 77 En — “AEO ax™  axn ax"
oL 02 og
Xg — Xg, Xg, —Xg - Xg, — Xg,
2 2 2 2 2 2
S T @5)
El - rI%0 rI1E2 - rll:o e rI%n - XED

Solving the above linear system givé/d¢ in E. If we take the volume of the element
as the weight, the weighted average erroXddt theith node is defined by

9% ,

3Xi = ZEETi IE| o in E&AI
ZEeTi |E|

in which |E| is the volume of elemeri. It can be shown that the above volume-weightec

average converges to a smooth solution in measure when the size of mesh goes to 0
location of the nodes in the new megh on the physical domain is taken as

(4.6)

X* = X4+ 18X,

inwhichz is a parameterin [0, 1]. In our numerical experiments, itis found that the selecti
of T is quite insensitive. One choice ofis the following:

T = min(0.5/||8.A]l2, 0.618).
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In general, the 2-norm of A decreases with a rate aboyt32in each iteration step after
[I6A|]2 becomes small. However, when the solutibis very singular (e.g., very large
gradients exist for the solution), the decreasgf||, will become slow.

(Ps) Updateii on the new mesh Each element of with X as its nodes corresponds
uniquely to an element of *(7) with X + t8X as its nodes. There is also an affine map
between the two elements. By combining all those affine maps from every elenieritof
to T, we obtain a map fror. to Q piecewise affine. The surfaceiobn 2 will not move,
though the nodes of the mesh will be moved to new locations. Tihas the function ok
at timety, is independent on the parameteiThat is,

ol
5 = 4.7)
During the moving of the mesl, is expressed as
U=uRX)
= U(X, 7).
In the finite element spacé,is expressed as
U=Ui(@0® (X, 1), (4.8)

whered' (X, 1) is the basis function of the finite element space at its nqde ¢4 X;. Direct
computation gives
D (X, 0 _ aq> (X, 7)
ot axi

(8%);, (4.9)

wheresX := § X; ®'. Differentiatingt with respect tar gives

0 9d _ aui O 8<I>‘
ot
aU; P!
= —o'(X, 1) = U (t)—(Sx)] (4.10)

Using the expression farin the finite element space, i.e., (4.8), we obtain from the abov
result that

i = -
a—'cp' (X, T) — Vxlsx = 0. (4.11)
T

Then the semi-discrete system for updatinipllows from the above result:

oU;
/{BICD X, 1) — VgUS?(}vd)?:O Yv € V1 ().
Q T

By letting v be the basis function 0¥ (), i.e.,v = ®I (X, r), we obtain a system of
(linear) ODEs folU;:

i
/CD oldx 2 / 0P (%)@ dXU; (7). (4.12)
Q 81 X axk

We will solve the above ODE system with a three-stage Runge—Kutta scheme.
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Remark. If Method | is used in this step, the only difference is how to obtain the errc
of X. In this case, we expresswith the basis function in the finite element space of the
logical domain as

ox!axi o
o o
X = X! ol
The above equations are substituted into the parabolic equation (2.9). We further ass
that the function& andG are piecewise constant on the logical domain. We can then obte
the system fob X /o as

X o =5 02X G -
—CI>' — yé - il
e cvdg /Qc {G 55758 3 G }vdé
:_/ éyaLX' v i 08" Igx du o
. dEY 080 X1 9EK

[ ey it an
- /QC{GV Xer e~ ©' 5 ng}ds (4.13)

for v € Vr_0(2c). By lettingv be the basis function dfr_ o(€2.), we obtain from the above
result a linear system farX/ou,

aX| s DK D), 9E* 90l
DLdldE = — X il 4.14
/Qc o PP /Q{G o 98 C ax aEk }dg 19

We taked X/9u as the direction of the error far. The step length of mesh-moving is taken
as the length 06 X /0 .

4.4. Time-Forwarding

This step is trivial: it is irrelevant with the adaptive method and can be any appropri
finite element code. The following is one of the possible methods, which will be used
our numerical experiment sections. It follows from Eq. (1.1) that

/{at —L@}vdXx =0 Vo e Vi ().
Q

Using the expression far in the finite element space, i.€l,= U; (t)®' (X), and lettingv
be the basis function, we obtain

/ {E)Uicpicbi — L))o/ } dx =0, (4.15)
o L ot

which is a systems of ODEs fd; (t). It can be solved by any efficient ODE solvers such
as multi-stage Runge—Kutta schemes.

