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In practice, there are three types of adaptive methods using the finite element
approach, namely theh-method,p-method, andr-method. In theh-method, the overall
method contains two parts, a solution algorithm and a mesh selection algorithm. These
two parts are independent of each other in the sense that the change of the PDEs will
affect the first part only. However, in some of the existing versions of ther-method
(also known as themoving mesh method), these two parts are strongly associated
with each other and as a result any change of the PDEs will result in the rewriting
of the whole code. In this work, we will propose amoving mesh methodwhich also
contains two parts, a solution algorithm and a mesh-redistribution algorithm. Our
efforts are to keep the advantages of ther-method (e.g., keep the number of nodes
unchanged) and of theh-method (e.g., the two parts in the code are independent).
A framework for adaptive meshes based on the Hamilton–Schoen–Yau theory was
proposed by Dvinsky. In this work, we will extend Dvinsky’s method to provide an
efficient solver for the mesh-redistribution algorithm. The key idea is to construct
the harmonic map between the physical space and a parameter space by aniteration
procedure. Each iteration step is to move the meshcloser to the harmonic map.
This procedure is simple and easy to program and also enables us to keep the map
harmonic even after long times of numerical integration.The numerical schemes are
applied to a number of test problems in two dimensions. It is observed that the mesh-
redistribution strategy based on the harmonic maps adapts the mesh extremely well to
the solution without producing skew elements for multi-dimensional computations.
c© 2001 Academic Press
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1. INTRODUCTION

We consider the time-dependent partial differential equations (PDEs) in a domainÄ⊂Rn

Eut = L(Eu) in Ä× [0, T ] (1.1)

with boundary and initial conditions

BEu|∂Ä = Eub in ∂Ä× [0, T ] (1.2)

Eu|t=0 = Eu0 in Ä. (1.3)

The difficulty of the problem appears when there are very rapid variations or sharp layers
in the solution. Adaptive methods are powerful in resolving these kinds of difficulties
by increasing the solution accuracy and decreasing the cost of numerical computations.
Applications of the adaptive methods have been extended to many areas of research such
as computational fluid dynamics [5, 6, 17, 19, 32], computational finance [34] and grid
generation [21, 27].

Mesh adaptation can be static or dynamic (moving). In the static case a new mesh is
generated at a fixed time intervals. In a dynamic or a moving mesh adaptation [1, 13, 23, 29,
33], the mesh changes continuously in space and time to adapt to the dynamic changes of a
time-evolving solutions. It is a challenging problem to generate an efficient moving mesh
in two or more dimensions, especially when the underlying solution develops complicated
structures and becomes singular or nearly singular. In practice, there are three types of
adaptive method using finite element approach, namely theh-method(mesh refinement),
the p-method(order enrichment), and ther-method(mesh motion). Ther-method, which
will be studied in this work, is also known asmoving mesh method.The earliest work on
adaptive methods, based on moving finite element approach (MFEM) was done by Miller
[29, 30]. While the MFEM has been subject to some criticism because of its complexity
and sensitivity with respect to certain user defined input parameters [18], proper choice of
these parameters unquestionably leads to an efficient method. However, one disadvantage
of some existing moving mesh methods is that they mix the mesh-redistribution algorithm
and the solution algorithm together and as a result any change of the given PDE (1.1) will
lead to the rewriting of the whole code. Moreover, even if the given PDEs are linear the
resulting system of differential equations are strongly nonlinear; see, e.g., [11, 24, 35].

In this work, we will provide a moving finite element scheme which keeps the main
advantages of theh- and r-methods: the efficiency of the moving mesh methods and
the simplicity of theh-method. To this end, we will follow theh-method to form our
scheme with two independent parts: a mesh-redistribution algorithm and a solution algo-
rithm. The second part will be independent of the first one, which can be any of the standard
codes for the given PDEs. Now the key question is how to make the first part efficient
and robust? Several moving mesh techniques have been introduced in the past, in which the
most advocated method is the one based on solving elliptic PDEs first proposed by Winslow
[41]. Winslow’s formulation requires the solution of a nonlinear, Poisson-like equation to
generate a mapping from a regular domain in a parameter spaceÄc to an irregularly shaped
domain in physical spaceÄ. By connecting points in the physical space corresponding to
discrete points in the parameter space, the physical domain can be covered with a com-
putation mesh suitable for the solution of finite difference/element equations. There have
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been also many applications and extensions of Winslow’s method; see, e.g., Brackbill and
Saltzman [8, 9], Russell and co-workers [10, 22], Ren and Wang [36], and Thompson
et al. [40]. In these extensions the mesh is generated by using thevariational approach.
Specifically, the mesh map is provided by the minimizer of a functional of the following
form

E(Eξ) = 1

2

∑
k

∫
Ä

1

ω

∑
i

(
∂ξ k

∂xi

)2

dEx, (1.4)

where the positive functionω is a weighted function depending on the physical solution
to be adapted. The variational mesh is determined by the Euler–Lagrange equation of the
above functional: ∑

i

∂

∂xi

(
1

ω

∂ξ k

∂xi

)
= 0. (1.5)

The solution of the above system will be taken as the map between the physical domain
and the logical domain. As an example, let us denote as(x(ζ, η), y(ζ, η)) the mesh map in
two dimensions. Here (ζ, η) are the computational coordinates. In 2-D, the functional (1.4)
becomes

E[ζ, η] = 1

2

∫
Ä

1

ω
(|∇ζ |2+ |∇η|2) dxdy, (1.6)

where∇ := (∂x, ∂y). In this case, the corresponding Euler–Lagrange equation is given by

∇ ·
(

1

ω
∇ζ
)
= 0, ∇ ·

(
1

ω
∇η
)
= 0. (1.7)

By using the above equations, a map between the physical domainÄ and the logical domain
Äc can be computed. Typically, the map transforms a uniforms mesh in the logical domain
to cluster grid points at the regions of the physical domain where the solution has the largest
gradients.

Brackbill and Saltzman [8] formulated the grid equations in the variational form (1.4)
to produce satisfactory mesh concentration while maintaining relatively good smoothness
and orthogonality. Their approach has become one of the most popular methods for mesh
generation and adaptation. In [9], Brackbill incorporates an efficient directional control into
the mesh adaptation, thereby improving both the accuracy and efficiency of the numerical
schemes.

