
High-Order Convergence of Spectral Deferred

Correction Methods on General Quadrature Nodes

Tao Tang∗, Hehu Xie †, and Xiaobo Yin‡

Abstract

It has been demonstrated that spectral deferred correction (SDC) methods
can achieve arbitrary high order accuracy and possess good stability proper-
ties. There have been some recent interests in using high-order Runge-Kutta
methods in the prediction and correction steps in the SDC methods, and
higher order rate of convergence is obtained provided that the quadrature
nodes are uniform. The assumption of the use of uniform mesh has a seri-
ous practical drawback as the well-known Runge phenomenon may prevent
the use of reasonably large number of quadrature nodes. In this work, we
propose a modified SDC methods with high-order integrators which can yield
higher convergence rates on both uniform and non-uniform quadrature nodes.
The expected high-order of accuracy is theoretically verified and numerically
demonstrated.

1 Introduction

In [4], a spectral deferred correction (SDC) method was proposed by coupling the

Gaussian quadrature with Picard iterations, which was shown to possess very high-

order of accuracy and larger stability region. The success of the SDC is due to several

issues. Firstly, the difficulty of equidistant polynomial interpolation is eliminated

by using the Gaussian quadrature on each subinterval. Secondly, the instability

of numerical differentiation is eliminated by solving the equivalent Picard integral

equations rather than directly solving the ODEs. Furthermore, the Picard process

relaxes the restriction of the uniform distribution of the quadrature nodes required

by the classical deferred correction methods.

∗Department of Mathematics, Hong Kong Baptist University, Hong Kong,
China(ttang@hkbu.edu.hk)

†LSEC, NCMIS , Institute of Computational Mathematics, Academy of Mathematics and Sys-
tems Science, Chinese Academy of Sciences, Beijing 100190, China(hhxie@lsec.cc.ac.cn)

‡School of Mathematics and Statistics, Cental China Normal University, Wuhan, 430079,
China(yinxb@mail.ccnu.edu.cn)

1

The low-order methods such as the forward Euler or backward Euler methods are

employed [4] during the correction loops, while high-order integrators were inves-

tigated by Christlieb et al. [2] where an rth-order Runge-Kutta (RK) integrator is

used to solve the error equation in the correction loop. With the same number of

function evaluations, it was shown that the use of the higher-order integrators can

have one magnitude of accuracy improvement. However, the order increasement in

the correction loop does not hold for non-uniform grids, e.g., the Gaussian quadra-

ture nodes are excluded. The aim of this paper is to have a better understanding

of the convergence-rate issues on non-uniform quadrature nodes, in particular we

wish to consider the case of using SDC methods with high-order integrators during

correction loops. More precisely, we consider how to recover high-order rate of the

convergence for higher-order integrators with non-uniform quadrature nodes. To

this end, we will establish a recursive relation for error functions and then give the

convergence analysis. Then we make a simple modification in the correction step to

improve the regularity of the error functions; this will allow us to extend high order

convergence behaviors to the non-uniform quadrature nodes.

The rest of the paper is arranged as follows. In Section 2, we review the SDC

methods and discuss their error analysis. We will also present a modified SDC

strategy to extend high order convergence behaviors to the non-uniform quadrature

nodes. In Section 3, numerical experiments will be reported to support the theoret-

ical predictions. The superior stability properties of the modified SDC methods will

be demonstrated in Section 4. The final section gives some concluding remarks.

2 The SDC method and its convergence

For simplicity, we consider an IVP consisting of a scalar ODE and initial condition
{

y′(t) = f(t, y(t)), t ∈ (a, b],
y(a) = ya.

(2.1)

We assume the function f : [a, b]×R 7→ R satisfies the following Lipschitz continuous

condition

|f(•, y1) − f(•, y2)| ≤ L|y1 − y2|, (2.2)

with the Lipschitz constant L. To implement the SDC methods, we discretize the

time domain [a, b] into intervals to get a mesh

Th :=
{
tn : a = t0 < t1 < · · · < tN = b

}
.

