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Abstract. We prove that if the initial data do not belong to a certain subset of Ck,
then the solutions of scalar conservation laws are piecewise Ck smooth. In particular,
our initial data allow centered compression waves, which was the case not covered by
Dafermos (1974) and Schaeffer (1973). More precisely, we are concerned with the struc-
ture of the solutions in some neighborhood of the point at which only a Ck+1 shock is
generated. It is also shown that there are finitely many shocks for smooth initial data (in
the Schwartz space) except for a certain subset of S (R) of the first category. It should be
pointed out that this subset is smaller than those used in previous works. We point out
that Thom’s theory of catastrophes, which plays a key role in Schaeffer (1973), cannot
be used to analyze the larger class of initial data considered in this paper.
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1. Introduction

Consider the Cauchy problem for the hyperbolic conservation law:

ut + f(u)x = 0 in R × (0,∞),

u = φ on R × {t = 0}, (1.1)

where f is Ck+1 smooth and uniformly convex, i.e. ∂2f/∂u2 ≥ ε > 0, the initial
data are Ck smooth and bounded, with 3 ≤ k ≤ ∞. In general, the problem (1.1)
does not admit a global smooth solution even if the initial data are smooth, but
for arbitrary bounded measurable initial data a unique global weak solution does
exist. The structure of entropy solution has been studied by many authors, e.g.
Chen–Zhang [1], Dafermos [2], Lax [5], Li–Wang [6,7], Oleinik [8], Schaeffer [9], and
Tadmor–Tassa [10].

The main results of this work will be obtained by using the minimizing process
of F (x, t, u) introduced by Lax [5]: for each initial function φ, we define a function
in H × R:

F (x, t, u) = tg(u) + Φ(x − ta(u)), (1.2)

where H = R × (0,∞), a(u) = f ′(u),

g(u) = ua(u) − f(u), Φ(y) =
∫ y

0

φ(x)dx.

Lax has proved that for almost all (x, t) there exists a unique value of u which
minimizes F (x, t, •), and u(x, t), the function defined (almost everywhere) to equal
the function minimizing F (x, t, •), is in fact the solution of (1.1). Using the convexity
hypothesis and the boundedness of φ, we have F (x, t, u) → +∞ as u → ±∞.
Therefore, F (x, t, •) always has a minimum, and a minimizing value u must be a
critical point of F , a solution of the equation

(∂F/∂u)(x, t, u) = 0. (1.3)

Note that

(∂F/∂u)(x, t, u) = ta′(u){u − φ(x − ta(u))}, (1.4)

and neither of the factors outside the brackets vanishes. It can be verified that the
differential of ∂F/∂u never vanishes when ∂F/∂u = 0, so (1.3) defines a smooth
surface S in H×R. We record here the following relations that will be needed below:

(∂F/∂x)(x, t, u) = u on S, (1.5)

(∂F/∂t)(x, t, u) = −f(u) on S. (1.6)

Let us introduce some notations and definitions. First let

Aφ(x) = a(φ(x)), A′
φ(x) = (a(φ(x)))′, A

(n)
φ (x) =

dn

dxn
Aφ(x). (1.7)
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Using the above notations, we further let

L1 = {x ∈ R | A′
φ(x) < 0, A′′

φ(x) = 0, A′′′
φ (x) = 0},

L2 = {x ∈ R | A′
φ(x) < 0, A′′

φ(x) = 0, . . . , A
(k)
φ (x) = 0, k ≥ 3}

and

L3 = {x ∈ R | A′
φ(x) < 0, A′′

φ(x) = 0, . . . , A
(k)
φ (x) = 0, (k ≥ 3) and

∃ ξ ∈ (x, x + δ) such that A′′
φ(ξ) < 0 or

∃ η ∈ (x − δ, x) such that A′′
φ(η) > 0 ∀ δ > 0}.

It can be verified that L2 is a proper subset of L1 when k > 3 and L3 is a proper
subset of L2.

Definition 1.1. Let u0 be a minimizing value for F (x0, t0, •). Then u0 is called
non-degenerate (respectively, degenerate) if Fuu(x0, t0, u0) �= 0 (respectively, = 0).

Definition 1.2. The solution u(x, t) of (1.1) is said to be piecewise Ck smooth if
every bounded subset of (−∞,∞) × [0,∞) intersects at most a finite number of
shocks, every shock is piecewise Ck+1 smooth. Moreover, u(x, t) is Ck smooth on
the complement of the shock set.