Dvinsky [15] suggests that harmonic function theory may provide a general framework
for developing useful mesh generators. His method can be viewed as a generalization and ex-
tension of Winslow’s method. However, unlike most other generalizations which add terms
or functionals to the basic Winslow grid generator, his approach uses a single functional
to accomplish the adaptive mapping. The critical points of this functional areharmonic
maps.Meshes obtained by Dvinsky’s method enjoy desirable properties of harmonic maps,
particularly regularity, or smoothness.

Motivated by the work of Dvinsky, a moving mesh strategy will be proposed and studied
in this work. Our approach is similar to Dvinsky’s scheme, except that (a) a more efficient
and robust mesh-redistribution algorithm will be designed and (b) a finite element approach
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rather than a finite difference discretization will be used. In part (a), we make sure that the
map between the logical and the physical domains are kept harmonic, even after long time
of numerical integration. To this end, we construct the harmonic map between the physical
mesh and the logical mesh by aniteration procedure. Each iteration step is to move the
meshcloserto the harmonic map. The idea of iteration mapping was proposed by Tang and
Trummer [39], Liu and Tang [28], and Ren and Wang [36]. Each iteration consists of three
parts:

• (i) obtain the error ofEξ between the Euler–Lagrange solution mesh and the fixed
(initial) mesh,
• (ii) obtain the new location ofEx by using the error ofEξ , and
• (iii) updateEu on the new mesh.

It is well known that one of the advantages of finite element methods over other numerical
methods for solving PDEs (such as finite difference methods and spectral approximations)
is that it can handle irregular solution domains. However, this is not the only reason for
using part (b) above. Apart from the flexibility of solution domains, finite element approach
is found to be more reliable and efficient than finite difference method for mesh adaptation.
In particular, with finite element method we can avoid the standard interpolation procedure
used in the existing adaptive codes. After obtaining the numerical approximations in a given
time level, we begin to move more grid points to the physical relevant regions, i.e., part (ii)
above. In part (iii) above, the essential assumption for updatingEu on the new mesh is that
thesurface ofEu onÄ will be kept unchanged.

The paper is organized as follows. In Section 2, we first discuss harmonic function theory
and its application to mesh generation. Some general discussion on our numerical scheme
will be given in Section 3. The detail implementation of the numerical scheme is described
in Section 4. Numerical experiments on mesh generation and on solving PDEs with large
solution variations are reported in Sections 5 and 6, respectively. In Sections 7 and 8, we
discuss the difference between the present moving mesh code and some existing moving
mesh codes.

2. HARMONIC MAPS BETWEEN RIEMANNIAN MANIFOLDS

Let Ä andÄc be compact Riemannian manifolds of dimensionn with metric tensors
di j andταβ in some local coordinatesEx and Eξ , respectively. Following Dvinsky [15] and
Brackbill [9], we define the energy for a mapEξ = Eξ(Ex) as

E(Eξ) = 1

2

∫ √
ddi j rαβ

∂ξα

∂xi

∂ξβ

∂x j
dEx, (2.1)

whered= det(di j ), (di j )= (di j )−1, and the standard summation convention is assumed.
The Euler–Lagrange equations, whose solution minimizes the above energy, are given by

1√
d

∂

∂xi

√
ddi j ∂ξ

k

∂x j
+ di j 0k

βγ

∂ξβ

∂xi

∂ξγ

∂x j
= 0, (2.2)

where0k
βγ is the Christoffel symbol of the second kind, defined by

0k
βγ =

1

2
r kλ

[
∂rλβ
∂ξγ
+ ∂rλγ
∂ξβ
− ∂rβγ
∂ξλ

]
.
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Existence and uniqueness of the harmonic map are guaranteed when the Riemannian cur-
vature ofÄc is nonpositive and its boundary is convex (see Hamilton [20] and Schoen and
Yau [37]). SinceÄc is obtained by construction, both requirements can usually be satisfied.
With a Euclidean metric,0k

βγ = 0, the Euler–Lagrange equations become

∂

∂xi

√
ddi j ∂ξ

k

∂x j
= 0. (2.3)

we emphasize thatd = det(di j ) = 1/det(di j ). In 2-D, if we use the same notations as used
in the last section, then the energy functional is given by

E[ζ, η] = 1

2

∫
Ä

√
det(D)

(∇ζ T D−1∇ζ +∇ηT D−1∇η
)

dxdy,

whereD−1= (di j ) is a symmetric positive definite matrix depending on (x, y). In this case,
the corresponding Euler–Lagrange equation is given by

∇ · (
√

det(D)D−1∇ζ ) = 0, ∇ · (
√

det(D)D−1∇η) = 0.

For ease of notation, we letGi j =√ddi j . The inverse of (Gi j ) is calledmonitor functions.
Therefore, the Euler–Lagrange equations, with Euclidean metric for the logical domainÄc,
are given by

∂

∂xi

(
Gi j ∂ξ

k

∂x j

)
= 0. (2.4)

The simplest harmonic mapping is obtained by assuming Euclidean metric in both domains,
which gives

Gi j = δi j , (2.5)

with δi j the Kronecker delta. In [9], it is shown that the generator suggested by Winslow (1.4)
forms a harmonic mapping and hence the Hamilton–Schoen–Yau existence and uniqueness
theories ([20, 37]) can be applied. The equations (1.5) and (2.4) are identical when the
metric in (2.1) andω in (1.4) are related by

Gi j = δi j /ω. (2.6)

Another monitor function proposed by Dvinsky [15] is

(di j ) = I + f (F)

‖F‖2∇F · ∇FT ,

where f (F) is a function of the distance from a given point to the given curveF(Ex) = 0.
More general forms of monitor functions are proposed and studied in Brackbill [9] and
Huang and Russell [22].

To solve the Euler–Lagrange equations numerically, one usually interchanges dependent
and independent variables. The solution of (2.4) requires evaluating derivatives ofEξ with
respect to the physical coordinatesEx. In moving mesh computation, however, one usually
specifies the logical arrangement of grid points and computes the physical coordinates of
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the grid points. In other words, we solve forEx(Eξ), the inverse mapping ofEξ , because it
directly defines the mesh onÄ. For the variational approach (1.4)–(1.5), the components
of the physical coordinates are governed by

gi j ∂

∂ξ i
ω
∂xk

∂ξ j
= 0, (2.7)

where

gi j = ∂ξ i

∂xα
∂ξ j

∂xα
.

