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For two-dimensional boundary integral equations of the first kind with logarithm kernels, the use of the
conventional boundary element methods gives linear algebraic systems with dense matrix. In a recent
work [J. Comput. Math., 22 (2004), pp. 287-298], it is demonstrated that the dense matrix can be
replaced by a sparse one if appropriate graded meshes are used in the quadrature rules. The numerical
experiments also indicate that the proposed numerical methods require less computational time than that
of the conventional ones while the formal rate of convergence can be preserved. The purpose of this work
is to establish a stability and convergence theory for this fast numerical method. The stability analysis
depends on a decomposition of the coefficient matrix for the collocation equation. The formal orders of
convergence observed in the numerical experiments are proved rigorously.
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1. Introduction

Consider the first-kind boundary integral equation of the form
—/Flog|x—y|u(y) dsy = f(x), x:=(x1,x2) €T, (1.1)

where I C R? is a smooth and closed curve in the plane,  is a unknown function, f is a given function,
|x —y| denotes the Euclidean distance and dsy is the measure of arclength. The boundary integral
equation (1.1) arises in connection with the single layer potential:

u(x) = —/Flog|x—y|u(y) dsy, X € Q. (1.2)

The applications and some numerical aspects of the boundary integral equation (1.1) can be found in
Sloan (1992). A more relevant paper by Bialecki & Yan (1992) introduced a rectangular quadrature
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method for (1.1). More recently, Cheng er al. (2004) proposed a new quadrature method for (1.1)
based on a graded mesh approach. Unlike the quadrature method in Bialecki & Yan (1992) and other
traditional numerical methods, the resulting system of equations in Cheng et al. (2004) contains a sparse
coefficient matrix. It was demonstrated numerically that the proposed approach can not only preserve
the formal rate of convergence but also save a significant amount of computational time.

The purpose of this paper is to provide a convergence theory to the efficient method proposed in
Cheng et al. (2004). To begin with, let I" be parameterized by the arclength:

v:[-L/2,L/2] =T,
where L is the length of I,
|dv/ds| =1 and v(0) is a periodic function with period of L. (1.3)

Then the integral equation (1.1) is equivalent to

L)2
—/_L log V() = v(0)lu(v(0)) do = f(v(s)),  sel-L/2L/2] (1.4)

The conventional way in solving the equation (1.4) is to use n collocation points to obtain n colloca-
tion equations. Then for each fixed s the integral in (1.4) is approximated by an appropriate quadrature
rule using the information on the # collocation points. This approach will lead to a linear system whose
matrix is a full matrix. In Cheng et al. (2004), the integral term in (1.4) is approximated by using a
subset of the n collocation points. More precisely, we consider the case when the unknown function u
is reasonably smooth and the curve I" is smooth and closed. In this case, some suitable graded-meshes
can be used as the quadrature points to handle the logarithmic kernel, which yields a linear system
whose matrix is sparse. The graded-mesh concept was proposed by Rice Rice (1969). It was then used
to improve the formal order of convergence when solutions have weak singularity, see, e.g., Chandler
(1984); Yan & Sloan (1989) for boundary integral equations and Brunner (1985, 2004); Tang (1992,
1993) for weakly singular Volterra equations. However, with a smooth solution we just need to use a
uniform mesh for the collocation points; while the graded mesh which is a subset of the uniform mesh
is employed to evaluate the integrals.

To be more specific of numerical techniques, let us first introduce some notations. Set the uniform
mesh with the mesh points

2i
n—1

A= {Oli}, o =

ot~

(i=—(n—1)/2,....(1—1)/2), (1.5)
where n is supposed to be odd; and set the graded mesh with the mesh points

i\ 4
B:={B;}, ﬁj:sgn(j)(21|n]|> % (j=-m/2,...,—1,1,....m/2), (1.6)

where g > 1 is the grading exponent. In Cheng et al. (2004), the value of g is set to be 2 and correspond-
ingly to it is assumed that m = +/n — 1. It can be verified that B C A. Transforming the negative index
in (1.5) and (1.6) to positive one, we obtain the equivalent mesh-point sets:

A:={a}, =i 1)-(n-1)2 ((=1,...,n), (1.7)
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and

3. I3, 2 _ [ By--mp, J=1,....m/2,
B:={B;}, ﬁ./{ B2 j=m/241,...,m. (18)

Rewriting equation (1.4) by using a variable substitution p = ¢ — s and the periodic property of v gives

—/LL/Zlog|v(s) —v(o+s)lu(vic+s))do=f(v(s), se[-L/2,L/2]. 1.9

Applying the trapezoidal rule with the point set B to the integral involved in (1.9) and collocating the
resulting equation with respect to the point set A, we obtain the following system of equations:

Y (VB4 00)) = FV@)), =T, (1.10)
j=1

where u,(v(s)) is the numerical solution to the equation (1.4) (or to its equivalent form (1.9)) for s €
[—L/2,L/2] and the values of y; ; (i=1,...,nand j=1,...,m) are given by

i1 =~ Tog V(B + &) — V(@) (B2~ B,

Him =~ 108 1V (B + &) V(@) (B — -1,

Wij = *%log\v(ﬁﬂr@i) —v(@)|-(Bjr1—Bi-1) 2<j<m—1).