To better summarize some previously published results, more definitions are
introduced below. Let

U = {(x, t) | ∃ a unique minimizer forF (x, t, •), at which Fuu �= 0}, (1.8a)

Γ1 = {(x, t) | ∃ two minimizers for F (x, t, •), at which Fuu �= 0}, (1.8b)

Γ(c)
0 = {(x, t) | ∃ three minimizers forF (x, t, •), at which Fuu �= 0}, (1.8c)

Γ(f)
0 = {(x, t) | ∃ a unique minimizer forF (x, t, •), at which Fuu = 0, F (4)

u �= 0}.
(1.8d)

Moreover, let

M(x,t) = {u | all the minimizing values for F (x, t, •)}, (1.9a)

Γ1 = {(x, t) | ∃ two connected components of M(x,t)}, (1.9b)

Γ
(f)

0 = {(x, t) | ∃ a unique connected component [α, β] ofM(x,t);

Fuu(x, t, α) = 0}, (1.9c)

Γ
(c)

0 = {(x, t) | ∃ n connected components ofM(x,t), wheren ≥ 3}. (1.9d)

It is shown by Schaeffer [9] that U is an open subset of H = R × (0,∞), on which
the solution u(x, t) is smooth; Γ1 is a union of smooth curves across which the
minimizing function has a jump discontinuity. Γ(f)

0 consist of isolated points at
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which the curves in Γ1 begin. Γ(c)
0 consist of isolated points at which the curves in

Γ1 collide. It is obvious that

Γ(f)
0 ⊂⊂ Γ

(f)

0 , Γ1 ⊂⊂ Γ1, Γ(c)
0 ⊂⊂ Γ

(c)

0 . (1.10)

It is also proved by Schaeffer [9] that the solutions of (1.1) are piecewise smooth
and the total number of shocks is finite for smooth initial data in φ ∈ S (R)\Ω,
where S (R) is the Schwartz space and Ω is a certain subset of S (R) of the first
category. In other words, there is a set Ω ⊂ S (R) of the first category such that
for φ ∈ S (R)\Ω

H = U ∪ Γ1 ∪ Γ(c)
0 ∪ Γ(f)

0 . (1.11)

[9, Lemma 1.4] is very important, which shows that for any point (x0, t0) ∈ Γ(f)
0 there

exists a neighborhood Θ such that Γ1 ∩ Θ consists of a half-curve emanating from
(x0, t0). The minimizing function is smooth on Θ′\Γ1, where Θ′ = Θ\{(x0, t0)}. The
proof is an adaption of standard techniques from the theory of singularities of dif-
ferentiable mappings, especially Thom’s theory of catastrophes [15]. Schaeffer made
a serious attempt to make this material accessible to analysts, including reproving
the so called universal unfolding of the Riemann–Hugoniot catastrophe, one of the
seven elementary catastrophes of Thom [15]. [9, Sec. 2] is devoted to prove the
unfolding theorem for the Riemann–Hugoniot catastrophe.

It is natural to ask whether the conclusions of [9, Lemma 1.4] are true when

Fu(x0, t0, u0) = 0, . . . , F (2n−1)
u (x0, t0, u0) = 0, F (2n)

u (x0, t0, u0) > 0, (1.12)

where n ≥ 3 is some integer; or even F
(m)
u (x0, t0, u0) = 0, (m = 1, 2, . . .). Unfortu-

nately, the unfolding theorem for the Riemann–Hugoniot catastrophe is not appli-
cable in this case since F (x, t, u) is unstable as an unfolding of codimension two of
F (x0, t0, u) when

Fu(x0, t0, u0) = 0, Fuu(x0, t0, u0) = 0, F (3)
u (x0, t0, u0), F (4)

u (x0, t0, u0) = 0.

(1.13)

One of the main purposes of this work is to show that the conclusions of [9,
Lemma 1.4] are true under the conditions L3 = ∅, which is more general than
the condition (1.13). The method used in our proof is different from the one used
by Schaeffer, which is elementary but technical.