The detailed derivation for the equation (2.7) can be found in [9].
In developing the theory of harmonic maps, a deformation from a given homomorphism

to the harmonic map by the heat equations has been investigated by several researchers;
see, e.g., [16]. Solving the heat equation

∂ξ k

∂µ
= ∂

∂xi

(
Gi j ∂ξ

k

∂x j

)
toµ→∞ (2.8)

will lead to the harmonic map defined by (2.4). The reason for not solving the elliptic system
(2.4) directly but instead solving the heat equation is again to provide a useful way to obtain
a map fromEξ to Ex, as to be demonstrated below. Using the identity

∂2ξ k

∂xi ∂x j
= − ∂ξ

k

∂xβ
∂2xβ

∂ξγ ∂ξ δ

∂ξγ

∂xi

∂ξδ

∂x j

and noting that for an arbitrary functionf (Ex(Eξ, µ), µ)
∂ f

∂µ

∣∣∣∣
fixed Ex

= ∂ f

∂µ

∣∣∣∣
fixed Eξ

− ∂ f

∂xk

∂xk

∂µ
,

we can obtain from (2.8) that

−∂xl

∂µ
= ∂ξ k

∂µ

∂xl

∂ξ k

= ∂

∂xi
Gi j ∂ξ

k

∂x j

∂xl

∂ξ k
+ Gi j ∂2ξ k

∂xi ∂x j

∂xl

∂ξ k

= ∂

∂xi
Gi j δl j − Gi j ∂ξ

k

∂xβ
∂2xβ

∂ξγ ∂ξ δ

∂ξγ

∂xi

∂ξδ

∂x j

∂xl

∂ξ k

= ∂

∂xi
Gil − Gi j ∂2xβ

∂ξγ ∂ξ δ

∂ξγ

∂xi

∂ξδ

∂x j
δlβ

= ∂

∂xi
Gil − Gi j ∂2xl

∂ξγ ∂ξ δ

∂ξγ

∂xi

∂ξδ

∂x j
,

whereδlβ is the Kronecker delta. By letting̃Gγ δ = Gi j ∂ξγ

∂xi
∂ξδ

∂x j , we obtain the equation

∂xl

∂µ
= G̃γ δ ∂2xl

∂ξγ ∂ξ δ
− ∂

∂xi
Gil , (2.9)
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or equivalently

∂xl

∂µ
= G̃γ δ ∂2xl

∂ξγ ∂ξ δ
− ∂ξ

k

∂xi

∂Gil

∂ξ k
. (2.10)

The equation (2.10) gives the desired map fromEξ to Ex. In our computation, the equation
(2.9) will lead to a finite element formula for computing such a map; see (4.13).

Since the fundamental work of Eell and Sampson [16], harmonic maps have attracted
considerable attention from both mathematicians and physicists. Dvinsky is the first to note
the practical importance of using harmonic map theory for mesh adaptation [15]. A good
feature of the adaptive methods based on harmonic mapping is that existence, uniqueness,
and nonsingularity for the continuous map can be guaranteed from the theory of harmonic
maps. The existence and uniqueness of harmonic maps are established by Hamilton [20]
and Schoen and Yau [37]; the existence of the solution for the problem (2.8) is addressed by
Eell and Sampson [16]; The singularity of three-dimensional harmonic maps is discussed
by Liao and Smale [25, 26]. Such theoretical guarantees are rare in the field of adaptive
mesh generation. In a recent work of Bertalmioet al. [7], harmonic maps, together with
level-set techniques, have been used successfully to solve variational problems and PDEs
on implicit surfaces, with particular application to image processing and computer graphics.

3. THE FRAME OF OUR NUMERICAL SCHEME

In this work, we will employ finite element methods together with moving mesh strategy
to solve problem (1.1)–(1.3). The non-uniform mesh of finite element methods is more
flexible than that of finite difference methods that enables us to handle more complicated
physical domains. Moreover, as to be demonstrated in next section, with finite element
methods we can avoid the standard interpolation procedure used in most existing adaptive
codes.

To solve problem (1.1)–(1.3), we will separate the computation into two parts: mesh-
moving and time-stepping. The mesh-moving is a procedure ofiteration to construct the
harmonic map between the physical mesh and the logical mesh. Each iteration step is to
move the meshcloserto the harmonic map. In the process of the numerical computation, we
always keep the initial mesh in the logical domain fixed. This mesh is not used to solve any
PDEs, but its error with the solution of the Poisson equation (2.4) is used to move the mesh
in the physical domain. More precisely, in the first step we choose a convex domainÄc as the
logical domain on which an initial mesh will be constructed. By solving the Poisson equation
1Eξ = 0 with some Dirichlet boundary condition, we obtain a mesh in the logical domain.
Once this initial mesh is obtained, it will be kept unchanged throughout the computation.
The role of this initial mesh inÄc, denoted byEξ (0), is used as a reference grid only. Once
the solutionu is computed at time stept = tn, the inverse matrix of the monitor,Gi j (which
in general depends onu), can be updated. By solving the Euler–Lagrange equation (2.4),
we will obtain a mesh in the logical domain, denoted byEξ ∗. If the difference between this
Eξ ∗ and the initial meshEξ (0) is not small, we move the mesh in the physical space and obtain
the updated values foru in the resulting new grid based on the following principles:

• (a) obtain the error between the solution of (2.4) and the fixed (initial) mesh in the
logical domain,
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• (b) obtain the direction and the magnitude of the movement forEx by using the error
of Eξ , and
• (c) updateEu on the new grid by solving a system of ODEs, see (4.12).