We set In := (tn, tn+1], Īn := [tn, tn+1], hn := tn+1 − tn, with n = 0, 1, · · · , N − 1.

The quantity

h := max{hn : 0 ≤ n ≤ N − 1}

2

will be called the size of the mesh Th. Let Xh be the grid points which is given by

Xh :=
{

tn,i := tn + cihn : 0 ≤ c1 < · · · < cm ≤ 1
}

, (2.3)

where {ci} is a prescribed set of collocation parameters; for a given mesh Th the

collocation parameters completely determine Xh. It is noted that the classical de-

ferred correction methods are based on the equispaced nodes in each interval In, i.e.,

ci = i/m.

In this section, we will concentrate on the subinterval In, so in most cases the

superscript n will be dropped (e.g., Xh defined by (2.3) also depends on n). We

introduce the standard Lagrange interpolation operator Lm defined on the interval

In:

Lm(−→ϕ) =
m∑

i=1

ϕiln,i(t) (2.4)

for vectors −→ϕ = [ϕ1, · · · , ϕm]T ∈ R
m, where the function ln,i(t) denotes the corre-

sponding Lagrange basis functions associated with the collocation points {tn,i}
m
i=1.

2.1 The SDC methods

This subsection reviews the SDC methods proposed in [4] for (2.1). The SDC method

is based on the following equivalent integral equation associated with (2.1)

y(t) = ya +

∫ t

a

f(s, y(s))ds, t ∈ (a, b]. (2.5)

In the collocation method, the solution of (2.5) is approximated by an element uh

of the piecewise polynomial space

S
(−1)
m−1(Th) :=

{
v ∈ C−1([a, b]) : v|Īn

∈ Pm−1 (0 ≤ n ≤ N − 1)
}

, (2.6)

where Pm−1 denotes the space of all (real) polynomials of degree not exceeding

m−1. The collocation solution uh ∈ S
(−1)
m−1(Th) for (2.5) is defined by the collocation

equation

uh(t) = ya +

∫ t

a

f(s, uh(s))ds, t ∈ Xh. (2.7)

Let
−→
Y m = [uh(tn,1), · · · , uh(tn,m)]T , −→y m = [y(tn,1), · · · , y(tn,m)]T , (2.8)

3

where cj is defined by (2.3) and y is the exact solution of (2.1). It is known that

the following error estimate for the collocation approximation Ym holds (c.f. [1,

Theorem 2.2.3])

‖−→y m −
−→
Y m‖ ≤ Chm‖y‖m+1, (2.9)

where ‖ • ‖m+1 denotes the maximum norm of y(m+1).

Denote the operator K by the following functional

Kf(y) =

∫ t

tn

f(s, y(s))ds, for t ∈ (tn, tn+1]. (2.10)

It follows from (2.1) that in In

y(t) = y(tn) + Kf(y), t ∈ [tn, tn+1]. (2.11)

Define a matrix operator Km corresponding to the collocation parameters {ci} by

Kmf(−→η) =

(
m∑

j=1

f(tn,j, ηj)

∫ tn,i

tn

ln,j(s)ds

)

1≤i≤m

(2.12)

for the vector −→η and Km
−→η ∈ R

m. It follows from the Lipschitz continuous condition

(2.2) that

‖Kmf(−→η 1) − Kmf(−→η 2)‖ ≤ Ch‖−→η 1 −
−→η 2‖, (2.13)

where (and in the rest of the paper) ‖•‖ denotes the standard l∞-vertor norm. Using

the definition (2.12), the collocation approximation Ym for (2.1) can be written as

−→
Y m = −→u n + Kmf(

−→
Y m) (2.14)

with −→u n = [un, · · · , un] ∈ R
m.

The algorithm of the SDC method in the interval [tn, tn+1] is given below.

Algorithm 2.1. (SDC method):

1 (Prediction).

Use a k0-th order numerical method to compute an initial approximation over the grid

nodes (2.3), −→η [0] =
[
η

[0]
1 , · · · η

[0]
m

]T
which is a k0-th order approximation to −→y m defined by

(2.8).

