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Abstract

In this paper we show that the monotone difference methods with smooth
numerical fluxes possess superconvergence property when applied to strictly
convex conservation laws with piecewise smooth solutions. More precisely, it
is shown that not only the approximation solution converges to the entropy
solution, its central difference also converges to the derivative of the entropy
solution away from the shocks.
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1 Introduction

In this paper we consider numerical approximations to weak solutions of the initial
value problem for strictly convex conservation laws

ut + f(u)x = 0, t > 0 , x ∈ R, (1.1)

which is subject to the initial condition prescribed at t = 0,

u(x, 0) = u0(x). (1.2)

There has been an enormous amount of papers related to the error estimates for the
viscosity or more general approximations to scalar conservation laws, see, e.g., the
review article of Tadmor [16]. The results on error estimates include

∗‡ Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
E-mail address: ttang@math.hkbu.edu.hk.

†† LMAM & School of Mathematical Sciences, Peking University, Beijing 100871, China. E-mail
address: tengzh@math.pku.edu.cn.

1



• For BV entropy solutions to (1.1), an O(
√

ǫ) convergence rate in L1 obtained by
Kuznetsov [8], Lucier [12], Cockburn-Gremaud-Yang [4] etc (in the BV-solution
space, it is shown by Sabac [14] and Tang & Teng [19] that the L1-convergence
rate of order O(

√
ǫ) is optimal);

• For BV entropy solutions, an O(ǫ) convergence rate in W−1,1 obtained by Tad-
mor [15], Nessyahu & Tadmor [13], Liu-Wang-Warnecke [9] etc;

• For piecewise smooth solutions for (1.1), an O(ǫ) convergence rate in L1 ob-
tained by Bakhvalov [1], Harabetian [6], Teng & Zhang [23], Fan [2], Tang &
Teng [20], Teng [22], Liu [10], Wang [24], etc;

• For piecewise smooth solutions, an O(ǫ) convergence rate in smooth region of
the entropy solution obtained by Goodman & Xin [7], Engquist & Sjogreen [5],
Tadmor & Tang [17, 18] etc.

For multidimensional conservations laws, there are also error estimates for numer-
ical approximations, see, e.g., [3]. In [21], the authors consider the errors between
the solutions of (1.1) and its parabolic regularization. We addressed the questions of
the convergence rate in a weighted W 1,1 space when (1.1) pocesses piecewise smooth
solutions. Convergence rate for the derivative of the approximate solutions is estab-
lished under the assumption that a weak pointwise-error estimate is given. In other
words, we are able to convert weak pointwise-error estimates to error bounds in a
weighted W 1,1 space.

The approximation dealt with in [21] is essentially a viscosity method which can
not be used as a practical numerical scheme. When the approximation is truly dis-
crete such as finite difference/element/volume methods, the analysis is much more
complicated. In this work, we wish to extend the results in [21] to a fully discretized
case. More precisely, we will consider the so-called monotone finite-difference schemes
for (1.1). To this end, we first introduce the definitions of the monotone schemes.
The numerical approximations vn

j are obtained by (2k + 1)-point explicit schemes in
conservation form

vn+1
j = H(vn

j−k , vn
j−k+1 , · · · , vn

j+k)

= vn
j − λ(f̄n

j+1/2 − f̄n
j−1/2) (1.3)

which is subject to the initial condition:

v0
j = u0(xj),

where
f̄n

j+1/2 = f̄(vn
j−k+1 , · · · , vn

j+k) . (1.4)

Here vn
j = v(j∆x, n∆t), λ = ∆t/∆x, and f̄ is a numerical flux function. We require

that the numerical flux function to be consistent with the flux f(u) in the following
sense:

f̄(u, · · · , u) = f(u). (1.5)
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Definition 1.1. The finite difference scheme (1.2) is a monotone scheme if H in
(1.3) is a monotone nondecreasing function of each of its 2k + 1 arguments.

The main results of this work are the following: for the monotone finite difference
schemes we first show that error bounds in a weighted W 1,1 space can be obtained
provided a weak pointwise-error estimate is given. The weak pointwise-error estimate
with monotone schemes is indeed established for the convex conservation lows by
Nassyahu and Tadmor [13]. Furthermore, with the W 1,1-error bounds we can obtain
the optimal pointwise-error bounds for the monotone schemes.

The paper is organized as follows. In Section 2, we re-consider the viscosity ap-
proximations to the conservation laws (1.1). The convergence rate in the weighted
W 1,1 for the viscosity approximations are recovered, but by proofing techniques differ-
ent with those used in [21]. The main tool for recovering the viscosity approximation
results is the maximum principle, which can be applied to the discrete approximations.
In Section 3.1, we will obtain some properties for the monotone schemes. By multi-
plying the weighted distant function, the error bounds with monotone finite difference
schemes for the piecewise smooth solutions in the weighted W 1,1 are established.

2 Viscosity approximation

In this section, we wish to recover the main results obtained in Tang and Teng [21]
by using the maximum principle for differential equations. In [21], the energy-type
methods are used to obtain the convergence rates. Since we will in this paper ob-
tain the convergence for the finite difference methods using the (discrete) maximum
principle, the brief re-consideration of the viscosity approximation will be useful.

2.1 Weighted error for the viscosity solution

Viscosity approximation for the nonlinear conservation laws (1.1)-(1.2) is to find the
solution of the following differential equation:

∂tu
ǫ + ∂xf(uǫ) = ǫ∂xxu

ǫ, (2.1)

which is subject to the initial data

uǫ(x, 0) = u0(x). (2.2)

For ease of exposition, we will make the following assumptions:
(A1) the initial data u0 is piecewise C3-smooth and compactly supported;
(A2) there exists a smooth curve, x = X(t), such that u(x, t) is smooth at any

point away from x = X(t);
(A3) there is a constant 0 < γ ≤ 1 and a constant C > 0 such that

|uǫ(x, t) − u(x, t)| ≤ Cǫγ for |x − X(t)| ≥ Cǫγ (2.3)
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and
|vn

j − u(xj, tn)| ≤ C∆xγ for |xj − X(tn)| ≥ C∆xγ , (2.4)

where uǫ is viscosity solution and vn
j is difference solution.

Remark : Assumption (A3) is satisfied for convex conservation laws with Lip+-
bounded initial data, with γ = 1/3 (see Tadmor [13]); it can be improved to γ = 1/2
(see Tadmor and Tang [17]).