We point out again that the method based on (4.15) only serves for the numerical
periments in this paper. In fact, this step is very flexible: any available methods/codes
Eq. (1.1) can be employed in this step.
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5. NUMERICAL EXPERIMENTS: MESH GENERATION

In Section 4.3 an adaptive grid generation procedure is proposed. In this step, on
the important issues requiring some attention is the monitor funGibmsed in Eq. (4.4).
There are several excellent papers in this direction, including Brackbill and Saltzman,
and Caoet al. [10]. Due to the limitation of space, we will concentrate on the imple:
mentation of our numerical scheme proposed in last section and therefore will not ¢
cuss the issues of the monitor function. In this work we will just use the simple monit
function (2.6).

Several test problems have been computed and the numerical results indicate tha
mesh generation procedure is indeed efficient and robust. Here we only report result:
one example which was also tested by several other authors; see, e.g., [11].

ExampPLE 5.1. As an example, the performance of the moving mesh technique is exa
ined for the case of a solution domain with very rough boundaries. The adaptation funct
is chosen asi(X, t) = tanh(50(x;—t)), whereX = (X1, X) .

An unstructured grid in the logical domali, is initially generated by using the scheme
in Section 4.1. We choose the logical domain as a convex polygon having the same nun
of boundary segments & and use a monitor functio6 ! = y/1+ 0.1|Vu||3I . Using
Section 4.2, we obtain the initial mesh in the physical dongaiff he initial unstructured
grids in Q2 and Q2. are displayed in Fig. 1. The moving grid at various time levels is als
shown in Fig. 2. One can see that the generated mesh is satisfactory in the sense tl
conforms very well to the adaptation function.

6. NUMERICAL EXPERIMENTS: SOLVING PDES

In this section we present some numerical examples to demonstrate the performanc
our moving mesh finite-element methods for solving time dependent PDEs. We noticed:
a recent paper of Cagt al. [11] provides a number of test problems and we will basically
follow their examples, except the one with application to the Navier-Stokes equations

09|

08

08,
08

05

08

VAVAVAVAN 04
INININTN
VAN
04 VA 03]

02

02
a1
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FIG. 1. The initial mesh irc2 (left) and<2. (right) for Example 5.1.
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detailed study of the application of our moving mesh method to the Navier-Stokes equati
will be provided in a future work.

In practice it is common to use some temporal or spabothingon the monitor
function or directly on the mesh magpto obtain smoother meshes, this was found to be
extremely useful in the work of [11, 13, 38]. One of the reasons for using smoothing is
avoid very singular meshes and large approximation error around the stiff solution are
Several smoothing techniques have been proposed to enhance the quality of the me
In this work, we propose a rather different smoothing procedure: First we interpolate
monitor functionM := G~ from L?(Q) into Hy 1 (£2), namely from piecewise constant to
piecewise linear, by the formula:

(ﬂhM)|atP — Zr:P is vertex ofzr M |0nf|r| ) (6.1)

Er:P is vertex oft |T|

Second we project it back into?(Q) by the formula:

1
Miowe = =7 >, (mMar, (6.2)

P is vertex ofr

wheren is the dimension of2. Our numerical experiments have shown that this smoothin
for the monitor function (2.6) not only enhances the quality of the meshes but also incree
the accuracy of the numerical approximations.

ExamPLE 6.1. Consider the wave equation

U U aU

i x—=0
ot Yax X%y

on the unit circle with initial value
e 3012700 if (x; — 1/2)2 4 X3 < 1/4,
U(X,0) = { e 320atl/2%00) if (x; +1/2)% 4 x3 < 1/4,

0 elsewhere

and zero boundary condition.

The solution of Example 6.1 possesses a twin peak (of fixed shape) rotating coun
clockwise around the origin. A linear finite element discretization based upon the movi
mesh scheme as described in Section 4 is applied. The initial mesh is obtained frol
guasi-uniform triangulation with 1700 elements, as shown in Fig. 3. A fixed time step si
8t =0.05 is used for the integration of the ODE system (see Section 4.4). In the me
redistribution part, the monitor function usedyj4l + 6u2 + [Vul5l.