2 (Correction).

For j = 1, · · · , J , do

• 2(a). Compute the interpolating polynomial Lm

(−→η [j−1]
)
.

4

• 2(b). Compute the residual for −→η [j−1]

−→ε [j−1] = −→u n + Kmf(−→η [j−1]) −−→η [j−1]. (2.15)

Define ε[j−1] = Lm(−→ε [j−1]) and define the error function for −→η [j−1]

ẽ[j−1](t) = ym(t) − Lm

(−→η [j−1]
)
. (2.16)

• 2(c). Form the error equation

ẽ[j−1](t) = Kmf
(
(ẽ[j−1]) + Lm(−→η [j−1])

)
− Kmf(−→η [j−1]) + ε[j−1](t), (2.17)

for t ∈ (tn, tn+1], with ẽ[j−1](tn) = 0.

• 2(d). Use an k-th order method to compute an approximate solution δ
[j−1]
i ≈

ẽ[j−1](tn,i) to the error equation at the grid points tn,i on [tn, tn+1].

• 2(e). Define a new approximate solution −→η [j] = −→η [j−1] +
−→
δ [j−1].

There are various implementation details for the SDC methods, see, e.g., discus-

sions on the distribution of grid points (2.3) in [7], the choice of numerical inte-

grations, or different numerical methods in the prediction and correction steps in

[6, 8].

2.2 Convergence analysis

We first illustrate how the convergence order is improved at each correction step.

Then adding the error estimates for the prediction step, the error estimate for the

SDC methods will be obtained. Note the convergence result in this subsection is

not new. For example, the convergence for the SDC method on uniform quadrature

nodes with high-order RK correction steps was established in [2] using a smoothness

of rescaled error vector approach. However, the new framework given in this sub-

section will allow us to further improve the SDC algorithm as to be demonstrated

in the following subsection.

To implement SDC methods, a lower order numerical method such as forward

Euler, backward Euler, and second-order RK method is applied to obtain approxi-

mations of the error equations in the correction steps. Similar to the definition of

integral operator Km to (2.14), we also define the lower-order discrete integral oper-

ator K̃m corresponding to the numerical methods such as forward Euler, backward

Euler, and second-order RK methods. It follows from the Lipschitz condition (2.2)

that

‖K̃mf(−→η 1) − K̃mf(−→η 2)‖ ≤ Ch‖−→η 1 −
−→η 2‖, (2.18)

where C is a constant dependent on L but independent of the time step size h.

5

Theorem 2.1. Assume the solution y(t) of (2.1) is (m + 1)-times continuously

differentiable. Let −→η [J] be computed in the Correction step of Algorithm 2.1. If the

stepsize h is sufficiently small, then the following error estimate holds

‖−→y m −−→η [J]‖ ≤ Chk0+J‖y‖k0+1 + Chm‖y‖m+1, (2.19)

where −→y m is defined by (2.8), the constant C is independent of h, k0 is the conver-

gence order for numerical schemes used in the prediction step, and J is the number

of Correction cycles in Algorithm 2.1.

Proof. It follows from Algorithm 2.1 that
−→
δ [j−1] = K̃mf

(−→
δ [j−1] + −→η [j−1]

)
− K̃mf(−→η [j−1]) + −→ε [j−1]

= K̃mf(−→η [j]) − K̃mf(−→η [j−1]) + −→u n + Kmf(−→η [j−1]) −−→η [j−1]

= K̃mf(−→η [j]) − K̃mf(−→η [j−1]) +
−→
Y m − Kmf(

−→
Y m)

+Kmf(−→η [j−1]) −−→η [j−1], (2.20)

where in the last step we have used (2.14). Using the above result gives

−→η [j] = −→η [j−1] +
−→
δ [j−1]

= K̃mf(−→η [j]) − K̃mf(−→η [j−1]) +
−→
Y m − Kmf(

−→
Y m)

+Kmf(−→η [j−1]). (2.21)