Let u(x, t) be the piecewise smooth entropy solution of (1.1). Without loss of
generality, we assume that the entropy solution of (1.1)-(1.2) contains one shock
discontinuity x = X(t) only with starting point at origin, i.e., X(0) = 0. Therefore,
u satisfies

∂tu + ∂xf(u) = ǫ∂xxu + O(ǫ)

in the region of x 6= X(t), where O(ǫ) = −ǫ∂xxu.
It can be further verified that the error function e := uǫ − u satisfies

∂te + ∂x(A(uǫ, u)e) = ǫ∂xxe + O(ǫ), (2.5)

where

A(u, v) :=

∫ 1

0

f ′(su + (1 − s)v)ds.

Following Tadmor and Tang [17], we introduce a non-negative function φ(x) ∈ C2(R)
which satisfies

• (i): φ(x) ∼ |x|α , |x| ≪ 1,

• (ii): xφ′(x) > 0 , x 6= 0 ,

• (iii): φ(x) → 1 , |x| → ∞ ,

where α ≥ 1 is a finite constant. The second requirement above implies that φ
is monotonely decreasing for x < 0 and increasing for x > 0. More precisely, the
distance function φ is required to satisfy

{
φ(0) = 0, 0 < xφ′(x) ≤ αφ(x) , for x 6= 0,
|φ(x)| ≤ |x|α , |φ(k)(x)| ≤ C , k = 0, 1, 2,

(2.6)

where the constants C are independent of x. The functions satisfy the above require-
ments include φ(x) = (1 − e−x2

)α/2.
In this work, we choose α = γ−1 +3, where γ is the constant given in the assump-

tion (A3). In other words,

φ(x) ∼

{

xγ−1+2, |x| ≪ 1

1, |x| ≫ 1.
(2.7)
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For convex conservation laws we have γ = 1/2. Multiplying the error equation by
φ := φ(x − X(t)) and applying the product rule for ∂x(φw) and ∂t(φw) gives

∂t(φe) + ∂x

((
A(uǫ, u) + 2ǫφ′/φ

)
φe

)

+
(

ǫβφ′′/φ +
(
Ẋ −A(uǫ, u)

)
φ′/φ

)

φe − ǫ∂xx(φe)

= O(ǫ) + ǫ(β + 1)φ′′e = O(ǫ),

where we have used the fact ǫφ′′e = O(ǫ) and β is a constant to be determined later.
By letting

L(w) :=∂t(w) + ∂x

((
A(uǫ, u) + 2ǫφ′/φ

)
w

)

+
(

ǫβφ′′/φ

+
(
Ẋ −A(uǫ, u)

)
φ′/φ

)

w − ǫ∂xx(w),
(2.8)

we have L(φe) = O(ǫ). Therefore φe satisfies
{

L(φe) = O(ǫ) ,
φe|t=0 = 0.

(2.9)

We can re-write the differential operator L(w) in a non-conservative form:
{

L(w) = ∂tw +
(
A(uǫ, u) + 2ǫφ′/φ

)
∂xw + cw − ǫ∂xxw,

c(x, t) = B(uǫ, u, uǫ
x, ux) +

(
Ẋ −A(uǫ, u) + ǫ((β + 2)φ′′/φ′ − 2φ′/φ)

)
φ′/φ,

(2.10)
where

B(uǫ, u, uǫ
x, ux) :=

∫ 1

0

f ′′(suǫ + (1 − s)u)(suǫ
x + (1 − s)ux)ds. (2.11)

Now we will prove an important maximum theorem for L(w).

Theorem 2.1. If w(x, t) satisfies

(A)

{

L(w) = g(x, t) ≥ 0, (x, t) ∈ R × R
+

w| t=0 ≥ 0,
(2.12)

then w(x, t) ≥ 0 for all (x, t) ∈ R × R
+.

Proof. If there is a constant M such that c(x, t) ≥ −M for (x, t) ∈ R × R
+, then

the theorem is a classical maximum theorem for parabolic equation. But it follows
from f ′′(u) > 0 and uǫ

x(x, t) → −∞ as (x, t) → (0, +0) that B(uǫ, u, uǫ
x, ux) → −∞ as

(x, t) → (0, +0). Thus c(x, t) ≥ −M for (x, t) ∈ R × R
+ can not be satisfied. Since

the singularity of B is only at the origin, we can deduct a small neighborhood at the
origin from the upper half-space. More precisely, we consider an auxiliary problem
Aρ, for any ρ > 0

(Aρ)

{

L(wρ) = g(x, t) ≥ 0, (x, t) ∈ Ωρ

wρ = w| t=0 ≥ 0, (x, t) ∈ ∂Ωρ,
(2.13)
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where
Ωρ := {(x, t) | t > 0 for |x| ≥ ρ ; t >

√

ρ2 − x2 for |x| < ρ}.
The next lemma will show that there is a constant M such that c(x, t) ≥ −M for
(x, t) ∈ Ωρ. Therefore the maximum principle is true for the problem Aρ, i.e., wρ ≥ 0
on Ωρ. Let ρ go to zero and we get w ≥ 0 on R × R

+. This completes the proof of
the theorem.

In the following lemma, we will lower bound the coefficient c(x, t) on Ωρ defined
in (2.10).

Lemma 2.1. Let γ > 2/(α−1), then the coefficient function c(x, t) defined in (2.10)
can be lower bounded on Ωρ. More precisely, there exists a positive constant M such
that

c(x, t) ≥ −M for all (x, t) ∈ Ωρ.

Proof. It follows from φ(ξ) ∼ |ξ|α as |ξ| ≪ 1, where α ≥ 2, that

φ′(ξ)

φ(ξ)
∼ α

ξ
and

φ′′(ξ)

φ′(ξ)
∼ α − 1

ξ
(2.14)

and hence

(β + 2)
φ′′(ξ)

φ′(ξ)
− 2

φ′(ξ)

φ(ξ)
∼ (β + 2)(α − 1) − 2α

ξ

as |ξ| ≪ 1. The above relationships and the assumption β > 2/(α − 1) show that

φ′(ξ)

φ(ξ)
→ ±∞ and (β + 2)

φ′′(ξ)

φ′(ξ)
− 2

φ′(ξ)

φ(ξ)
→ ±∞

as ξ → ±0. Hence there is an δ > 0 such that when (x, t) ∈ {|x − X(t)| ≤ δ}
⋂

Ωρ,
c(x, t) > 0. On the other hand |c(x, t)| is bounded for |x − X(t)| ≥ δ. Here we have
used the fact that u, ux, uǫ and uǫ

x are bounded on Ωρ. This completes the proof of
this lemma.