We find that the number of nonzero elements of the coefficient matrix in the (1.10) is equal to Card(B) -
Card(A)=m-n=n-v/n—1.

We finish the introduction by outlining the rest of the paper . In the next section, we will study the
stability properties of the numerical method (1.10), which is done by using the kernel-splitting ideas.
The convergence results will be established in Section 3.

2. Stability

In this section, we will employ the splitting kernels technique to prove the stability for (1.10). This
technique has been used in many cases (c.f., Atkinson (1988), Yan (1990), Bialecki & Yan (1992), and
Mclean (1994)). Let us split the kernel in (1.4) into the following form

—log|v(s) = v(o)| =k (s— o) + k¥ (s, 0), 2.1)
where
KW(s— o) = —log|sin[n(s — 5)/2L]|, (2.2)
2] [ —log(2L/7), if s—o =2jL, j=0,+1,...
k(s 0) = { “log|[v(s) - v()]/sin[x(s — 6)/2L]|, otherwise. 23)

Note that the kernel k! is convolutional and the kernel k2! is symmetric: k% (s,6) = k(5 s). Inserting
(2.1) into (1.9) yields

/_LL/;[k“] (6)+ k(5,0 +)u(v(c+5)) do = f(v(s)),  s€[-L/2,L/2). (2.4)
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Applying the same process for deriving (1.10) to the equation (2.4) gives
UL -
)y () 1) (VB + @) = (V@) i=1m, 25)

1]

where the values of i j and ,ul[ ,] (i=1,...,nand j=1,...,m) are given by, respectively,

ull = KB - (B~ Br) = félog\sinm&/u)\ B- B,
Hip = fk“](Bm (B B-1) =~ 50 |sin(B/2L)| - (B Bu-1):

) = ; U(B)) - (By1 — By-1) = — 5 logIsin(why/20) - (Byer — Bi1) (2<j<m—1),

and
‘ui[.zl] = %km (04, B1+ ) - (B2 — Br),
“:[2;,]1 = ; 2 (@, B+ ) - (B — But),
‘ul[vj] ; 2 (@, Bj+a) (Bs1—Bji—1) (2<j<m—1).

Write (1.10) and (2.5), respectively, into the matrix forms:
DU =F, (2.6)
and

(Dm +D[2]> U=F, (.7

where U = (u,(V(21)),...,un(V(d,)) " and F = (f(v(a4)),...,f(v(d)))T. The matrices D, D' and D?
are sparse with non-zero elements:

- [ n=2[(k—1)—m/2]?, k=1,...,m/2,
470 f"”‘{ (n+1)/242(k=m/22, k=m/2+1,....m
if dij #0, then diiy ;41 (mod n) # O-

Moreover, the matrix pll .= ( 1[1]]) is a circulant matrix (see e.g., Davis (1979)) with the ele-

ments described by the follows:

e (1): In the first row, d%l]] = ,ul[l,]c for

. n=2[(k—1)—m/2]?, k=1,...,m/2,
J‘{ (n+1)/2+2(k—m/2)?, k=m/24+1,....m

and d%{]' = 0 otherwise.

. gl (1
° (2 di dt+1 j+1 (mod n)*
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Error analysis for a fast numerical method to the boundary integral equation of the first kind

Sof12
D =D + DI,

(2.8)
As to be shown below, the circulant property of the matrix pl! helps us to verify that D" is invertible
and to derive the upper bound of the condition number. This allows us to rewrite (2.8) into the form

D =D (I+ (D“])"Dm). (2.9)
Therefore, the stability of (1.10) is then proved by verifying that the matrix I+ (D[”) ~'DP is invertible
(cf. Lemma 2.2).