This test problem has been considered by several authors; see, e.g., Baines [3], Davi
Flaherty [14], and Caet al.[11], to test the quality of the meshes generated by adaptiv
schemes. As noted in [11] that some existing moving mesh techniques produce me
with points sticking to the rotating peaks, causing the mesh to become increasingly sl
until the computation eventually breaks down. From Fig. 3, itis clear that our moving me
scheme has no such difficulty, and the mesh adapts extremely well to the solution witt
producing skew elements.
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ExampPLE 6.2. Our second example is to compute a moving oblique shock. The gc
erning equation for it is the Burgers equation

ou

defined in the unit squa® = (0, 1) x (0, 1). The initial condition and Dirichlet boundary
condition are chosen such that the exact solution to the underlying problem is

U, y;t) = (1+expi(x +y—t)/a) L

In our computation we choose= 0.005. It is noted that the smalleris, the more
convection dominates, and the higher the concentration of mesh points required arount
wave front. Figure 4 shows the movement of a moving mesh solution withZDnodes.
The monitor function used ig/1 + || Vu||3].

In this problem, large gradient solutions will be developed to the boundaries in a la
time. As a consequence, boundary point redistribution should be made in order to impr
the quality of the adaptive mesh. A simple redistribution strategy is proposed as follows.
basic idea is to move the boundary points by solving 1-D moving mesh equations. With
lose of generality, we consider a simple boundan in the x-direction. Solving the two-
point boundary value problem fow:): = 0 with uniform mesh ir¢ will lead to a new
boundary redistribution. Assume[, X;+1] C [a, b]. Then there exists exactly one element
T; whose one edge ix], Xj11]. Note that the gradient monitor ifi is a constant (due to
the use of the linear element). We let the monitor functidg, x,,,) equals to this constant,
which establishes a connection between the boundary and interior grid redistribution. T
redistribution strategy is applied to both Examples 6.2 and 6.3.

In Fig. 5, we plot thel.-errors obtained by using the fixed and moving meshes wit
20 x 20 nodes (930 triangular elements). As expected, the numerical solution with a mov
mesh is much more accurate than the one obtained by using a fixed mesh!-€her
of the finite element solution with a moving mesh is about 9% of that with a fixed mes
For comparison, we also plot in Fig. 5 thé-errors with 16x 16 nodes obtained by using
the present moving mesh algorithm (second line from the top) and the moving mesh F
approach (third curve from the top) obtained in [11]. It is observed that with the sar
number of nodes the numerical error of our moving mesh algorithm is smaller than tha
the moving mesh PDE approach.

ExamPLE 6.3. Our third example is concerned with the buoyancy-driven horizont:
spreading of heat and chemical species through a fluid saturated porous medium.
physical problemis discussed and formulated in [11]. The do®aimthe physical domain
is shown in Fig. 7, and the governing equation is

aT aC
—AYy =Ral — +N— |,
v (8 + 3x>
aT  a(T,
o AT o

at Ay
90C aCy) _ 1

o dt Ay Le

s
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10” T ; . ‘ . . .

20x20 fixed - — ~- -
20x20 moving
16x16 moving -~ -

16x16 moving(11] ~ —= — —

10-4 i L L ! ! 1 !
0.2 0.4 0.6 0.8 1 12 14 1.6 1.8

FIG.5. Example 6.21.-error in time for fixed mesh with 2& 20 nodes (--), moving mesh with 16« 16
nodes (- -), and moving mesh with 2@ 20 nodes (-). The dashed line (- -) is the moving mesh PDE result witl
16 x 16 nodes obtained in [11].

wherey is the stream function of the flow, the temperatureC the concentration of the
constituentRa the Darcy-modified Rayleigh numbétthe buoyancy ratiol.e the Lewis
numberg the porosity ratiog the heat capacity ratio, and

a(f,g) _ af ag af ag

d(X,y)  axay dyox’

The initial conditions are given by

1, forx <0.5,

Vli=o=0, Tli=o=Cli=0= {O, for X = 0.5, (6.3)
The boundary conditions are given by
oT aC
=0, —’ == = 6.4
V] anlae  an g (6.4)