Lemma 2.2. Let ω be the solution of
{

L(ω) = |O(ǫ)| ,
ω|t=0 = 0,

(2.15)

where the term O(ǫ) is as same as that in (2.9), then ω ≥ 0 and |φe| ≤ ω.

Proof. It is known that ω ± φe satisfies
{

L(ω ± φe) ≥ 0,
(ω ± φe)|t=0 = 0.

(2.16)

The maximum principle for the parabolic equation of L(ω ± φe) ≥ 0 shows that

ω(x, t) ± φ(x − X(t))e(x, t) ≥ 0, ∀(x, t) ∈ R × R
+

and this concludes the results of the lemma.
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Theorem 2.2. The weighted error of φe is bounded by O(ǫ) in L1 norm. More
precisely, we have

‖φ(· − X(t))e(·, t)‖L1(R) ≤ O(ǫ). (2.17)

Proof. Integrating the equation of L(ω) = |O(ǫ)| in (2.15) with respect to x from
−∞ to ∞ gives

d

dt

∫ ∞

−∞

ωdx = −
∫ ∞

−∞

(

ǫβ
φ′′

φ
+

(
Ẋ −A(uǫ, u)

)φ′

φ

)

ωdx + O(ǫ), (2.18)

where the differential operator of L(w) is taking the conservative form of (2.8). It is
proved in [21] that for any F ∈ L1(R) the following inequality holds:

−
∫ ∞

−∞

(
Ẋ −A(uǫ, u)

)
φ′|F |dx ≤ C

∫ ∞

−∞

φ|F |dx + Cǫ .

In deriving the above inequality, a weak pointwise-error estimate of |uε − u| is used.
Since φ′′(ξ) > 0 for 0 < |ξ| ≪ 1, there is a δ > 0 such that −ǫγφ′′ ≤ 0 for

ξ ∈ (−δ, δ). Therefore, on account of φ(ξ)−1 being uniformly bounded on R \ (−δ, δ),
we have

−
∫ ∞

−∞

ǫβφ′′|F |dx ≤ −
∫

R\(−δ,δ)

ǫβ
φ′′

φ
φ|F |dx ≤ Cǫ

∫ ∞

−∞

φ|F |dx.

Applying the above result to the equation (2.18) and using the result ω ≥ 0 yield

d

dt

∫ ∞

−∞

ωdx ≤ C

∫ ∞

−∞

ωdx + O(ǫ).

Solving the above inequality with ω|t=0 = 0 yields

‖w(·, t)‖L1(R) ≤ O(ǫ).

The inequality of |φe| ≤ ω concludes the desired result.

2.2 Weighted error for the derivatives of the viscosity ap-
proximations

Now we derive a differential equation for the weighted error of the derivatives, namely
φ(x − X(t))ex(x, t). First differentiating (2.1) with respect to x gives

∂t(u
ǫ
x) + ∂x(a(uǫ)uǫ

x) = ǫ∂xx(u
ǫ
x).

In the smooth region of the solution of (1.1), i.e. x 6= X(t), differentiating (1.1) with
respect to x gives

∂t(ux) + ∂x(a(u)ux) = ǫ∂xx(ux) + O(ǫ).
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It follows from the above equations that, away from the shock curve x = X(t), the
derivative of the error function ex = uǫ

x − ux satisfies

∂t(ex) + ∂x(a(uǫ)ex) + a′(uǫ)ex = ǫ∂xx(ex) + O(ǫ) + O(|uǫ − u|). (2.19)

In deriving the above equation, we have used the following facts:

∂x(a(uǫ)uǫ
x − a(u)ux)

= ∂x(a(uǫ)ex) + a′(uǫ)ex +
(
a′(uǫ) − a′(u)

)
(ux)

2 +
(
a(uǫ) − a(u)

)
uxx

= ∂x(a(uǫ)ex) + a′(uǫ)ex + O(|uǫ − u|).

Multiplying the equation (2.19) by φ(x − X(t)) and applying the product rulers for
∂x(φw) and ∂t(φw) gives

∂t(φex) + ∂x

((
a(uǫ) + 2ǫφ′/φ

)
φex

)

+
(

ǫβφ′′/φ +
(
Ẋ − a(uǫ)

)
φ′/φ + a′(uǫ)

)

φex

− ǫ∂xx(φex) = ǫ(β + 1)φ′′ex + O(|φe|).

By introducing the notation L,

L(φex) := ∂t(φex) + ∂x

((
a(uǫ) + 2ǫφ′/φ

)
φex

)

+
(

ǫβφ′′/φ +
(
Ẋ − a(uǫ)

)
φ′/φ + a′(uǫ)

)

φex − ǫ∂xx(φex) ,

we obtain that L(φex) = ǫ(β + 1)φ′′ex + O(|φe|). Therefore φex satisfies

{
L(φex) = ǫ(β + 1)φ′′ex + O(|φe|) ,
φex|t=0 = 0.

(2.20)

We can write the differential operator of L(w) in a non-conservative form:

{
L(w) = ∂tw +

(
a(uǫ) + 2ǫφ′/φ

)
∂xw + dw − ǫ∂xxw,

d(x, t) = a′(uǫ)(1 + uǫ
x) +

(
Ẋ − a(uǫ) + ǫ((β + 2)φ′′/φ′ − 2φ′/φ)

)
φ′/φ.

(2.21)

Similar to the proof of Theorem 2.1, we can obtain the following maximum theorem.

Theorem 2.3. If w(x, t) satisfies

{

L(w) = F (x, t) ≥ 0, (x, t) ∈ R × R
+

w|t=0 ≥ 0,
(2.22)

then w(x, t) ≥ 0 for all (x, t) ∈ R × R
+.

The following comparison lemma will be useful in controlling the derivatives of
the approximation errors.
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Lemma 2.3. Let ω be the solution of the following initial value problem:
{

L(ω) = ǫ(γ + 1)|φ′′ex| + |O(φe)| ,
ω|t=0 = 0,

(2.23)

where the term O(φe) is as same as the one in (2.20), then ω ≥ 0 and |φex| ≤ w.

Proof. It follows from (2.20) and (2.23) that ω ± φex satisfies
{

L(ω ± φex) ≥ 0 ,
(ω ± φex)|t=0 = 0.

(2.24)

The maximum theorem 2.3 shows that

ω(x, t) ± φ(x − X(t))ex(x, t) ≥ 0, ∀(x, t) ∈ R × R
+

and this concludes the results of the lemma.