LEMMA 2.1 For the matrix D'/, we have the following estimation for its inverse:

10" |7 < Cm,

where || - || # is the Frobenius norm and the positive constant C is independent of .
Proof. Since D! is a circulant matrix, it follows from (Davis, 1979, Theorem 3.2.2) that the eigenvalues
A; are given by

A=

~
[N agE
L

JUNE02m/ngl) (=1, ),
where i” := —1. Using the expression of d”, we can formulate A; as

m2
A = ZeIU*1>("*2[<k4>fm/212)2ﬂ/nul[}]1 I
k=1

1m/2
= 51;

U0 (=200=0=m/ 22027 /n( _yog | sin(rfy /2L)| - (Besr — Br-1))
1 m

k=m/2+1

Z ei(jfl)((n+l)/2+2(k7m/2)2)27r/n”[1]

(2.10)
+§ Z ei(j_1)(("+1)/2+2(k_m/2>2)2”/"(—log|sin(ﬂ:Bk/ZL)| ) (BkH —kal)%
k=m/2+1
where B_| := B and B,11 := Bn. The module of 4 ; can be bounded from below by
1 _ _ m/2 ) _
5 min (Bt = Bea) | Y U702 2ERR  log [ sin(nfy/21) )
=1,....m =1

+ Z ei(jl)((n+1)/2+2(km/2)2)2ﬂ:/n(1Og|sin(nﬁk/2L)|)> ) .11)
k=m/2+1
Using a formula from (Gradshteyn & Ryzhik, 1980, 1.441.2), we have
log|sin(wB/2L)| = —log2— Z w
/=1
— o2 _"_1 cos({mfi/L) B i "l cos(¢nBi/L)
(=1 t

o pn—1)+C (2.12)



60f 12 JINGTANG MA AND TAO TANG

Inserting (2.12) into (2.10) and noting

16L
kmm (Bes1 — Bi—1) =

seensil

give
mfz moo
PR SL’:)Zg2 (Zel(]1)(n2[(k1)m/2]2)27r/n+ y el(]l)((n+1)/2+2(km/2)2)271/n>
k= k=m/2+1
8L n—1 7]( o n—1 Y][
— ~ + : , (2.13)
m? <¢Z’l 14 pg’m;p(n—l)—i-ﬁ
where
m/2
Ve = Z AG=D (n=2[(k=1)=m/2] )27:/;1( 07 /L n eﬂmﬁk/L)
k=1
+ i ei(jfl)((n+1)/2+2(k7m/2)2)27r/n (ei[n'Bk/L_"_efilan/L)
k=m/2+1

m/2
_ Zei(j—1)(n72[(k—1)7m/2]2)27r/n (eiL/EZ[(kfl)fm/Z]z/(nfl)+efihrZ[(kfl)fm/2]2/(n7]))
k=1
4 i AU=D((n+1)/242(k=m/2)?)27/n (eim(k—m/2>2/<n—1) T e—iznz(k—m/z)z/(n—n)
k=m/2+1

It is straightforward to verify that

m/2 m
Z (n=2[(k—1)—m/2]*)2m/n 4 Z ei(j—1)((n+1)/2+2(k—m/2)2)27r/n
k=1 k=m/2+1
m . .
(=D k=127 /mn _ m, if j =0 mod m,
; { 0, otherwise. (2.14)
By a simple calculation, (2.14) and (2.13) lead to
1 1 1
|A,j>C<+..>' (2.15)
m j m—]j
It then follows from the inequality that
1 1 4
J m—j m
Thus the proof of Lemma 2.1 is complete. O

Furthermore, we derive the upper-bound of the inverse of the matrix I+ (])[1] ) D in the following
lemma.
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LEMMA 2.2 Let D!l and DI be the matrices involved in (2.9). Then for sufficiently large n and m, we
have the estimation:

o

<C,
F
where the positive constant C is independent of n and m.
Proof. Recall the form of splitting kernel (2.1):
—log|v(s) = v(0)| = k(s — &) + kPl (5,0),

and define the operators H 1) and HE! by

Hw(s) ::/

-L)2

L2
HPhw(s) := /

-L2

L/2
k(s —o)w(o) do,

k2(s,0)w(o) do.
Then the original problem (1.4) can be written into it equivalent form
(Hm +H[2]) w(s) = f(v(s)), (2.16)

where w(s) := u(v(s)). It is known that the operator H!!! is invertible and I+ (H!")~"H?! is a compact
operator. Hence, (1.4) and (2.16) are also equivalent to

(1+ (HI) T HPw(s) = HY) T f(v(s). (2.17)

The key to the proof of this lemma is to view I+ (DI!)) “'DI) as the approximation of I+ (H1)~1H .
Denote G := (H!")~"H2. Corresponding to the operator G, the kernel g(s, ) is given by
g(s,0) = HN 1 kP(s,0). (2.18)

Let the matrix T := (1, J')?.j:l be defined by

1 o _ _
tij= Eg(aiyaj)(ﬁkﬂ —Bi—1),
. n=2[(k—=1)—m/2)*+(i—1), k=1,...,m/2,
TV 1) 2420—m/22 +(i—1), k=m/2+1,....m,
tij =0, otherwise.