This procedure isrepeateduntil the difference betweenEξ ∗ and the initial meshEξ (0) is
sufficiently small. Then we can use some appropriate numerical methods, with the updated
mesh in the physical space, to solve the given problems to obtain solution fort = tn+1. This
procedure is also illustrated by the following flowchart:

Solve the given PDE problems fort = tn
⇓

Update the mesh and solution based on an iteration procedure
⇓

Solve the given PDE problems fort = tn+1

The first step above involves a solution algorithm, which is essentially irrelevant with
the second part. The solution algorithm can be any standard finite element codes or a semi-
discretized finite element method in conjunction with the method of line. In other words, we
can clearly separate mesh-moving and time-forwarding so that the code is easy to program:
In the time-forwarding part, the numerical methods used have no difference with those
without mesh redistribution; and for different PDE problems the only possible change in
the mesh-redistribution part of the codes is to change the monitor function. It is relevant to
point out that some ideas of the so-calledmoving space–time finite element method[4] may
be implemented in our moving mesh scheme.

In second step above, the iteration procedure is given by the following algorithm:

ALGORITHM 1.

(i) Solve the Euler–Lagrange equation (2.4) to obtainEξ ∗.
(ii) Judge if L2-norm of Eξ ∗ − Eξ (0) is small. if yes, the iteration is over. otherwise, do

(iii)–(vi).
(iii) Using the differenceEξ ∗ − Eξ (0) to compute the mesh-moving vectorδ Ex.
(iv) Move the mesh to a new location based on the result in (iii).
(v) Update the numerical approximations at new grids obtained in (iv).
(vi) Go to (i).

In part (i), two methods will be used in our computation. Method I is to solve Eq. (2.9).
This method works in spaceH formed by all homomorphism fromÄ to Äc. The energy
functional is defined onH. Equation (2.9) goes down along the direction of the negative
gradient ofE(Eξ): see, e.g., [16]. Method II is to use the harmonic map itself. After solving
Eq. (2.4), we can obtain the harmonic mapEξ from Ä to Äc. Then we interpolate the
nodes of the new mesh as the images of the nodes for the logical mesh ofEξ−1. The detail
implementation for both methods will be given in next section. It is found that both Methods
I and II work well for the test problems in Sections 6 and 7. The difference is that Method
II is easier than Method I in coding.

In part (ii), in order to guarantee the quality of the harmonic map, we repeat the mesh-
moving process until theL2-norm for the distance between the solution of Eq. (2.4) and the
initial logical meshEξ (0) is smaller than a preassigned toleranceTOL.

In part (V), the node values at new grids are updated based on the assumption that the
surfaceof Eu onÄ will be kept unchanged at each fixed time step. Based on this principle,
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the approximate solutions are re-distributed nicely on new grids based on a linear system
of ordinary differential equations (ODEs), see Eq. (4.12).

4. THE NUMERICAL SCHEME

In this section, we will discuss the detail numerical procedures for our moving mesh
scheme. The following steps provide the key ingredients for our numerical scheme.

4.1. Prepare the Initial Mesh on the Logical Domain

Let the physical domainÄ be triangularized into some simple finite elements, denoted by
T. The finite element space is chosen as alinear finite elementspace. LetX = (Xi ) be the
nodes, and8 = (8 j ) be basis functions such that8 j (Xi ) = δi j , whereδi j is the Kronecker
delta. We also choose a convex domainÄc as the logical domain. By solving the Poisson
equation

1Eξ = 0, Ex ∈ Ä (4.1)

with Dirichlet boundary condition

Eξ |∂Ä = Eξb, (4.2)

we obtain a meshTc in the logical domain, with nodesA = (Ai ).

4.2. Prepare the Initial Mesh on the Physical Domain

Once an initial meshEξ (0) = Tc is obtained as described in the above section, the initial
adaptive mesh on the physical domainÄ can be computed as the numerical solution of the
inverse map of (2.4). With the choice of Winslow’s monitor function (2.6), the equation for
the inverse map is given by (2.7). For more general choices ofGi j , the equations governing
the inverse map can also be formulated, by following the similar derivations in [22]. We
can also avoid deriving and directly using the inverse map equations. This can be done by
using steps (P1) and (P2), described in the following section.

In the case where the initial functionEu0 is stiff (or near singular), we use a method based
on continuation on the initial function. Without lose of generality, letG = (Gi j ) be the
function of Eu only, i.e. G = G(Eu). Then we decompose (2.4) at the initial step into the
following iteration procedure:

∇ · (G(τn−1Eu0(Exn−1))∇Eξ) = 0. n ≥ 1 (4.3)

To start with, we letτ0 = 0 andEx0 be the uniform mesh. The inverse map of (4.3) is defined
as Exn which can be computed by some standard methods mentioned above. By increasing
{τn} from 0 to 1, we will end up with a desired initial mesh onÄ.

4.3. Mesh-Moving

Suppose now we have obtained the value ofUi = Eu(Xi ) on the current nodesXi at a
time stept = tn. We now need to obtain the new location of the nodesX∗ = (X∗i ) and the
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new value ofU ∗ = (U ∗i ) on the new nodes. The operation can be divided into the following
three parts if we use Method II.

(P1) Obtain the error ofEξ . We first solve the following generalized Poisson equation

∂

∂xi

(
Gi j ∂ξ

k

∂x j

)
= 0 (4.4)

with the boundary condition (4.2). By doing so, we can obtain a new logical meshT∗c with
its nodesA∗. We are interested in the error ofEξ :

δA = A−A∗.

The above error function will be used in the next step to predict the movement of the
numerical grid in the physical spaceÄ, see (4.6) below.

(P2) Obtain the movement ofEx. For a given elementE in T, with XEk , 0≤ k ≤ n as its
vertexes, the piecewise linear map fromVT∗c (Äc) to VT (Ä) such thatA∗i 7→ Xi has constant
gradient onE and satisfies the linear system


A∗,1E1
−A∗,1E0

A∗,1E2
−A∗,1E0

· · · A∗,nEn
−A∗,nE0

A∗,2E1
−A∗,2E0

A∗,2E2
−A∗,2E0

· · · A∗,2En
−A∗,2E0

...
...

. . .
...

A∗,nE1
−A∗,nE0

A∗,nE2
−A∗,nE0

· · · A∗,nEn
−A∗,nE0





∂x1

∂ξ1

∂x1

∂ξ2
· · · ∂x1

∂ξn

∂x2

∂ξ1

∂x2

∂ξ2
· · · ∂x2

∂ξn

...
...

. . .
...

∂xn

∂ξ1

∂xn

∂ξ2
· · · ∂xn

∂ξn



=


X1

E1
− X1

E0
X1

E2
− X1

E0
· · · X1

En
− X1

E0

X2
E1
− X2

E0
X2

E2
− X2

E0
· · · X2

En
− X2

E0

...
...