It is shown by Li and Wang [6] that there is a set Ω1 ⊂⊂ Ω ⊂ S (R) of first cat-
egory such that for φ ∈ S (R)\Ω1 the solutions are piecewise smooth. The authors
also give an explicit conditions on Ω1:

Ω1 = {φ ∈ R | A′
φ(x) < 0, A′′

φ(x) = 0, A′′′
φ (x) = 0, x ∈ R}. (1.14)

Dafermos [2] introduced the concept of generalized characteristic to study the solu-
tion structures of hyperbolic conservation laws. It is proved that generically the
solutions generated by initial data in Ck are piecewise smooth and do not contain
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centered compression waves. In other words, there is a set Ω2 ⊂ Ck of the first
category such that for φ ∈ Ck\Ω2 the solutions are piecewise smooth, where

Ω2 = {φ ∈ Ck | A′
φ(x) < 0, A′′

φ(x) = 0, . . . , A
(k)
φ (x) = 0, (k ≥ 3), x ∈ R}. (1.15)

In this paper, we first generalize [9, Lemma 1.4], i.e. the case that (x0, t0) ∈ Γ(f)
0 ,

to the case that (x0, t0) ∈ Γ
(f)

0 . As a result, we will prove that there is some
neighborhood of (x0, t0) such that a unique Ck+1 smooth shock emanating from
(x0, t0). We will show that Γ1 is a union of Ck+1 curves, except the points at which
at least one connected component of M is not an isolated point, across which
the minimizing function has a jump discontinuity; Γ

(f)

0 (Γ
(c)

0 ) consists of isolated
points at which the curves in Γ1 begin (collide). We also show that for any point
(x0, t0) ∈ Γ

(c)

0 , there exist finitely many, say n, connected components of M(x0,t0)

and a neighborhood Θ of (x0, t0) such that Γ1 ∩ Θ is the union of n half shocks,
n − 1 terminating at and one emanating from (x0, t0). The minimizing function is
Ck smooth on each n components of Θ′\Γ1. The shocks are piecewise Ck+1 smooth
and are not differentiable only at shock intersection points and at centers of centered
compression waves. We prove that there is a set Ω3 ⊂ Ck(R) of the first category
such that for any φ ∈ Ck(R)\Ω3, we have H = U∪Γ1∪Γ

(f)

0 ∪Γ
(c)

0 and the minimizing
process leads to the piecewise Ck smooth solutions of (1.1) pointwise in H , where

Ω3 = {φ ∈ Ck | A′
φ(x) < 0, A′′

φ(x) = 0, . . . , A
(k)
φ (x) = 0, (k ≥ 3) and

∃ ξ ∈ (x, x + δ) such that A′′
φ(ξ) < 0 or

∃ η ∈ (x − δ, x) such that A′′
φ(η) > 0 ∀ δ > 0, x ∈ R}. (1.16)

It is obvious that Ω3 is a proper subset of Ω2. To our knowledge, Ω3 is the smallest
in the sense of inclusion relation of sets. We also prove that there is a set Ω4 ⊂ S (R)
of the first category such that for any φ ∈ S (R)\Ω4, there are only finite number of
shocks. To our knowledge, Ω4 is also the smallest in the sense of inclusion relation
of sets. Since the piecewise smooth solutions may contain centered compression
waves, our results indicate that the class of piecewise smooth solutions obtained in
this work is bigger than the solution class obtained by Dafermos [2].

This paper is organized as follows. We study the local structure of the solutions
of (1.1) in Sec. 2. The piecewise smoothness of the solutions will be established in
Sec. 3. Some concluding remarks will be made in the final section.

2. Local Solution Structure

In this section, we will study the local structure of the solutions of (1.1). Some main
results in this section are listed below.

• In Theorem 2.11, we study the structure of the solutions in the neighborhoods of
the point (x0, t0) at which a shock generates. We show that there is a neighbor-
hood such that a unique Ck+1 smooth shock exists.
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• In Theorem 2.13, we study the points at which finitely many shocks collide to form
a new shock. All of the shocks are Ck+1 smooth except at the shock interaction
points and points belonging to Γ1\Γ1. Moreover, it is shown that the shocks
are not differentiable at the shock interaction points and the centers of centered
compression waves. In other words, all the shocks are piecewise Ck+1 curves.