With the above preparations, we are ready to state and prove the following theo-
rem.

Theorem 2.4. The weighted error for the derivative of the viscosity approximation,
φex, is bounded by O(ǫ) in L1 norm:

‖φ(• − X(t))ex(·, t)‖L1(R) ≤ O(ǫ). (2.25)

Proof. Integrating the differential equation in (2.23) with respect to x from −∞ to
∞, on account of ‖ex‖L1 ≤ M and ‖φe‖L1 ≤ O(ǫ) (given by (2.17)), gives

d

dt

∫ ∞

−∞

ωdx ≤ −
∫ ∞

−∞

(

ǫβ
φ′′

φ
+

(
Ẋ − a(uǫ)

)φ′

φ

)

ωdx + C

∫ ∞

−∞

ωdx + O(ǫ), (2.26)

where the differential operator of L(ω) is taking the conservative form of (2.20). Using
the inequalities (see Lemma 1 of [21])

−
∫ ∞

−∞

(
Ẋ − a(uǫ)

)
φ′|F |dx ≤ C

∫ ∞

−∞

φ|F |dx

and

−
∫ ∞

−∞

ǫβφ′′|F |dx ≤ Cǫ

∫ ∞

−∞

φ|F |dx

again to the above differential equality, on account of w ≥ 0, gives

d

dt

∫ ∞

−∞

ωdx ≤ C

∫ ∞

−∞

ωdx + O(ǫ).

Solving the above differential inequality with the initial condition ω|t=0 = 0 yields

‖ω(•, t)‖L1(R) ≤ O(ǫ).

The above result, together with Lemma 2.3, leads to the desired error bound (2.25).
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As proved in [21], the following results are immediate consequences of Theorems
2.2 and 2.4.

Corollary 2.1. If (x, t) is away from the shock discontinuity S(t) = {(x, t)|x =
X(t)}, then for any h > 0

• Pointwise convergence for uǫ away from the shock

|(uǫ − u)(x, t)| ≤ C(h)ǫ, dist(x, S(t)) ≥ h.

• ∂xu
ǫ converges to ∂xu globally in regions away from shock discontinuity

‖∂xu
ǫ(·, t) − ∂xu(·, t)‖L1(R\(X(t)−h,X(t)+h)) ≤ C(h)ǫ.

3 Difference approximation

The main tool for obtaining error estimates for the monotone difference schemes is
a discrete maximum theorem, which is similar to that one used for the viscosity
methods.

3.1 Error and difference quotient error equations

For easy of notations and without loss of generality, we consider only three-point finite
difference schemes in the rest of this paper. In this case, we consider conservative
finite difference scheme in the following form:

vn+1
j = H(vn

j+1, v
n
j , vn

j−1)

= vn
j − λ

(
f̄(vn

j+1, v
n
j ) − f̄(vn

j , vn
j−1)

)
. (3.1)

Several notations will be used in this section. To begin with, we let

vα = (vα+1/2, vα−1/2), v̄α := (vα+1, vα, vα−1),

Dxvα := (vα+1/2 − vα−1/2)/∆x, Dxvα := (vα+1/2 − vα−1/2)/∆x .

In the remaining of this paper, we will concentrate on the estimates of the errors for
Dxvj :

Dxvj =

(
vj+1 − vj

∆x
,
vj − vj−1

∆x

)

.

We denote
.

f̄ (ξ; η) the derivative of the numerical flux in the following sense

.

f̄ (ξ; η) =

∫ 1

0

Df̄ (ξ + s(ξ − η)) ds = (f̄1(ξ; η), f̄−1(ξ; η)) , (3.2)

10



where ξ = (ξ1, ξ2), η = (η1, η2) and

(f̄1(ξ; η), f̄−1(ξ; η))

:=

(∫ 1

0

∂1f̄ (ξ1 + s(η1 − ξ1), ξ2) ds,

∫ 1

0

∂2f̄ (η1, ξ2 + s(η2 − ξ2)) ds

)

. (3.3)

Here ∂j f̄ denotes the partial derivative with respect to the j-th argument of the
function f̄ . Therefore by using the above definitions we have

f̄(ξ) − f̄(η) =
.

f̄ (ξ; η)(ξ − η)

It follows from the definition for the monotone scheme and from the definitions
for f̄1 and f̄−1 that.

Lemma 3.1. If the numerical scheme (3.1) is monotone, then for any vα and uβ the
following inequalities hold:

−f̄1(vα ;uβ) ≥ 0, 1 − λ
(

f̄−1(vα ;uβ) − f̄1(vα ;uβ)
)

≥ 0 , f̄−1(vα ,uβ) ≥ 0 .

The three-point finite difference scheme (3.1) can be rewritten into the following
form

vn+1
j = vn

j − λ
(
f̄(vn

j+1/2) − f̄(vn
j−1/2)

)

= vn
j − ∆t

.

f̄
(
vn

j+1/2; v
n
j−1/2

)
Dxv

n
j . (3.4)

The above finite difference equation also has an equivalent form

Dtv
n
j +

.

f̄
(
vn

j+1/2; v
n
j−1/2

)
Dxv

n
j = 0, (3.5)

where Dtv
n
j = (vn+1

j − vn
j )/∆t. We say that the finite difference scheme (3.1) is of

first-order if for smooth solution u the following expansion holds:

un+1
j = un

j − λ
(
f̄(un

j+1/2) − f̄(un
j−1/2)

)
+ ∆x2Rn

j

= un
j − ∆t

.

f̄
(
un

j+1/2; u
n
j−1/2

)
Dxu

n
j + ∆x2Rn

j ,
(3.6)

where Rn
j is uniformly bounded by a constant independent of ∆x. The last term

above is the truncation error. The above equation can also be written in the following
equivalent form:

Dtu
n
j +

.

f̄
(
un

j+1/2; u
n
j−1/2

)
Dxu

n
j = ∆xRn

j . (3.7)

We have to point out that if u(x, t) is a piecewise smooth solution, which is discontinue
along x = X(t), then the above equation takes the following form:

Dtu
n
j +

.

f̄
(
un

j+1/2; u
n
j−1/2

)
Dxu

n
j = TEn

j , (3.8)
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where the truncation error TEn
j will have the form

TEn
j =

{

O(∆x), j 6= jn
s , jn

s + 1

O(1/∆x), j = jn
s , jn

s + 1,
(3.9)

where jn
s satisfies

jn
s ∆x < X(tn) ≤ (jn

s + 1)∆x.