Consequently, we have
−→
Y m −−→η [j] = K̃mf(−→η [j−1]) − K̃mf(−→η [j]) + Kmf(

−→
Y m) − Kmf(−→η [j−1]). (2.22)

This, together with (2.13) and (2.18), yield

‖
−→
Y m −−→η [j]‖ ≤ Ch

(
‖−→η [j−1] −−→η [j]‖ + ‖

−→
Y m −−→η [j−1]‖

)
, (2.23)

which gives

‖
−→
Y m −−→η [j]‖ ≤ Ch

(
‖
−→
Y m −−→η [j]‖ + ‖

−→
Y m −−→η [j−1]‖

)
. (2.24)

If h is sufficiently small, the above result gives the following recurence formula

‖
−→
Y m −−→η [j]‖ ≤ Ch‖

−→
Y m −−→η [j−1]‖, (2.25)

which yields

‖
−→
Y m −−→η [J]‖ ≤ ChJ‖

−→
Y m −−→η [0]‖. (2.26)

Note that

‖
−→
Y m −−→η [0]‖ ≤ ‖

−→
Y m −−→y m‖ + ‖−→η [0] −−→y m‖0,∞

≤ Chm‖y‖m+1 + Chk0‖y‖k0+1, (2.27)

where in the last step we have used (2.9). The desired estimate (2.19) follows from

(2.9), (2.26) and (2.27).

6

2.3 Convergence enhancement on non-uniform nodes

Since the correction step in Algorithm 2.1 includes only one Picard integration, the

accuracy can only be improved by one order after each correction step. It is also

interresting to observe in [6, 7, 8] that on non-uniform quadrature nodes even high

order numerical methods are applied in Step 2(e) for solving the error equation only

one order accuracy improvement can be obtained with each correction step. On

the other hand, the classical deferred correction methods are based on the uniform

distribution of grid points (see, e.g., [9, 10]), which is also a necessary condition for

accuracy enhancement at the correction steps in the SDC methods (see, e.g., [3]).

In this subsection, we will modify the correction steps so that higher order en-

hancement can be obtained on non-uniform nodes. The key idea is to improve

the regularity of the error function so that higher order numerical methods used in

Step 2(e) can yield high accuracy. The key point is that the regularity of the error

function can be improved by one order after each Picard integration even on the

non-uniform quadrature nodes (see [11]).

Algorithm 2.2. (Modified SDC method):

Same as Algorithm 2.1, except that before doing the step 2(a) compute an improved −→η [j−1]:

−→
ξ [µ] = −→u n + Kmf(

−→
ξ [µ−1]), µ = 1, · · · , k − 1, (2.28)

−→
ξ [0] = −→η [j−1]. (2.29)

After the above k − 1 iterations, let −→η [j−1] =
−→
ξ [k−1].

Note in the above modified algorithm, the number of iteration cycles in (2.28) is

k−1, while the order of numerical methods used to approximate the error equations

in Step 2(e) is k, see Algorithm 2.1. The reason for doing this will be seen in the

proof of the following theorem.

Theorem 2.2. Assume the solution y(t) of (2.1) is (m + 1)-times continuously

differentiable. Let −→η [J] be computed in the Correction step of the SDC Algorithm

2.2. If the stepsize h is sufficiently small, then the following error estimate holds

‖−→y m − η[J]‖ ≤ ChJk+k0‖y‖k0+1,∞ + Chm‖y‖m+1,∞, (2.30)

where the constant C is independent of h, k0 is the order of convergence for nu-

merical schemes used in the Prediction step, J is the number of Correction cycles in

Algorithm 2.1, and k is the number occur in (2.28) and in Step 2(d) of Algorithm 2.1.