We now derive the upper-bound for | T — (D'l)~'DR/|| z. Let t, and d, represent the (-th row of the
matrices T and D22/, respectively. Define

%g(sadf)(5k+1*5k—l)a
g(s,0) = e:{ n=2[k—=1)—m/22+(i—1), k=1,...,m/2,
(n+1)/24+2(k—m/2)*+(i—1), k=m/2+]1,...,m,

0, otherwise,
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%k[ﬂ (5,00) (Bir1 — Br1),

K (s,a) = /- n—2[(k—1)—m/2?+(i—1), k=1,...,m/2,
T (n+ D) 242k—m/2)2+(i—1), k=m/2+1,...,m,
0, otherwise.

Moreover, define a restriction operator r by
rv(s) = [v(0),...,v(&)]",  veC([-L/2,L/2]). (2.19)

It is obvious that t; = rg(s, o) and d; = rk2! (s,@). Then using Lemma 2.1 and Lemma 3.1 (see the
next section) gives

R N TRy
= ity (ot ) egs. o) ) | < VB,
where || - ||2 is a vector 2-norm. Therefore,
| (T— ") "pk) v < \/; [t — (DI~ 1de |2 v]l2 < C%. (220)
/=1

Now it is ready to derive the lower-bound for |[I+ T|| ;. The following inequality is known from Yan
& Sloan (1988):
II+G)vll2 = Clvll2,  veL*([-L/2,L/2]), (2.21)

where the notation || - || > stands for |- [|2((_1 5,1, /2])- The kernel g(s, ¢) in (2.18) is Lipschitz continuous
with respect to the variables s and o, respectively. Define a map

pui R — 13(-L/2,L/2))
by, forv=[vy,...,v,] ",
(pnv)(s) =v;i, forse (04,0Qi+1), i=1,...,n—1,
i.e., (pn(v))(s) is a piecewise constant function. It is easy to verify that

[Vll2 = [|PaVllz2- (2.22)

Define a matrix T := (7;, j)?j:w where

Bk—l
J, s@.0)do.
k—1
lij= C n=2[(k—1)—m/2)?+(i— 1), k=1,...,m/2,
T (n D)/ 242(k—m/2)2+(i—1), k=m/2+1,...,m,
0, otherwise.
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Since g(s, o) is Lipschitz continuous with respect to s and o, respectively, we can verify that

. 1
'kﬁ%v—pﬂvaL2<67ﬂﬂh, (2.23)

and

Wf—nﬂﬂgémm. (2.24)

2
Applying (2.22) and the triangle inequality, together with (2.16) and (2.17), we derive

o, =

12

> 1+ Gl Gov—pid, ¢ (1-1) vl
Then it follows again from the triangle inequality that
Ha+Tw%>Ha+®ﬂL—WT—nﬂL>qwm. (2.25)
Combining (2.20) and (2.25) leads to
|(t+ @D | = T - 7 - o) DRy

e (1 - ﬁl"g") 1¥]]2. (2.26)

n—1
This completes the proof of Lemma 2.2. O

The following stability result follows directly from Lemma 2.1 and Lemma 2.2.

THEOREM 2.1 The numerical method using the graded mesh for the numerical integration, i.e., (1.10),
is stable in the sense that the matrix D for the corresponding matrix equation DU = F is non-singular.
Furthermore, the sparse matrix D satisfies the following estimate:

D, <Cvn—T1, 2.27)

for sufficiently large n, where 7 is the total number of collocation points.

3. Convergence
The following two lemmas are important in establishing the convergence result of the scheme (1.10).

LEMMA 3.1 Let J(s,0) := —log|v(s) — v(s+0)| and W(s,0) := u(v(s+ o)), where v(s) is subject
to the condition (1.3) and assume that u(v(s)) € C*([~L/2,L/2]). Then the error of the trapezoidal rule
is given by

L/2 1 _ _ _
06) = [, 9.0 (s,0)do 3 Y Is.ByWsBi) Byt~ i)
i=

—L2
= G(s)+E(s), 3.1)



10 of 12 JINGTANG MA AND TAO TANG

where
60) = 1 X U0 BIWEB) oo (Bror ~ By (32)
pe
o 1 _j+1 n_BjH n _
E(s) := ij’]/ﬁj [[m 5 (J(5,0)W(5,0)) 566 (0 —n)* do
m /n P (5, 0)W (5,6)) g (6 — )2 dos | i, (3.3)

where B; € B for j = 1,...,m, with B given by (1.8), and we also set f_; := B; and Bui1 := Bu-
Furthermore, G(s) and E(s) can be bounded, respectively, by

logn

Gs)| <C&" B < 8"
m2

m3

(3.4)