In what follows we will only consider u a piece-wise smooth solution of (1.1). Sub-
tracting (3.5) from (3.8) leads to the error equation for the error en

j = vn
j − un

j :

Dte
n
j + Dx

( .

f̄ (un
j ; vn

j )en
j

)

= TEn
j , (3.10)

where the truncation error TEn
j is defined by (3.9).

Now we derive a difference equation for the difference quotient error Dxe
n
j . It

follows from (3.5) that






DtDxv
n
j + Dx

( .

f̄
(

vn
j+1/2; v

n
j−1/2

)

Dxv
n
j

)

= 0 ,

DtDxu
n
j + Dx

( .

f̄
(

un
j+1/2; u

n
j−1/2

)

Dxu
n
j

)

= TEn
j ,

(3.11)

where TEn
j is the truncation error for the piecewise smooth solution u(x, t). Since

u(x, t) is discontinuous along the shock curve x = X(t), some calculation shows that

TEn
j =

{

O(∆x), j 6= jn
j − 1, jn

j , jn
j + 1, jn

j + 2

O(1/∆x2), j 6= jn
s − 1, jn

s , jn
s + 1, jn

s + 2,
(3.12)

where jn
s satisfies

jn
s ∆x < X(tn) ≤ (jn

s + 1)∆x.

Subtracting the second equation from the first one above leads to the finite differ-
ence setting for Dxe

n
j = (en

j+1/2 − en
j−1/2)/∆x:

DtDxe
n
j + Dx

( .

f̄
(
vn

j+1/2; v
n
j−1/2

)
Dxe

n
j

)

+ Dx

(( .

f̄
(
vn

j+1/2; v
n
j−1/2

)
−

.

f̄
(
un

j+1/2; u
n
j−1/2

))

Dxu
n
j

)

︸ ︷︷ ︸

I

= TEn
j . (3.13)

We re-write the term I in the following form:

I =
( .

f̄
(
vn

j+1; v
n
j

)
−

.

f̄
(
un

j+1; u
n
j

))

D2
xu

n
j

+Dx

( .

f̄
(
vn

j+1/2; v
n
j−1/2

)
−

.

f̄
(
un

j+1/2; u
n
j−1/2

))

Dxu
n
j−1/2

=
..

f̄
(
v̄n

j+1/2; ū
n
j+1/2

)
ēn

j+1/2D
2
xu

n
j

+ Dx

( .

f̄
(
vn

j+1/2; v
n
j−1/2

)
−

.

f̄
(
un

j+1/2; u
n
j−1/2

))

︸ ︷︷ ︸

II

Dxu
n
j−1/2 .

12



We further re-write the term II in the form:

II =
( .

f̄
(
vn

j+1; v
n
j

)
−

.

f̄
(
vn

j ; vn
j−1

)) 1

∆x
−

( .

f̄
(
un

j+1; u
n
j

)
−

.

f̄
(
un

j ; un
j−1

)) 1

∆x

=
..

f̄
(
v̄n

j+1/2; v̄
n
j−1/2

)
Dxv̄

n
j −

..

f̄
(
ūn

j+1/2; ū
n
j−1/2

)
Dxū

n
j

=
..

f̄
(
v̄n

j+1/2; v̄
n
j−1/2

)
Dxē

n
j +

( ..

f̄
(
v̄n

j+1/2; v̄
n
j−1/2

)
−

..

f̄
(
ūn

j+1/2; ū
n
j−1/2

))

Dxū
n
j

where
..

f̄ (v̄α; ūβ) =

∫ 1

0

D
.

f̄ (ūβ + s((v̄α − ūβ)) ds .

The above result can be written in the following equivalent form:

II =
..

f̄
(
v̄n

j+1/2; v̄
n
j−1/2

)
Dxē

n
j +

...

f̄
(
v̄n

j+1/2, v̄
n
j−1/2; ū

n
j+1/2, ū

n
j−1/2

)
(ēn

j+1/2, ē
n
j−1/2)Dxū

n
j ,

where the notation
...

f̄ is defined by

...

f̄
(
v̄α+1/2, v̄α−1/2; ūβ+1/2, ūβ−1/2

)

:=

∫ 1

0

D
..

f̄
(

ūβ+1/2 + s(v̄α+1/2 − ūβ+1/2); ūβ−1/2 + s(v̄α−1/2 − ūβ−1/2)
)

ds .

Substituting I and II into (3.13) gives the difference quotient error equation for Dxe
n
j

DtDxe
n
j + Dx

( .

f̄
(
vn

j+1/2; v
n
j−1/2

)
Dxe

n
j

)

+
..

f̄
(
v̄n

j+1/2; v̄
n
j−1/2

)
Dxē

n
j Dxu

n
j−1/2

+
...

f̄
(
v̄n

j+1/2, v̄
n
j−1/2; ū

n
j+1/2, ū

n
j−1/2

)
(ēn

j+1/2, ē
n
j−1/2)Dxū

n
j Dxu

n
j−1/2

+
..

f̄
(
v̄n

j+1/2; ū
n
j+1/2

)
ēn

j+1/2D
2
xu

n
j = TEn

j .

(3.14)

3.2 Weighted error for the difference solution

In this section we consider the case that the entropy solution of (1.1) has one shock
discontinuity. Let x = X(t) be a shock curve. Denote

φn
j = φ(xj − Xn), φ̇n

j = φ′(xj − Xn), Xn = X(tn), Ẋn = X ′(tn),

where φ is the weighted distance function introduced in Section 2. It is easy to show
that {

Dxφ
n
j = φ̇n

j + O(∆x2), Dtφ
n
j = φ̇n

j + O(∆t)
φn+1

j = φn
j+α + O(∆t + ∆x).

(3.15)
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Using the product rule Dx(ajbj) = aj+1/2Dxbj + (Dxaj)bj−1/2 to the following equa-
tions gives

Dx

( .

f̄ (un
j ; vn

j )(φe)n
j

)

= Dx

(
f1(u

n
j ; vn

j )φn
j+1/2e

n
j+1/2 + f−1(u

n
j ; vn

j )φn
j−1/2e

n
j−1/2

)

= φn
j+1Dx(f1(u

n
j ; vn

j )en
j+1/2) + Dxφ

n
j+1/2f1(u

n
j−1/2; v

n
j−1/2)e

n
j

φn
j−1Dx(f−1(u

n
j ; vn

j )en
j−1/2) + Dxφ

n
j−1/2f−1(u

n
j+1/2; v

n
j+1/2)e

n
j

= φn+1
j Dx

( .

f̄ (un
j ; vn

j )en
j

)

+ φ̇n
j (f1(u

n
j−1/2; v

n
j−1/2) + f−1(u

n
j+1/2; v

n
j+1/2))e

n
j + O(∆x) .