In this problem, the fluid is initially of different degrees of temperature and concentrati
of a certain constituent. At the beginning, the warm fluid on the left side of the domain ha
less pronounced vertical gradient of hydrostatic pressure than the cold fluid on the right s
This horizontal difference of pressure will start to push the cold fluid to the left side at tl
bottom and warm fluid to the right side at the top. This keeps the fluid convecting until t
cold fluid rests under the warm one. Meanwhile, the diffusion effect will gradually smoo
outthe temperature and concentration differences between the initially cold and warm flu
We will stimulate this phenomenon for the case of a large Rayleigh nurRlaef,1000.
Other parameters in the governing equations\are 0, Le = 1 andp /o = 1. Inthe logical
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domain, a quasi-uniform triangulation with 1784 elements is shown in Fig. 6. Physical
if the Rayleigh number is large enough a thin layer of large variation of temperature &
concentration will keep existing until the warm fluid settles completely on top of the co
one and eventually the temperature and concentration become uniform in the whole fl
These phenomena are clearly observed in Fig. 7. It is seen that the mesh adapts well t
temperature and follows successfully the motion of the thin layer of large temperature
concentration variation.

7. NUMERICAL EXPERIMENTS: REACTION-DIFFUSION EQUATIONS

One of the key ideas of our moving mesh scheme is to keep the time scales of the g
equation (1.1) and the moving mesh equation (2.9) different. This approach is different fr
the one used in moving mesh PDEs (see e.g., [10, 13, 24]) in whioH(2.9) is replaced
by the physical time. Integrating (1.1) and (2.9) with different time scale can avoid the
difficulty that the time ste@t has to be restricted blgoth Egs. (1.1) and (2.9). In the
method of moving mesh PDEs, this difficulty has to be partially overcome by introducil
a non-physical parameter to the right hand side of (2.9).

Our next numerical example is a combustion problem which was investigated numeric:
in [11, 31]. The main purpose of this example is to demonstrate that Section 4.4 car
independent of other steps in Section 4. In particular, the mesh-moving step and the ti
forwarding step arendependenof each other.

ExampPLE 7.1. The mathematical model is a system of coupled nonlinear reactio
diffusion equations,

ou V2 = _Buem—l/T)
ot al ’
T 1o R oaum
at  Le SLe ’
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forx = (x1, X2)T € Q,t > 0, and wher@ andT represent the dimensionless concentratiot
and temperature of a chemical which is undertaking a one-step reaction. As in [31],
consider a simple square domain= [—1, 1] x [—1, 1], with the initial and boundary
conditions

U0 =Th=o=1 ing,
U|;)Q:T|ag2:1, for t > 0.

The physical parameters are set tollee= 0.9, « = 1,5 = 20, andR = 5.
To begin with, choosing € H(£) to be a test function gives

au
0:/{M—V2u+ (Sue“l l/T)}vdx

au
=/ M+ Vu- Vo + ués(l YDy L dx,
Jo Lot s

0= / I Lgor - R jgauml gy
o lat  Le sLe

T 1 R
- ZVu- Vo — ——ud@ YTy Ldx,
/ { it "t e TIPS v

For convenience, let', 1 <i < N be basis functions atinner nodes, andjetl < i <
M be basis functions at boundary nodes. We then exprassl T as

ui<i)¢i i Ufb)lﬂ', T = Ti(i)¢i +T|(b)10'-
Using the test functiong’ € Vi, o(€2) in the above equations leads to
auy i+ WOV 4 u® v i
0= [ {500l + (U +uvy) - vl
R .. . i
+— — ( <I)¢| + ul(b))eﬁ(l—l/'l')qb] } dx
aT. i ) b j
0= ¢>¢ (T Vo' + TPvy') . ve
_ i(u-(i)df +u(b)wl)eé(lfl/T)¢j dx
sLet ! :

By using the linear approximation for the teet{!~%/ T

(i (b)
e6(1—1/T) ~ e5(1—1/Tk )¢k 4 eé(l—l/Trn )wm’
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we obtain the discretized system to be used for the computation,
0= [ {291+ et +uey) v
+ F\;( (i)¢i + ul(b)wl) (ea(l—l/Tk“>>¢k + ea<1-1/mh’)wm)¢j } dx.
o= [ { T(I)qs 91+ (T OV v

R 0
_5|_e( (I)¢ +U(b)1ﬁ)( pA-1/T) gk | @1 YT g )¢ }dx.

We can write the above system in matrix forms by letting
Aj =—/¢i¢jdx
Q

A . R i .