. . .
...

Xn
E1
− Xn

E0
Xn

E2
− Xn

E0
· · · Xn

En
− Xn

E0

 . (4.5)

Solving the above linear system gives∂Ex/∂ξ in E. If we take the volume of the element
as the weight, the weighted average error ofX at theith node is defined by

δXi =
∑

E∈Ti
|E| ∂Ex

∂ξ

∣∣∣
in E

δAi∑
E∈Ti
|E| (4.6)

in which |E| is the volume of elementE. It can be shown that the above volume-weighted
average converges to a smooth solution in measure when the size of mesh goes to 0. The
location of the nodes in the new meshT∗ on the physical domain is taken as

X∗ = X + τδX,

in whichτ is a parameter in [0, 1]. In our numerical experiments, it is found that the selection
of τ is quite insensitive. One choice ofτ is the following:

τ = min(0.5/‖δA‖2, 0.618).
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In general, the 2-norm ofδA decreases with a rate about 2/3 in each iteration step after
||δA||2 becomes small. However, when the solutionEu is very singular (e.g., very large
gradients exist for the solution), the decrease of||δA||2 will become slow.

(P3) UpdateEu on the new mesh. Each element ofT with X as its nodes corresponds
uniquely to an element ofT∗(τ ) with X + τδX as its nodes. There is also an affine map
between the two elements. By combining all those affine maps from every element ofT∗(τ )
to T, we obtain a map fromÄc toÄ piecewise affine. The surface ofEu onÄ will not move,
though the nodes of the mesh will be moved to new locations. ThenEu, as the function ofEx
at timetn, is independent on the parameterτ . That is,

∂Eu
∂τ
= 0. (4.7)

During the moving of the mesh,Eu is expressed as

Eu = Eu(Ex)
= Eu(Ex, τ ).

In the finite element space,Eu is expressed as

Eu = Ui (τ )8
i (Ex, τ ), (4.8)

where8i (Ex, τ ) is the basis function of the finite element space at its nodeXi + τδXi . Direct
computation gives

∂8i (Ex, τ )
∂τ

= −∂8
i (Ex, τ )
∂x j

(δEx) j , (4.9)

whereδ Ex := δXi8
i . DifferentiatingEu with respect toτ gives

0= ∂Eu
∂τ
= ∂Ui

∂τ
8i (Ex, τ )+Ui (τ )

∂8i

∂τ

= ∂Ui

∂τ
8i (Ex, τ )−Ui (τ )

∂8i

∂x j
(δEx) j . (4.10)

Using the expression forEu in the finite element space, i.e., (4.8), we obtain from the above
result that

∂Ui

∂τ
8i (Ex, τ )−∇ExEuδ Ex = 0. (4.11)

Then the semi-discrete system for updatingEu follows from the above result:∫
Ä

{
∂Ui

∂τ
8i (Ex, τ )−∇ExEuδEx

}
vdEx = 0 ∀v ∈ VT (Ä).

By letting v be the basis function ofVT (Ä), i.e., v = 8 j (Ex, τ ), we obtain a system of
(linear) ODEs forUi : ∫

Ä

8i8 j dEx ∂Ui

∂τ
=
∫
Ä

∂8i

∂xk
(δEx)k8 j dExUi (τ ). (4.12)

We will solve the above ODE system with a three-stage Runge–Kutta scheme.
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Remark. If Method I is used in this step, the only difference is how to obtain the error
of Ex. In this case, we expressEx with the basis function in the finite element space of the
logical domain as

∂xl

∂µ
= ∂Xl

i

∂µ
8i

c,

xl = Xl
i8

i
c.

The above equations are substituted into the parabolic equation (2.9). We further assume
that the functionsGandG̃ are piecewise constant on the logical domain. We can then obtain
the system for∂X/∂µ as∫

Äc

∂Xl
i

∂µ
8i

cvdEξ =
∫
Äc

{
G̃γ δ ∂2xl

∂ξγ ∂ξ δ
− ∂

∂xi
Gil

}
vdEξ

= −
∫
Äc

{
G̃γ δ ∂xl

∂ξγ

∂v

∂ξδ
− Gil ∂ξ

k

∂xi

∂v

∂ξ k

}
dEξ

= −
∫
Äc

{
G̃γ δXl

k

∂8k
c

∂ξγ

∂v

∂ξδ
− Gil ∂ξ

k

∂xi

∂v

∂ξ k

}
dEξ (4.13)

for v ∈ VTc,0(Äc). By lettingv be the basis function ofVTc,0(Äc), we obtain from the above
result a linear system for∂X/∂µ,∫

Äc

∂Xl
i

∂µ
8i

c8
j
cdEξ = −

∫
Äc

{
G̃γ δXl

k

∂8k
c

∂ξγ

∂8l
c

∂ξδ
− Gil ∂ξ

k

∂xi

∂8 j
c

∂ξ k

}
dEξ . (4.14)

We take∂X/∂µ as the direction of the error forEx. The step length of mesh-moving is taken
as the length of∂X/∂µ.

4.4. Time-Forwarding

This step is trivial: it is irrelevant with the adaptive method and can be any appropriate
finite element code. The following is one of the possible methods, which will be used in
our numerical experiment sections. It follows from Eq. (1.1) that∫

Ä

{Eut − L(Eu)} vdEx = 0 ∀v ∈ VT (Ä).

Using the expression forEu in the finite element space, i.e.,Eu = Ui (t)8i (Ex), and lettingv
be the basis function, we obtain∫

Ä

{
∂Ui

∂t
8i8 j − L(Eu)8 j

}
dEx = 0, (4.15)

which is a systems of ODEs forUi (t). It can be solved by any efficient ODE solvers such
as multi-stage Runge–Kutta schemes.

We point out again that the method based on (4.15) only serves for the numerical ex-
periments in this paper. In fact, this step is very flexible: any available methods/codes for
Eq. (1.1) can be employed in this step.
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5. NUMERICAL EXPERIMENTS: MESH GENERATION

In Section 4.3 an adaptive grid generation procedure is proposed. In this step, one of
the important issues requiring some attention is the monitor functionGi j used in Eq. (4.4).
There are several excellent papers in this direction, including Brackbill and Saltzman, [8]
and Caoet al. [10]. Due to the limitation of space, we will concentrate on the imple-
mentation of our numerical scheme proposed in last section and therefore will not dis-
cuss the issues of the monitor function. In this work we will just use the simple monitor
function (2.6).