It follows from the above result that

φn+1
j Dx

( .

f̄ (un
j ; vn

j )en
j

)

= Dx

( .

f̄ (un
j ; vn

j )(φe)n
j

)

−φ̇n
j

(
f1(u

n
j−1/2; v

n
j−1/2) + f−1(u

n
j+1/2; v

n
j+1/2)

)
en

j + O(∆x). (3.16)

Multiplying the error equation (3.10) by φn
j gives

φn
j Dte

n
j + φn

j Dx

( .

f̄ (un
j ; vn

j )en
j

)

= φn
j

{

O(∆x), j 6= jn
s , jn

s + 1

O(1/∆x), j = jn
s , jn

s + 1

=

{

O(∆x), j 6= jn
s , jn

s + 1

O(1), j = jn
s , jn

s + 1
(3.17)

This is due to the fact that φn
j = O(∆x) for j = jn

s , jn
s + 1. Now we will derive a

difference equation for φn
j e

n
j from (3.17) and (3.16). To begin with, we observe

Dt(φ
n
j e

n
j )

= φn+1
j Dte

n
j + (Dtφ

n
j )en

j

= −φn+1
j Dx

( .

f̄ (un
j ; vn

j )en
j

)

− φ̇n
j Ẋ

nen
j +

{

O(∆x), j 6= jn
s , jn

s + 1

O(1), j = jn
s , jn

s + 1

= −Dx

( .

f̄ (un
j ; vn

j )(φe)n
j

)

+ φ̇n
j

(

f1(u
n
j−1/2; v

n
j−1/2) + f−1(u

n
j+1/2; v

n
j+1/2) − Ẋn

)

en
j

+

{

O(∆x), j 6= jn
s , jn

s + 1

O(1), j = jn
s , jn

s + 1
.

Rearranging the above difference equation gives the equation for φn
j en

j :

Dt(φ
n
j e

n
j ) + Dx

( .

f̄ (un
j ; vn

j )(φe)n
j

)

−
φ̇n

j

φn
j

(

f̄1(u
n
j−1/2; v

n
j−1/2) + f̄−1(u

n
j+1/2; v

n
j+1/2) − Ẋn

)

(φn
j en

j )

=

{

O(∆x), j 6= jn
s , jn

s + 1

O(1), j = jn
s , jn

s + 1
. (3.18)
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Since for j = jn
s , jn

s + 1, we

−
φ̇n

j

φn
j

(

f̄1(u
n
j−1/2; v

n
j−1/2) + f̄−1(u

n
j+1/2; v

n
j+1/2) − Ẋn

)

(φn
j e

n
j ) (3.19)

= −φ̇n
j

(

f̄1(u
n
j−1/2; v

n
j−1/2) + f̄−1(u

n
j+1/2; v

n
j+1/2) − Ẋn

)

en
j (3.20)

= O(∆x), (3.21)

where we have used the fact |φ′(x)| ≤ C|x| for |x| ≪ 1. Let

L(W̄
n
j ) := DtW

n
j + Dx

( .

f̄ (un
j ; vn

j )W n
j

)

+ cn
j W n

j , (3.22)

where

cn
j =







0, j = jn
s , jn

s + 1
(

Ẋn − f̄1(u
n
j−1/2; v

n
j−1/2) − f̄−1(u

n
j+1/2; v

n
j+1/2)

)
φ̇n

j

φn
j

, j 6= jn
s , jn

s + 1.
(3.23)

Thus φn
j en

j satisfies







L( ¯(φe)
n

j ) =

{

O(∆x), j 6= jn
s , jn

s + 1

O(1), j = jn
s , jn

s + 1

(φe)0
j = 0.

(3.24)

It follows from (3.23) and (2.14) that

cn
j =

{

0, j = jn
s , jn

s + 1

O(1/∆x), j 6= jn
s , jn

s + 1
or ∆tcn

j =

{

0, j = jn
s , jn

s + 1

O(λ), j 6= jn
s , jn

s + 1,
(3.25)

where λ = ∆t/∆x.
Now we prove an useful discrete maximum theorem for L(W̄

n
j ).

Theorem 3.1. If L(W̄
n
j ) ≥ 0 and W 0

j ≥ 0, then

W n
j ≥ 0 ∀ (n, j) ∈ Z × N (3.26)

provided that the Courant Number λ is suitably small.

Proof. It follows from L(W̄
n
j ) ≥ 0 that if W n

j ≥ 0 for all j, then

W n+1
j ≥ −λf̄1(u

n
j+1/2; v

n
j+1/2)W

n
j+1 + λf̄−1(u

n
j−1/2; v

n
j−1/2)W

n
j−1

+
(

1 − λ
(

f̄−1(u
n
j+1/2; v

n
j+1/2) − f̄1(u

n
j−1/2; v

n
j−1/2)

)

− ∆tcn
j

)

W n
j

≥ −λf̄1(u
n
j+1/2; v

n
j+1/2)W

n
j+1 + λf̄−1(u

n
j−1/2; v

n
j−1/2)W

n
j−1

+
(

1 − λ
(

f̄−1(u
n
j+1/2; v

n
j+1/2) − f̄1(u

n
j−1/2; v

n
j−1/2) + |O(1)|

))

W n
j ,

(3.27)
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where in the last inequality we have used the expression (3.25) and the assumption
W n

j ≥ 0. The monotonicity of H shows that the first and second coefficients of W̄n
j

given in (3.27) are nonnegative and under little more restriction on λ than the mono-
tone condition the third coefficient also nonnegative. Since W 0

j ≥ 0, the inequality
(3.27) indicates that the conclusion (3.26) is right for n = 1. By induction on n we
can conclude that the inequality (3.26) holds for any n ∈ N. This completes the proof
of this theorem.

Lemma 3.2. Let W n
j satisfy

L(W̄
n
j ) =

{

|O(∆x)|, j 6= jn
s , jn

s + 1

|O(1)|, j = jn
s , jn

s + 1
(3.28)

with W 0
j = 0, where O(∆x) and O(1) are defined as in (3.24). Then we have

W n
j ≥ 0 and |φn

j e
n
j | ≤ W n

j ∀ (n, j) ∈ Z × N.