Furthermore, if the m-quadrature points in (2.3) are chosen to be Legendre-Gauss

points, then we have

‖−→y m − η[J]‖ ≤ ChJk+k0‖y‖k0+1,∞ + Ch2m‖y‖2m+1,∞. (2.31)

7

Proof. Without lose of generality, we assume k ≥ 2. It follows from (2.28) and

(2.14) that
−→
ξ [µ] =

−→
Y m − Kmf(

−→
Y m) + Kmf(

−→
ξ [µ−1]), (2.32)

which leads to

‖
−→
ξ [µ] −

−→
Y m‖ ≤ Ch‖

−→
ξ [µ−1] −

−→
Y m‖, (2.33)

and consequently

‖
−→
ξ [k−1] −

−→
Y m‖ ≤ Chk−1‖

−→
ξ [0] −

−→
Y m‖ = Chk−1‖−→η [j−1] −

−→
Y m‖. (2.34)

Note this
−→
ξ [k−1] is a modification of the previous −→η [j−1]; this new

−→
ξ [k−1] will be

used in Steps 2(a)-2(e). Hence combining (2.34) and (2.25) gives

‖
−→
Y m −−→η [j]‖ ≤ Chk‖

−→
ξ [0] −

−→
Y m‖,

which together with (2.29) yields

‖
−→
Y m −−→η [j]‖ ≤ Chk‖−→η [j−1] −

−→
Y m‖. (2.35)

Consequently, we have

‖
−→
Y m −−→η [J]‖ ≤ ChJk‖

−→
Y m −−→η [0]‖. (2.36)

The remaining proof for (2.30) is the same as that in Theorem 2.1. The result of

(2.31) follows directly from (2.27) and the property of the Legendre-Gauss points.

3 Numerical experiments

In this section, we use some numerical examples to illustrate the order of accuracy

for SDC methods with different distribution of quadrature nodes. Consider the

initial value problem:

y′ = y + cos(t + 1)et+1, t ∈ (−1, 1], (3.1)

y(−1) = 1. (3.2)

The exact solution is y(t) = (1 + sin(t + 1))et+1. In this section, the “steps” in each

result table means that the time step size is 1
steps

(c.f. [2]).

8

Table 1: Errors and convergence rates for the SDC method on 7 uniform

quadrature nodes. RK2 is used for prediction and correction (k0 = k = 2).

steps 5 10 15 20
1 RK2 (J = 0) 1.64E-02 4.17E-03 1.87E-03 1.05E-03

order – 1.97 1.98 1.99
2 RK2 (J = 1) 1.39E-05 8.23E-07 1.60E-07 5.00E-08

order – 4.08 4.05 4.03
3 RK2 (J = 2) 1.33E-08 1.87E-10 1.58E-11 2.74E-12

order – 6.15 6.10 6.07

3.1 Accuracy vs nodes distributions

We first check the accuracy improvement for the SDC methods with high-order

correction steps. Here, we solve (3.1)-(3.2) with a RK2 prediction and correction

steps on seven uniformly distributed quadrature nodes. The corresponding results

are shown in Table 1. As in [2] and [5], each RK2 correction step can increase two

orders of accuracy. This is slightly better than the theoretical results in Theorem

2.1, i.e., one extra order is gained in each correction step. This ’superconvergence’

behavior is related with the use of the uniform nodes, which is quite typical for the

prediction-correction type methods.

Table 2: Errors and convergence orders for the SDC method on 9 non-uniform

quadrature nodes of the form (3.3). RK2 is used for prediction and

correction (k0 = k = 2).

steps 5 10 15 20
1 RK2 (J = 0) 1.52E-02 4.02E-03 1.82E-03 1.03E-03

order – 1.92 1.95 1.97
2 RK2 (J = 1) 2.76E-05 2.73E-06 7.36E-07 2.95E-07

order – 3.33 3.23 3.18
3 RK2 (J = 2) 6.35E-08 2.30E-09 3.56E-10 9.80E-11

order – 4.79 4.60 4.49

To show the result of Theorem 2.1 is sharp, we apply the SDC methods on non-

uniform quadrature nodes. We first consider quadrature nodes with linearly increas-

ing spacing. More precisely, 9 points (i.e., m = 9) in each interval satisfying

tn,i − tn,i−1 = ih̄, h̄ =
2h

m(m + 1)
, i = 1, · · · ,m (3.3)

are used, where h = tn+1 − tn denotes the interval size, tn,0 = tn and tn,m = tn+1.