Proof. Applying the Euler-Maclaurin theorem to the integrand with Bj and Bj+l , respectively, gives

‘,(Sv G)W(S,O') = J(SaBj)W(Sv

t—/
+
~
2
=
=
=
=

~.
=
Q
Q
I
>

(3.5)

and

J(s,0)W(s,0) = J(SaBj+l)W(faBj+l) + (_J(&Bjﬂ)W(S,BjH))g (6—Bjn) (3.6)
N (J(Saﬁjﬂ)“zl!(s»ﬁjﬂ))ac (0= Brur)?
N B: (J(s,nWVz(!s,n))nnn
Multiplying (3.5) and (3.6) by (6 — Bj+1)/(Bj — Bj+1) and (6 — B;)/(Bj+1 — B;) respectively, and

adding the resulting quantities, lead to (3.1). Moreover, similar to the proof of Lemma 3 in Cheng
et al. (2004) we can obtain (3.4). The proof of Lemma 3.1 is thus complete. ]

(n—o0)*dn.

LEMMA 3.2 Assume y(s) € C*([0,2x]) and (s) is 27-periodic. Let vectors {e/} (j=1,...,n) be
given by
[1,exp (i27[j — 1] /n) ,exp (i27[2(j — 1)]/n), ... exp (i2x[(n — 1)(j —1)] /n)] " .

Then
Cn2, =1

<ry’(s),e/ >| < 1 1 2
’ r\[/J(S)e ’ C< + : > , j:2,...,n,
j=1 n—=(—-1)

where r is the restriction operator defined in (2.19) and < -,- > denotes the Euclidean inner product.
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Proof. It is known from Davis (1979) that the vectors e/ are the eigenvectors corresponding to the
eigenvalues A; in (2.10). Then the remaining proof is exactly the same as the one of Lemma 2.4 in
Bialecki & Yan (1992). O

Due to the orthogonal property, < /,e¢ >= 275, (1 <, j,k < n), where §; is the Kronecker delta
function, we may write the following expansion

ry’(s) = % Y <ry’(s).e/ >
=

It then follows from Lemma 3.2 that

| ) ey

2 I ¢ -2 i |2
Q:E;Aj |<ry” e/ >|". 3.7
/:

Applying Lemma 3.2 and Lemma 2.1 gives

H(D[l])flrw//

<G, (3.8)
2

where the constant C is independent of n and m.
To provide error bounds of our numerical schemes, we use a discrete L*> norm defined by (e.g.,
Cheng et al. (2004))

1/2
llu(s)|lgis := {111 <ru(s),ru(s) >} ($)||2- (3.9

L
= —|ru
Vn

THEOREM 3.1 Let w(s) := u(v(s)) and wy(s) := u,(v(s)) be the solutions of (1.4) and (1.10), respec-
tively, where v(s) is subject to the condition (1.3). Moreover, assume w(s) € C*([~L/2,L/2]). Then
the a priori error estimate of the scheme (1.10) to the integral equation (1.4) is given by

logn
Iw(s) = wn(s)ll i < €

where the discrete norm || - || ; is given in (3.9).

Proof. It is observed that
w(s) —wy(s dls_\/ﬁ W an—\/ﬁ w—Ul|2, .

where U is given in (2.6), so it only needs to estimate ||rw — Ul||,. It follows from D(rw — U) = rQ that

rw—U=D"'rQ=D"'rG(s) + D 'rE(s).

Therefore, using the inequality (3.8) with the change of the variables s = T% — %, together with the
stability results Theorem 2.1 and the quadrature error estimates in Lemma 3.1, yield
1
Jrw— U < cY1OE,
n

Combining the above estimate and (3.10) completes the proof of this theorem. O
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THEOREM 3.2 Assume w(s) € C*([~L/2,L/2]), where w(s) := u(v(s)) is the solution of (1.4). Assume
the Simpson quadrature rule is employed to approximate the integral involved in (1.9) and the grading
mesh B is used such that B/ := (B +Bj+1)/2 € B forall B, ;11 € B. Denote the resulting numerical
solution by wj(s). Then the a priori error estimate of the numerical scheme is given by
logn
[w(s) —wa(s)llgis < C7.
Proof.  The proof of the above theorem is quite similar to that of Theorem 3.1 and will be omitted

here. The detailed description of the numerical scheme using Simpson rule can be found in Cheng et al.
(2004).
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