Proof. It is easy to conclude from Theorem 3.1 that W n
j ≥ 0 for all n ≥ 0 and j. It

follows from (3.24) and (3.28) that L(W̄
n
j ±(φ̄e)n

j ) ≥ 0 and W 0
j ±(φe)0

j = 0 and hence
the maximum Theorem 3.1 gives W n

j ± (φe)n
j ≥ 0 or equivalent |φn

j en
j | ≤ W n

j .

Theorem 3.2. The weighted error of (φe)n
j is bounded by O(∆x) in L1 norm. More

precisely, we have

‖φ(· − X(tn))e(·, tn)‖l1 :=
∞∑

j=−∞

|(φe)n
j |∆x ≤ O(∆x). (3.29)

Proof. Multiplying the difference equation (3.28) by ∆x and summing up the equa-
tions for j from −∞ to ∞ give

Dt

∞∑

j=−∞

W n
j ∆x = −

∞∑

j=−∞

cn
j W

n
j ∆x + O(∆x), (3.30)

where we have used the conservative form (3.22) of L(W̄
n
j ). In order to get the

desired estimate we need an inequality:

−
∞∑

j=−∞

cn
j W

n
j ∆x ≤ C

∞∑

j=−∞

W n
j ∆x + O(∆x). (3.31)

From the definition (3.23) of cn
j we see that |cn

j | is not uniformly bounded by some
constant. So we can not get the inequality (3.31) directly by using |cn

j | ≤ C for
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all n ≥ 0 and j. But the following important inequality helps to get the requested
estimate, namely for any F ∈ L1(R) the following inequality holds:

−
∞∑

j=−∞

(

Ẋn − f̄1(u
n
j−1/2; v

n
j−1/2) − f̄−1(u

n
j+1/2; v

n
j+1/2)

)

φ̇n
j |F (xj, tn)|∆x

≤ C
∞∑

j=−∞

φn
j |F (xj , tn)|∆x + C∆x,

(3.32)

which will be proved in next lemma. Setting φn
j |F (xj, tn)| = W n

j and substituting it
into the above inequality give (3.31). Applying (3.31) to (3.30) yields

Dt

∞∑

j=−∞

W n
j ∆x = −

∞∑

j=−∞

cn
j W

n
j ∆x + O(∆x)

≤ C
∞∑

j=−∞

W n
j ∆x + O(∆x),

Solving the above inequality gives

∞∑

j=−∞

W n
j ∆x ≤ O(∆x) ∀n ∈ N.

This estimate with |φn
j e

n
j | ≤ W n

j gives the desired result of (3.29).

Now we prove the important inequality (3.32) by using the assumption (A3).

Lemma 3.3. For a weighted distance function φ, φ ∼ min(|x|1/γ+1, 1), and for any
F ∈ L1(R), we have

−
∞∑

j=−∞

(

Ẋn − f̄1(u
n
j−1/2; v

n
j−1/2) − f̄−1(u

n
j+1/2; v

n
j+1/2)

)

φ̇n
j |F n

j |∆x

≤ C

∞∑

j=−∞

φn
j |F n

j |∆x + C∆x,

(3.33)

where F n
j = F (xj , tn).

Proof. We split the left-hand of (3.33) into tow parts: I1 + I2, where

I1 =
∑

|xj−X(tn)|≥∆xγ

(

f̄1(u
n
j−1/2; v

n
j−1/2) + f̄−1(u

n
j+1/2; v

n
j+1/2) − Ẋn

)

φ̇n
j |F n

j |∆x,

I−1 =
∑

|xj−X(tn)|<∆xγ

(

f̄1(u
n
j−1/2; v

n
j−1/2) + f̄−1(u

n
j+1/2; v

n
j+1/2) − Ẋn

)

φ̇n
j |F n

j |∆x,
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where γ is the constant given in (A3). It follows from (2.7) that

|φ′(x)| ≤ C|x|1/γ , |φ̇n
j | = |φ′(xj − X(tn))| ≤ C|xj − X(tn)|1/γ .

This result gives
I2 ≤ C∆x. (3.34)

Now for |xj − X(tn)| ≥ ∆xγ , we use the facts that φ̇n
j ≥ 0 and Ẋn > f ′(un

+), where
un

+ = u(X(tn) + 0, tn), to obtain
(

f̄1(u
n
j−1/2; v

n
j−1/2) + f̄−1(u

n
j+1/2; v

n
j+1/2) − Ẋn

)

φ̇n
j

≤
(
f̄1(u

n
j−1/2; v

n
j−1/2) + f̄−1(u

n
j+1/2; v

n
j+1/2) − f ′(un

j )
)
φ̇n

j

+ ((f ′(un
j ) − f ′(un

+))φ̇n
j

≤ Cf ′′(•)∆xγ φ̇n
j + f ′′(•)ux(•)(xn − x(tn))φ̇n

j (using (A3))

≤ Cf ′′(•)(xn − x(tn))φ̇n
j + f ′′(•)ux(•)(xn − x(tn))φ̇n

j

≤ C(xn − x(tn))φ̇n
j ≤ Cφn

j .

Similarly, by noting that φ̇n
j ≤ 0 for xn ≤ X(tn) we can also prove that for xn −

X(tn) ≤ ∆xγ

(

f̄1(u
n
j−1/2; v

n
j−1/2) + f̄−1(u

n
j+1/2; v

n
j+1/2) − Ẋn

)

φ̇n
j ≤ Cφn

j .

The above results lead to

I1 ≤ C
∞∑

j=−∞

φn
j |F n

j |∆x.

This, together with (3.34), yields the inequality (3.33). The proof of the lemma is
complete.

3.3 Weighted error for the difference quotient of the mono-

tone solution

In this subsection we will consider the strictly monotone scheme, which satisfies more
strictly monotone condition:

∂uH(u, v, w) > 0, ∂vH(u, v, w) > 0 and ∂wH(u, v, w) > 0.

This is equivalent to

∂uf̄(u, v) < 0, ∂wf̄(v, w) > 0 and 1 − λ(∂vf̄(u, v) − ∂v f̄(v, w)) > 0.

The well known (generalized) Lax-Friedrichs scheme ([11]) is a strictly monotone
scheme, which is defined by

vn+1
j = vn

j − λ

2
(f(vn

j+1 − f(vn
j−1)) +

µ

2
(vn

j+1 − 2vn
j + vn

j−1),
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where λ = ∆x/∆t satisfies a Courant-Friedrichs-Levy condition,

λ sup
|v|≤‖v0‖∞

|f ′(v)| ≤ µ.