Several test problems have been computed and the numerical results indicate that our
mesh generation procedure is indeed efficient and robust. Here we only report results for
one example which was also tested by several other authors; see, e.g., [11].

EXAMPLE 5.1. As an example, the performance of the moving mesh technique is exam-
ined for the case of a solution domain with very rough boundaries. The adaptation function
is chosen asu(Ex, t) = tanh(50(x1– t)), whereEx = (x1, x2)

T .
An unstructured grid in the logical domainÄc is initially generated by using the scheme

in Section 4.1. We choose the logical domain as a convex polygon having the same number
of boundary segments asÄ and use a monitor functionG−1 =

√
1+ 0.1‖∇u‖22I . Using

Section 4.2, we obtain the initial mesh in the physical domainÄ. The initial unstructured
grids inÄ andÄc are displayed in Fig. 1. The moving grid at various time levels is also
shown in Fig. 2. One can see that the generated mesh is satisfactory in the sense that it
conforms very well to the adaptation function.

6. NUMERICAL EXPERIMENTS: SOLVING PDES

In this section we present some numerical examples to demonstrate the performance of
our moving mesh finite-element methods for solving time dependent PDEs. We noticed that
a recent paper of Caoet al. [11] provides a number of test problems and we will basically
follow their examples, except the one with application to the Navier-Stokes equations. A

FIG. 1. The initial mesh inÄ (left) andÄc (right) for Example 5.1.



FIG. 2. The adaptive meshes and the numerical solutions att = 0.3, 0.5, 0.7, and 0.97 for Example 5.1.
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detailed study of the application of our moving mesh method to the Navier-Stokes equations
will be provided in a future work.

In practice it is common to use some temporal or spatialsmoothingon the monitor
function or directly on the mesh mapEx to obtain smoother meshes, this was found to be
extremely useful in the work of [11, 13, 38]. One of the reasons for using smoothing is to
avoid very singular meshes and large approximation error around the stiff solution areas.
Several smoothing techniques have been proposed to enhance the quality of the meshes.
In this work, we propose a rather different smoothing procedure: First we interpolate the
monitor functionM := G−1 from L2(Ä) into H1,h(Ä), namely from piecewise constant to
piecewise linear, by the formula:

(πhM)|at P =
∑

τ :P is vertex ofτ M |onτ |τ |∑
τ :P is vertex ofτ |τ |

. (6.1)

Second we project it back intoL2(Ä) by the formula:

M |onτ = 1

n+ 1

∑
P is vertex ofτ

(πhM)at P, (6.2)

wheren is the dimension ofÄ. Our numerical experiments have shown that this smoothing
for the monitor function (2.6) not only enhances the quality of the meshes but also increases
the accuracy of the numerical approximations.

EXAMPLE 6.1. Consider the wave equation

∂U

∂t
− y

∂U

∂x
+ x

∂U

∂y
= 0

on the unit circle with initial value

U (Ex, 0) =


e−32((x1−1/2)2+x2

2) if (x1− 1/2)2+ x2
2 < 1/4,

e−32((x1+1/2)2+x2
2) if (x1+ 1/2)2+ x2

2 < 1/4,

0 elsewhere

and zero boundary condition.

The solution of Example 6.1 possesses a twin peak (of fixed shape) rotating counter-
clockwise around the origin. A linear finite element discretization based upon the moving
mesh scheme as described in Section 4 is applied. The initial mesh is obtained from a
quasi-uniform triangulation with 1700 elements, as shown in Fig. 3. A fixed time step size
δt = 0.05 is used for the integration of the ODE system (see Section 4.4). In the mesh
redistribution part, the monitor function used is

√
1+ 6u2+ ‖∇u‖22I .

This test problem has been considered by several authors; see, e.g., Baines [3], Davis and
Flaherty [14], and Caoet al. [11], to test the quality of the meshes generated by adaptive
schemes. As noted in [11] that some existing moving mesh techniques produce meshes
with points sticking to the rotating peaks, causing the mesh to become increasingly skew
until the computation eventually breaks down. From Fig. 3, it is clear that our moving mesh
scheme has no such difficulty, and the mesh adapts extremely well to the solution without
producing skew elements.
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FIG. 3. The adaptive meshes and the numerical solutions att = 0, π/8, π/4, and 3π/8 for Example 6.1.
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EXAMPLE 6.2. Our second example is to compute a moving oblique shock. The gov-
erning equation for it is the Burgers equation

∂U

∂t
+UUx +UUy = a1U

defined in the unit squareÄ = (0, 1)× (0, 1). The initial condition and Dirichlet boundary
condition are chosen such that the exact solution to the underlying problem is

U (x, y; t) = (1+ exp((x + y− t)/(2a))−1.

In our computation we choosea = 0.005. It is noted that the smallera is, the more
convection dominates, and the higher the concentration of mesh points required around the
wave front. Figure 4 shows the movement of a moving mesh solution with 20× 20 nodes.
The monitor function used is

√
1+ ‖∇u‖22I .

In this problem, large gradient solutions will be developed to the boundaries in a later
time. As a consequence, boundary point redistribution should be made in order to improve
the quality of the adaptive mesh. A simple redistribution strategy is proposed as follows. The
basic idea is to move the boundary points by solving 1-D moving mesh equations. Without
lose of generality, we consider a simple boundary [a, b] in thex-direction. Solving the two-
point boundary value problem for (wxξ )ξ = 0 with uniform mesh inξ will lead to a new
boundary redistribution. Assume [xj , xj+1] ⊂ [a, b]. Then there exists exactly one element
Tj whose one edge is [xj , xj+1]. Note that the gradient monitor inTj is a constant (due to
the use of the linear element). We let the monitor functionw|[xj ,xj+1] equals to this constant,
which establishes a connection between the boundary and interior grid redistribution. This
redistribution strategy is applied to both Examples 6.2 and 6.3.