RK2 is then applied in the prediction and correction steps. The results are shown

9

in Table 2, which indicates that the convergence order can be improved by only

one after each correction step. In other words, convergence order improvement is

decreased due to the use of non-uniform quadrature nodes.

To see the difference of the modified SDC method, Algorithm 2.2 is employed

to solve (3.1)-(3.2) using the non-uniform nodes with RK2 in the prediction and

correction steps. Tables 3 and 4 give the numerical results obtained by using the

non-uniform grid (3.3) and 9 Chebyshev-Lobatto quadrature nodes, respectively,

where the rate of convergence predicted by Theorem 2.2, i.e., k0 + Jk is confirmed.

Finally, to verify (2.31), we use 4 Legendre-Gauss quadrature nodes with RK2

in the prediction and correction steps. Table 5 gives the numerical results, which

confirm that convergence order of 8 can be arrived after 3 correction steps, and

m = 4 is sufficient to balance k0 + Jk = 8 and 2m = 8 in (2.31).

3.2 Accuracy vs integrators

We consider the IVP

y′ = −2π sin(2πt) − 2(y − cos(2πt)), t ∈ (0, 20], (3.4)

y(0) = 1, (3.5)

which has the exact solution y = cos(2πt). This test example was used in [2].

We solve (3.4)-(3.5) using Algorithm 2.2 with 8 Chebyshev-Lobatto nodes and

various integrators. Specifically, given the number of intervals N , the SDC method

is carried out in each interval [ti−1,ti] (with ti − ti−1 = 20/N , i = 1, 2, · · · , N) with

5 Legendre-Gauss nodes. Let SDC-FE denote the SDC method with the forward

Euler integrator as the predictor and corrector. SDC-RK2 and SDC-RK4 are defined

similarly.

It is observed from Table 6 that the numerical errors obtained by using only 5

Legendre-Gauss quadrature nodes in Algorithm 2.2 are consistently one order of

magnitude smaller than those obtained by using 8 uniform quadrature nodes in the

SDC method in [2]. Moreover, after comparing the results with [2], we also find

that the errors associated with the Legendre-Gauss quadrature nodes are smaller

than those obtained by using the uniform quadrature nodes. The corresponding

efficiency comparison is demonstrated in Figure 1, which shows that the modified

SDC method on the Legendre-Gauss nodes has better efficiency and the use of the

specific non-uniform meshes can enhance accuracy.

A final efficiency comparison will be made by considering error against the num-

bers of function evaluations. Here function evaluation means the computation of

function f in (2.1). The performance of the uniformly distributed nodes and the

Legendre-Gauss quadrature nodes is compared in Figure 3.2. It is observed from

10

Table 3: Same as Table 2, except using Algorithm 2.2 (k0 = k = 2).

steps 5 10 15 20
1 RK2 (J = 0) 1.52E-02 4.02E-03 1.82E-03 1.03E-03

order – 1.92 1.96 1.97
2 RK2(J = 1) 5.42E-06 3.02E-07 5.70E-08 1.76E-08

order – 4.17 4.11 4.08
3 RK2 (J = 2) 1.90E-09 2.37E-11 1.99E-12 2.17E-13

order – 6.33 6.11 7.70

Table 4: Same as Table 2, except using Algorithm 2.2 on 9 Chebyshev-Lobatto

nodes (k0 = k = 2).

steps 5 10 15 20
1 RK2 (J = 0) 1.48E-02 3.79E-03 1.69E-03 9.56E-04

order – 1.97 1.98 1.99
2 RK2 (J = 1) 4.73E-06 2.47E-07 4.56E-08 1.39E-08

order – 4.26 4.17 4.13
3 RK2 (J = 2) 1.44E-09 1.64E-11 1.27E-12 2.11E-13

order – 6.46 6.31 6.24

Table 5: Same as Table 3, except on 4 Legendre-Gauss quadrature nodes (k0 =
k = 2).