(BY);; = /Q {w' e ’>¢k+e“<1—1”r‘nb)>w’“)¢'¢l} dx
R 0) ® ;

(BP) = [ {wu! - vol 4 S (@4 i umyytl| ax

Q) _ il v A j
(BT, )j_/gl_ews Veldx

i R i b . .
(B'(I'I.)u)ij :/Q_gLe( PRIEES 1/T")¢ + &0 TS ’)w )¢|¢de

1 .
(b) I, ]
(Brr),; _/QLew Veldx
(B :/Q 353( PA-UT gk 4 @A-UTR)ym) yl gl g

u® =, u)T TO= (10, T

u® = (U, u®)" T = (TP, T

Then the semi-discrete system for Example 7.1 is given by

8u(|)
ot

aTw i o [TV 0 moy (U
A ot (BTTB )(T(b)> (BTuB )(u(b)>'

A three-stage Runge—Kutta method is used to integrate the above ODE system. At ¢
time step, when the numerical approximation is obtained we use the mesh-moving te
nigues as described in Section 4.3 to re-distribute the mesh in the physical domain.
emphasize again that Section 4.3 only requires the outputs of Section 4.4 but does not
how these outputs are obtained. In Fig. 8, the moving meshes obtained witB3dodes
are plotted, together in this figure are the numerical solutions for the tempeFatiwarious
time levels. Although the temperatuFénas a very thin layer of large variation, our moving
mesh scheme adapts the mesh extremely well to the regions with large solution gradie

— BOu® 4 BOWU®




MOVING MESH METHODS

08

98|

04

02|

~02

~03

-08

-02

o0

08

a

02|

-02

04 ,

08

-08

1
14
A
;u"n 12 :'lql"‘!’ ’m‘# é"
gy iy DN
S, . ) VRN
2o : T
B - 117 MRS
Sy

(1)

o8

o il
i OO NSRS
AN
I AAVANANAAV, Y, A
I AVAVAVAVAYAVANAVAVAY sy, Y

‘mﬁv‘"

N

FIG. 8. Example 7.1: Moving mesh and temperatliratt = 0.259 0.263 0.271, and 0.288.

-08

-0 -02 ° 92 o 08 08 +

it
Nt
g{-"*#ﬁiﬁ’m’
I i

{

qba‘i il
Hgiis jf
NI
' Fyyt
Yl’g‘
|

I
j

it
St
A

Rl i o
iy
- mp‘mﬁ il

[' ’.'"Hv
A
ity

585



586 LI, TANG, AND ZHANG

8. CONCLUDING REMARKS

Solving the physical PDE using a moving mesh PDE approach would involve chang
the FEM solver to deal with the mesh movement terms, but it may expect that this incon
nience would be outweighed by allowing larger time steps as the solution would to app
to change much more slowly with respect to the moving reference frame. In other wor
although the present method is attractive since a standard piece of software can be
the price to pay hermay bethat smaller time steps have to be used as the steep soluti
would appear to change rapidly in time with respect to a fixed reference frame. To velr
this, we plot in Fig. 9 the step sizes employed in a very recent work ofeTab. [12]
(which are generated by a rather complicated selection formula) and those used in the
section for Example 7.1, with the same number of finite elements. This problem is v
difficult to solve numerically and so serves as a good test for the comparison purpose. S
large solution gradients only occur after 0.24 (i.e., the effect of mesh moving becomes
important after this time), we only plot the time step sized fer0.24. Itis seen from Fig. 9
that the time steps used with the present moving mesh method are comparable with the
selected with the moving mesh PDE approach. Although our (average) time step is al
three times smaller than the one with the moving mesh PDE approach, the present me
is overall more efficient, by noting that in our approach simpler equations are solved «
explicit ODE solvers are used, but in [12] anplicit ODE solver is employed.

In conclusion, we developed in this paper a moving mesh scheme based on harm
mapping for solving partial differential equations. The proposed scheme favorably comps
with previously proposed methods in terms of simplicity and reliability. Our moving mes
scheme has been seen to work satisfactorily in a variety of circumstances. Although
examples shown in this work are in two space dimensions, in principle our method «
be extended to higher dimensions. In fact, some preliminary results for three-dimensic

10%F

1 1 1 1 i1 1 1 1 1
0.24 0.245 025 0.256 0.26 0.265 027 0.276 0.28 0.285

FIG. 9. Example 7.1: the variable time step siz¢sselected with an implicit ODE solver in [12](-) and
with an explicit RK3 method used in Section 7 (-).
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problems have been obtained based on the present framework. The detailed results f
will be reported in a future work.
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