In Fig. 5, we plot theL1-errors obtained by using the fixed and moving meshes with
20× 20 nodes (930 triangular elements). As expected, the numerical solution with a moving
mesh is much more accurate than the one obtained by using a fixed mesh. TheL1-error
of the finite element solution with a moving mesh is about 9% of that with a fixed mesh.
For comparison, we also plot in Fig. 5 theL1-errors with 16× 16 nodes obtained by using
the present moving mesh algorithm (second line from the top) and the moving mesh PDE
approach (third curve from the top) obtained in [11]. It is observed that with the same
number of nodes the numerical error of our moving mesh algorithm is smaller than that of
the moving mesh PDE approach.

EXAMPLE 6.3. Our third example is concerned with the buoyancy-driven horizontal
spreading of heat and chemical species through a fluid saturated porous medium. The
physical problem is discussed and formulated in [11]. The domainÄ in the physical domain
is shown in Fig. 7, and the governing equation is

−1ψ = Ra

(
∂T

∂x
+ N

∂C

∂x

)
,

∂T

∂t
+ ∂(T, ψ)
∂(x, y)

= 1T,

φ

σ

∂C

∂t
+ ∂(C, ψ)
∂(x, y)

= 1

Le
1C,
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FIG. 4. Example 6.2: The adaptive meshes with 20× 20 nodes fromt = 0.15 tot = 1.8.
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FIG. 5. Example 6.2:L1-error in time for fixed mesh with 20× 20 nodes (–· –), moving mesh with 16× 16
nodes (· · ·), and moving mesh with 20× 20 nodes (–). The dashed line (– –) is the moving mesh PDE result with
16× 16 nodes obtained in [11].

whereψ is the stream function of the flow,T the temperature,C the concentration of the
constituent,Ra the Darcy-modified Rayleigh number,N the buoyancy ratio,Le the Lewis
number,φ the porosity ratio,σ the heat capacity ratio, and

∂( f, g)

∂(x, y)
:= ∂ f

∂x

∂g

∂y
− ∂ f

∂y

∂g

∂x
.

The initial conditions are given by

ψ |t=0 = 0, T |t=0 = C|t=0 =
{

1, for x ≤ 0.5,
0, for x > 0.5.

(6.3)

The boundary conditions are given by

ψ
∣∣
∂Ä
= 0,

∂T

∂n

∣∣∣
∂Ä
= ∂C

∂n

∣∣∣
∂Ä
= 0. (6.4)

In this problem, the fluid is initially of different degrees of temperature and concentration
of a certain constituent. At the beginning, the warm fluid on the left side of the domain has a
less pronounced vertical gradient of hydrostatic pressure than the cold fluid on the right side.
This horizontal difference of pressure will start to push the cold fluid to the left side at the
bottom and warm fluid to the right side at the top. This keeps the fluid convecting until the
cold fluid rests under the warm one. Meanwhile, the diffusion effect will gradually smooth
out the temperature and concentration differences between the initially cold and warm fluids.
We will stimulate this phenomenon for the case of a large Rayleigh number,Ra= 1000.
Other parameters in the governing equations areN = 0, Le= 1 andφ/σ = 1. In the logical
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FIG. 6. Meshes in the logical domain for Example 6.3.

domain, a quasi-uniform triangulation with 1784 elements is shown in Fig. 6. Physically,
if the Rayleigh number is large enough a thin layer of large variation of temperature and
concentration will keep existing until the warm fluid settles completely on top of the cold
one and eventually the temperature and concentration become uniform in the whole fluid.
These phenomena are clearly observed in Fig. 7. It is seen that the mesh adapts well to the
temperature and follows successfully the motion of the thin layer of large temperature and
concentration variation.

7. NUMERICAL EXPERIMENTS: REACTION–DIFFUSION EQUATIONS

One of the key ideas of our moving mesh scheme is to keep the time scales of the given
equation (1.1) and the moving mesh equation (2.9) different. This approach is different from
the one used in moving mesh PDEs (see e.g., [10, 13, 24]) in whichµ in (2.9) is replaced
by the physical timet. Integrating (1.1) and (2.9) with different time scale can avoid the
difficulty that the time stepδt has to be restricted byboth Eqs. (1.1) and (2.9). In the
method of moving mesh PDEs, this difficulty has to be partially overcome by introducing
a non-physical parameter to the right hand side of (2.9).

Our next numerical example is a combustion problem which was investigated numerically
in [11, 31]. The main purpose of this example is to demonstrate that Section 4.4 can be
independent of other steps in Section 4. In particular, the mesh-moving step and the time-
forwarding step areindependentof each other.

EXAMPLE 7.1. The mathematical model is a system of coupled nonlinear reaction–
diffusion equations,

∂u

∂t
−∇2u = − R

αδ
ueδ(1−1/T),

∂T

∂t
− 1

Le
∇2T = R

δLe
ueδ(1−1/T),
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FIG. 7. The adaptive meshes at various times for Example 6.3.
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for Ex = (x1, x2)
T ∈ Ä, t > 0, and whereuandT represent the dimensionless concentration

and temperature of a chemical which is undertaking a one-step reaction. As in [31], we
consider a simple square domainÄ = [−1, 1]× [−1, 1], with the initial and boundary
conditions

u|t=0 = T |t=0 = 1, in Ä,

u|∂Ä = T |∂Ä = 1, for t > 0.

The physical parameters are set to beLe= 0.9, α = 1, δ = 20, andR= 5.
To begin with, choosingv ∈ H1

0 (Ä) to be a test function gives

0 =
∫
Ä

{
∂u

∂t
−∇2u+ R

αδ
ueδ(1−1/T)

}
vdx

=
∫
Ä

{
∂u

∂t
v +∇u · ∇v + R

αδ
ueδ(1−1/T)v

}
dx,

0 =
∫
Ä

{
∂T

∂t
− 1

Le
∇2T − R

δLe
ueδ(1−1/T)

}
vdx

=
∫
Ä

{
∂T

∂t
v + 1

Le
∇u · ∇v − R

δLe
ueδ(1−1/T)v

}
dx.

For convenience, letφi , 1≤ i ≤ N be basis functions at inner nodes, and letψ i , 1≤ i ≤
M be basis functions at boundary nodes. We then expressu andT as

u = u(i )i φ
i + u(b)l ψ l , T = T (i )

i φi + T (b)
l ψ l .