steps 5 10 15 20
1 RK2 (J = 0) 4.30E-02 1.11E-02 5.01E-03 2.84E-03

order – 1.95 1.97 1.98
2 RK2 (J = 1) 3.69E-05 2.93E-06 6.23E-07 2.04E-07

order – 3.65 3.82 3.88
3 RK2 (J = 2) 3.34E-08 8.41E-10 8.43E-11 1.60E-11

order – 5.31 5.67 5.78
4 RK2 (J = 3) 1.25E-09 4.95E-12 1.87E-13 1.95E-14

order – 7.98 8.09 7.84

Figure 3.2 that the modified SDC method with special non-uniform nodes can gain

better efficiency than the original SDC method given in [2, 4].

4 Concluding remarks

To conclude this paper, we first comment the stability impact of Algorithms 2.1 and

2.2. Consider {
y′(t) = λy(t),
y(0) = 1,

(4.1)

11

Table 6: Numerical accuracy for (3.4)-(3.5) at T = 20 obtained by using

Algorithm 2.2 and 5 Legendre-Gauss quadrature nodes; the corresponding

results in brackets are obtained in [2] using 8 uniformly distributed

quadrature nodes. Here ‘nfv’ stands for number of function evaluations of

Algorithm 2.2.

– SDC-FE SDC-RK2 SDC-RK4
(k0 = k = 1, J = 7) (k0 = k = 2, J = 3) (k0 = k = 4, J = 1)

steps(N) error order error order error order
nfv nfv nfv

40 6.38E-08 – 9.64E-08 – 7.31E-08 –
(5.47E-06) 3040 (5.48E-06) 3480 (4.49E-07) 3160

80 4.36E-11 10.51 8.43E-11 10.16 3.31E-11 11.11
(1.49E-08) 6080 (1.49E-08) 6960 (1.17E-09) 6320

120 2.32E-12 7.23 1.68E-12 9.65 1.55E-12 7.56
(5.42E-10) 9120 (5.43E-10) 10440 (4.27E-11) 9480

160 3.09E-13 7.04 1.19E-13 9.20 2.74E-13 6.01
(5.30E-11) 12160 (5.31E-11) 13920 (4.16E-12) 12640

200 6.47E-14 7.00 1.94E-14 8.13 5.37E-14 7.31
(8.79E-12) 15200 (8.80E-12) 17400 (6.83E-13) 15800

rate k0 + J = 8 k0 + kJ = 8 k0 + kJ = 8

10
3

10
4

10
5

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

Number of function evaluations

E
rr

o
rs

Efficiency comparison

Uniform: SDC−FE
Uniform: SDC−RK4
Gauss: SDC−FE
Gauss: SDC−RK4

Figure 1: Efficiency comparison for (3.4)-(3.5) using the modified SDC

method with 5 Legendre-Gauss quadrature nodes and the SDC method in

[2] with 8 uniform nodes. Here function evaluations for the modified

SDC method (Algorithm 2.2) include those for the original SDC and the

additional ones for evaluating (2.28).

12

10
3

10
4

10
5

10
−14

10
−12

10
−10

10
−8

10
−6

Number of function evaluations

E
rr

o
rs

Efficiency comparison

8 Uniform nodes
5 Gauss nodes

Figure 2: Efficiency comparison between the modified SDC method on 5
Legendre-Gauss quadrature nodes and the original SDC method in [2] on

8 uniform nodes. In both cases, k0 = k = 4 and J = 1. Here function

evaluations for the modified SDC method (Algorithm 2.2) include those for

the original SDC and the additional ones for evaluating (2.28).

the amplification factor for a numerical method, Am(λ), can be interpreted as the

numerical solution after one time step of size 1. The stability region S for a numerical

method is the subset of the complex plane C, consisting of all λ such that Am(λ) ≤ 1,

i.e.,

S = {λ : Am(λ) ≤ 1}. (4.2)

In Figure 3(a), we plot the stability regions for the modified SDC methods using 8

Chebyshev-Lobatto quadrature nodes with FE, RK2 and RK4 in the prediction and

correction steps. It is observed that the stability regions increase in size as higher-

order numerical integrators are employed. A similar observation is made in Figure

3(b) when 12 Chebyshev-Lobatto quadrature nodes are used. In this case, we find

an interesting phenomena that the stability region for SDC-RK3 is not contained in

that of SDC-RK4.