For the strictly monotone scheme we have

Lemma 3.4. If the numerical scheme (3.1) is strictly monotone, then for any vα

and uβ the following inequalities hold:

−f̄1(vα ;uβ) > 0, 1 − λ
(

f̄−1(vα ;uβ) − f̄1(vα ;uβ)
)

> 0 , f̄−1(vα ,uβ) > 0 .

Now we will derive a difference equation for φn
j Dxe

n
j from (3.14). The derivation

is similar to that for φn
j e

n
j . Some calculation on (3.14), account of (3.12), gives

Dt(φ
n
j Dxe

n
j ) + Dx

( .

f̄
(
vn

j+1/2; v
n
j−1/2

)
(φDxe)n

j

)

−
φ̇n

j

φn
j

(

f1(v
n
j ; vn

j−1) + f−1(v
n
j+1; v

n
j ) − Ẋn

)

(φDxe)
n
j

+
..

f̄
(
v̄n

j+1/2; v̄
n
j−1/2

)
(φ̄Dxē)n

j Dxu
n
j−1/2

+
...

f̄
(
v̄n

j+1/2, v̄
n
j−1/2; ū

n
j+1/2, ū

n
j−1/2

)
((φ̄ē)n

j+1/2, (φ̄ē)n
j−1/2)Dxū

n
j Dxu

n
j−1/2

+
..

f̄
(
v̄n

j+1/2; ū
n
j+1/2

)
(φ̄ē)n

j+1/2D
2
xu

n
j

= φn
j

{

O(∆x), j 6= jn
s − 1, jn

s , jn
s + 1, jn

s + 2

O(1/∆x2), j = jn
s − 1, jn

s , jn
s + 1, jn

s + 2,

=

{

O(∆x), j 6= jn
s − 1, jn

s , jn
s + 1, jn

s + 2

O(1), j = jn
s − 1, jn

s , jn
s + 1, jn

s + 2,

(3.35)

where
jn
s ∆x < X(tn) ≤ (jn

s + 1)∆x, |φn
j | ≤ O(∆x2),

with α ≥ 3, for j = jn
s − 1, jn

s , jn
s + 1, jn

s + 2.
It follows from the definition of φ that if α ≥ 3 then

|φn
j | ≤ O(∆x3), |φ̇n

j | ≤ O(∆x2)

for j = jn
s − 1, jn

s , jn
s + 1, jn

s + 2. Thus we have

−
φ̇n

j

φn
j

(

f1(v
n
j ; vn

j−1) + f−1(v
n
j+1; v

n
j ) − Ẋn

)

(φDxe)
n
j

= −φ̇n
j

(

f1(v
n
j ; v

n
j−1) + f−1(v

n
j+1; v

n
j ) − Ẋn

)

(Dxe)
n
j

= O(∆x) for j = jn
s − 1, jn

s , jn
s + 1, jn

s + 2 (3.36)
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and
..

f̄
(
v̄n

j+1/2; v̄
n
j−1/2

)
(φ̄Dxē)n

j Dxu
n
j−1/2

= O(∆x) for j = jn
s − 1, jn

s , jn
s + 1, jn

s + 2. (3.37)

Therefore we define

L(W̄
n
j ) = DtW

n
j + Dx

( .

f̄ (vn
j+1/2; v

n
j−1/2)W

n
j

)

+ c̄n
j W̄

n
j + dn

j W n
j . (3.38)

where

dn
j =







0, j = jn
s − 1, jn

s , jn
s + 1, jn

s + 2

− φ̇n
j

φn
j

(

f1(v
n
j ; vn

j−1) + f−1(v
n
j+1; v

n
j ) − Ẋn

)

, j 6= jn
s − 1, jn

s , jn
s + 1, jn

s + 2

(3.39)
and

c̄n
j =







0, j = jn
s − 1, jn

s , jn
s + 1, jn

s + 2
..

f̄
(

v̄n
j+1/2; v̄

n
j−1/2

)

Dxu
n
j−1/2, j 6= jn

s − 1, jn
s , jn

s + 1, jn
s + 2,

(3.40)

Hence cn
j are uniformly bounded and |dn

j | = O(∆x−1).

Theorem 3.3. If W n
j satisfies L(W̄

n
j ) ≥ 0 with W 0

j ≥ 0, then W n
j ≥ 0 ∀ (n, j) ∈

N × Z provided that ∆t and Courant number are sufficient small.

Proof. We can write L(W̄
n
j ) ≥ 0 in the following form

W n+1
j ≥

(
−λf̄1(v

n
j+1; v

n
j ) − ∆tcn

j+1

)
W n

j+1

+
(

1 − λ
(

f̄−1(v
n
j+1; v

n
j ) − f̄1(v

n
j ; vn

j−1)
)

− ∆tcn
j + O(λ)

)

W n
j (3.41)

+
(
λf̄−1(v

n
j ; vn

j−1) − ∆tcn
j−1

)
W n

j−1.

It follows from the strictly monotonicity of H that coefficients of W n
j+1, W n

j and W n
j−1

in the above inequality are positive provided ∆t and λ are sufficiently small. Since
w0

j ≥ 0, W n
j ≥ 0 is right for n = 1. By induction on n we can conclude that the

inequality holds for any n ∈ N.

Lemma 3.5. If W n
j satisfies

L(W̄
n
j ) =

∣
∣
∣

...

f̄
(
v̄n

j+1/2, v̄
n
j−1/2; ū

n
j+1/2, ū

n
j−1/2

)
((φ̄ē)n

j+1/2, (φ̄ē)n
j−1/2)Dxū

n
j Dxu

n
j−1/2

∣
∣
∣

+
∣
∣
∣

..

f̄
(
v̄n

j+1/2; ū
n
j+1/2

)
(φ̄ē)n

j+1/2D
2
xu

n
j

∣
∣
∣ + |O(∆x)|

(3.42)
with W 0

j = |φ0
jDxe

0
j |, then

W n
j ≥ 0, |φn

j Dxe
n
j | ≤ W n

j ,

for any (n, j) ∈ N × Z.
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Theorem 3.4.
‖φ(• − X(t))Dxe(•, t)‖L1(R) = O(∆x). (3.43)

Proof. Integrating the difference inequality of (3.42) with respect to x, on account of
the estimate of (3.29) and

−
∞∑

j=−∞

dn
j W n

j ≤ C

∞∑

j=−∞

W n
j ,

gives
∞∑

j=−∞

W n
j ∆x = O(∆x).

The above inequality comes from the assumption of (A3). This with the estimate of
|φn

j Dxe
n
j | ≤ W n

j yields the desired result of (3.43).
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