Using the test functionsφ j ∈Vh,0(Ä) in the above equations leads to

0 =
∫
Ä

{
∂u(i )i

∂t
φiφ j + (u(i )i ∇φi + u(b)l ∇ψ l

) · ∇φ j ,

+ R

αδ

(
u(i )i φ

i + u(b)l

)
eδ(1−1/T)φ j

}
dx,

0 =
∫
Ä

{
∂Ti

∂t
φiφ j + 1

Le

(
T (i )

i ∇φi + T (b)
l ∇ψ l

) · ∇φ j

− R

δLe

(
u(i )i φ

i + u(b)l ψ l
)
eδ(1−1/T)φ j

}
dx.

By using the linear approximation for the termeδ(1−1/T)

eδ(1−1/T) ≈ eδ(1−1/T (i )
k )φk + eδ(1−1/T (b)

m )ψm,



584 LI, TANG, AND ZHANG

we obtain the discretized system to be used for the computation,

0 =
∫
Ä

{
∂u(i )i

∂t
φiφ j + (u(i )i ∇φi + u(b)l ∇ψ l

) · ∇φ j

+ R

αδ

(
u(i )i φ

i + u(b)l ψ l
)(

eδ(1−1/T (i )
k )φk + eδ(1−1/T (b)

m )ψm
)
φ j

}
dx,

0 =
∫
Ä

{
∂T (i )

i

∂t
φiφ j + 1

Le

(
T (i )

i ∇φi + T (b)
l ∇ψ l

) · ∇φ j

− R

δLe

(
u(i )i φ

i + u(b)l ψ l
)(

eδ(1−1/T (i )
k )φk + eδ(1−1/T (b)

m )ψm
)
φ j

}
dx.

We can write the above system in matrix forms by letting

Ai j = −
∫
Ä

φiφ j dx

(
B(i )u

)
i j
=
∫
Ä

{
∇φi · ∇φ j + R

αδ

(
eδ(1−1/T (i )

k )φk + eδ(1−1/T (b)
m )ψm

)
φiφ j

}
dx

(
B(b)u

)
l j
=
∫
Ä

{
∇ψ l · ∇φ j + R

αδ

(
eδ(1−1/T (i )

k )φk + eδ(1−1/T (b)
m )ψm

)
ψ lφ j

}
dx

(
B(i )T,T

)
i j =

∫
Ä

1

Le
∇φi · ∇φ j dx

(
B(i )T,u

)
i j =

∫
Ä

− R

δLe

(
eδ(1−1/T (i )

k )φk + eδ(1−1/T (b)
m )ψm

)
φiφ j dx

(
B(b)T,T

)
l j
=
∫
Ä

1

Le
∇ψ l · ∇φ j dx

(
B(b)T,u

)
l j
=
∫
Ä

− R

δLe

(
eδ(1−1/T (i )

k )φk + eδ(1−1/T (b)
m )ψm

)
ψ lφ j dx

u(i ) = (u(i )1 , . . . ,u
(i )
N

)T
T(i ) = (T (i )

1 , . . . , T (i )
N

)T

u(b) = (u(b)1 , . . . ,u(b)M

)T
T(b) = (T (b)

1 , . . . , T (b)
M

)T
.

Then the semi-discrete system for Example 7.1 is given by

A
∂u(i )

∂t
= B(i )u u(i ) + B(b)u u(b)

A
∂T(i )

∂t
= (B(i )T,T B(b)T,T

)(T(i )

T(b)

)
+ (B(i )T,u B(b)T,u

)(u(i )

u(b)

)
.

A three-stage Runge–Kutta method is used to integrate the above ODE system. At each
time step, when the numerical approximation is obtained we use the mesh-moving tech-
niques as described in Section 4.3 to re-distribute the mesh in the physical domain. We
emphasize again that Section 4.3 only requires the outputs of Section 4.4 but does not care
how these outputs are obtained. In Fig. 8, the moving meshes obtained with 30× 30 nodes
are plotted, together in this figure are the numerical solutions for the temperatureTat various
time levels. Although the temperatureT has a very thin layer of large variation, our moving
mesh scheme adapts the mesh extremely well to the regions with large solution gradients.
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FIG. 8. Example 7.1: Moving mesh and temperatureT at t = 0.259, 0.263, 0.271, and 0.288.
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8. CONCLUDING REMARKS

Solving the physical PDE using a moving mesh PDE approach would involve changing
the FEM solver to deal with the mesh movement terms, but it may expect that this inconve-
nience would be outweighed by allowing larger time steps as the solution would to appear
to change much more slowly with respect to the moving reference frame. In other words,
although the present method is attractive since a standard piece of software can be used,
the price to pay heremay bethat smaller time steps have to be used as the steep solution
would appear to change rapidly in time with respect to a fixed reference frame. To verify
this, we plot in Fig. 9 the step sizes employed in a very recent work of Caoet al. [12]
(which are generated by a rather complicated selection formula) and those used in the last
section for Example 7.1, with the same number of finite elements. This problem is very
difficult to solve numerically and so serves as a good test for the comparison purpose. Since
large solution gradients only occur aftert ≈ 0.24 (i.e., the effect of mesh moving becomes
important after this time), we only plot the time step sizes fort ≥ 0.24. It is seen from Fig. 9
that the time steps used with the present moving mesh method are comparable with the ones
selected with the moving mesh PDE approach. Although our (average) time step is about
three times smaller than the one with the moving mesh PDE approach, the present method
is overall more efficient, by noting that in our approach simpler equations are solved and
explicitODE solvers are used, but in [12] animplicit ODE solver is employed.

In conclusion, we developed in this paper a moving mesh scheme based on harmonic
mapping for solving partial differential equations. The proposed scheme favorably compares
with previously proposed methods in terms of simplicity and reliability. Our moving mesh
scheme has been seen to work satisfactorily in a variety of circumstances. Although the
examples shown in this work are in two space dimensions, in principle our method can
be extended to higher dimensions. In fact, some preliminary results for three-dimensional

FIG. 9. Example 7.1: the variable time step sizesδt selected with an implicit ODE solver in [12] (· · ·) and
with an explicit RK3 method used in Section 7 (–).
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problems have been obtained based on the present framework. The detailed results for 3D
will be reported in a future work.
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