It is pointed out that the main contribution of this article is to provide a conver-

gence analysis for the SDC methods based on the integral operators. The conver-

gence enhancement for general quadrature nodes is also based on the convergence

analysis, in particular by obtaining the estimate (2.26). Our method is different

from the one in [2] which uses the concept of smoothness of the rescaled error vector

and the one in [5] which is based on the classical Stetter-Lindberg-Skeel framework

and Spijker-type norms.

13

−16 −14 −12 −10 −8 −6 −4 −2 0 2
−15

−10

−5

0

5

10

15

Re(λ)

Im
(λ

)

Forward Euler

2−nd Runge−Kutta

4−th Runge−Kutta

(a)
−25 −20 −15 −10 −5 0 5

−20

−15

−10

−5

0

5

10

15

20

Re(λ)

Im
(λ

)

Forward Euler
2−nd Runge−Kutta
3−rd Runge−Kutta
4−th Runge−Kutta

(b)

Figure 3: Stability regions for SDC methods with (a): 8 and (b): 12

Chebyshev-Lobatto quadrature nodes. In (a), more loops are used for lower

order integrators so that all methods have the same convergence order

8. In (b), more loops are used for lower order integrators so that all

methods have the same convergence order 12.

Acknowledgments. The first author thanks the useful discussions with Profes-

sors Chi-Wang Shu, John Strain and Jing-Mei Qiu. We are also grateful for Prof. Qiu

for kindly providing us some relevant codes. This research was supported by Hong

Kong Research Grants Council and Hong Kong Baptist University. The second

author is supported by the Croucher Foundation of Hong Kong, the National Nature

Science Foundation of China (11001259), the National Center for Mathematics and

Interdisciplinary Science, CAS and the President Foundation of AMSS-CAS. The

third author is supported by the National Science Foundation of China (11126215).

References

[1] H. Brunner, Collocation Methods for Volterra Integral and Related Functional

Equations, Cambridge University Press, 2004.

[2] A. Christlieb, B. Ong and J. Qiu, Spectral deferred correction methods with

high order Runge-Kutta schemes in prediction and correction steps, Communi-

cations of Applied and Computational Mathematics, 4 (2009), 27-56.

[3] A. Christlieb, B. Ong and J. Qiu, A comment on high order corrections within

spectral deferred correction methods, Math. of Comp., 79 (2010), 761-783.

14

[4] A. Dutt, L. Greengard and V. Rokhlin, Spectral deferred correction methods

for ordinary differential equations, BIT Numerical Mathematics, 40(2) (2000),

241-266.

[5] A. Hansen and J. Strain, On the order of deferred correction, Appl. Numer.

Math., 61(8) (2011), 961-973.

[6] A. T. Layton, On the choice of correctors for semi-implicit Picard deferred

correction methods, Appl. Numer. Math. 58(6) (2008), 845-858.

[7] A. T. Layton and M. L. Minion, Implications of the choice of quadrature nodes

for Picard integral deferred corrections methods for ordinary differential equa-

tions, BIT Numerical Mathematics, 45 (2005), 341-373.

[8] A. T. Layton and M. L. Minion, Implications of the choice of predictors for

semi-implicit Picard integral defferred correction methods, Comm. Appl. Math.

Comput. Sci., 2(1) (2006), 1-34.

[9] R. D. Skell, A theoretical framework for proving accuracy results for deferred

corrections, SIAM J. Numer. Anal., 19 (1982), 171-196.

[10] H. J. Stetter, Analysis of Discretization Methods for ODEs, Springer Verlag,

Berlin, 1973.

[11] T. Tang and X. Xu, Accuracy enhancement using spectral postprocessing for

differential equations and integral equations, Communication in Computational

Physics, 5(2-4) (2009), 779-792.

15