Let y(x, t, u) = x − ta(u). For each (x, t, u) ∈ R × R
+ × R, it is easy to see that

y(x, t, u) is just the intersection point of a straight line passing through (x, t) with
slope a(u) with the line t = 0. Note that

Fu(x, t, u) = ta′(u){u − φ(x − a(u)t)}. (2.1)

If Fu(x, t, u) = 0, then

Fuu(x, t, u) = ta′(u)[1 + A′
φ(ȳ)t]. (2.2)

Here and below

ȳ = y(x, t, u). (2.3)

If Fu(x, t, u) = 0 and Fuu(x, t, u) = 0, then

Fuuu(x, t, u) = ta′(u)[A′
φ(ȳ)t]u = t2a′(u)[A′

φ(ȳ)]u

= t2a′(u)A′′
φ(ȳ)(y(x, t, u))u

= (−t)3[a′(u)]2A′′
φ(ȳ). (2.4)

By induction, if F
(m)
u (x, t, u) = 0, (m = 1, . . . , n − 1), then we have

F (n)
u (x, t, u) = (−t)n[a′(u)]n−1A

(n−1)
φ (ȳ), (n ≥ 3). (2.5)

In view of (2.1)–(2.5), it can be verified that if (x, t, u) satisfies

F (m)
u (x, t, u) = 0 (m = 1, . . . , 2n − 1), F (2n)

u (x, t, u) > 0, (n ≥ 2), (2.6)

then we have, for ȳ = y(x, t, u) = x − ta(u),

A′
φ(ȳ) < 0, A

(m)
φ (ȳ) = 0, (m = 2, 3, . . . , 2n− 2)

A
(2n−1)
φ (ȳ) > 0, (n ≥ 2).

(2.7)

On the other hand, if x0 satisfies (2.7), then for u = φ(x0),

t = − 1
A′

φ(x0)
, x = x0 − Aφ(x0)

A′
φ(x0)

.

Consequently, (2.6) is satisfied.



June 26, 2007 6:18 WSPC/JHDE 00118

On the Piecewise Smoothness of Entropy Solutions to Scalar Conservation Laws 375

2.1. Some useful lemmas

Lemma 2.1 [9]. Let U and Γ1 be defined in (1.8a) and (1.8b). If u(x, t) is the
minimizing function of F (x, t, •), then we have

• U is an open subset of H, and u(x, t) is smooth on U.
• Any point (x0, t0) ∈ Γ1 has a neighborhood Θ such that Γ1 ∩Θ is a smooth curve

x = γ(t) passing through (x0, t0). The minimizing function u(x, t) is smooth on
both components of Θ\Γ1.

The above lemma is from [9, Lemmas 1.1 and 1.2].
Suppose (x0, t0) ∈ Γ1. Then according to Lemma 2.1, there exists some neigh-

borhood Θ of (x0, t0) such that for (x, t) ∈ Θ, the minimum of F (x, t, •) is assumed
at either u1(x, t) or u2(x, t), or both. Hence every point of Θ belongs to U or Γ1.
Every point in the two components Θ1 and Θ2 of Θ\Γ1 belongs to U . Let ui(x, t)
be the unique minimizing value for F (x, t, •) for (x, t) ∈ Θi (i = 1, 2). Any curve in
Γ1 which separates two components of U is defined by an equation in the following
form

F (x, t, u2(x, t)) − F (x, t, u1(x, t)) = 0 (2.8)

and it follows from (1.5)–(1.6) that the jump relation

γ̇(t) = [f(u)]/[u] (2.9)

is satisfied along the curve, where [u] = u1 − u2, [f(u)] = f(u1) − f(u2). Thus γ is
Ck+1.

Now we turn to discuss the connection between the critical point and the char-
acteristic. Suppose u0 is a critical point of F (x0, t0, •), i.e. Fu(x0, t0, u0) = 0. Then
u0 = φ(x0 − t0a(u0)) = φ(y(x0, t0, u0)) due to (2.1). Consequently, there exists a
characteristic

C0 : x = y(x0, t0, u0) + tAφ(y(x0, t0, u0)) = x0 + (t − t0)a(u0) (t > 0), (2.10)

passing through (x0, t0) and Fu(x, t, u0) = 0 for each (x, t) ∈ C0. On the other
hand, consider a characteristic C1 : x = x + tAφ(x), t > 0. Then Fu(x, t, φ(x)) = 0,
for (x, t) ∈ C1 due to φ(x) = φ(x − tAφ(x)) and (2.1). This implies that φ(x) is a
critical point of F (x, t, •).

Naturally, it is asked if φ(x) is a minimizing value of F (x, t, •) for (x, t) ∈ C1.
The following lemma gives an answer.

Lemma 2.2 [6]. Assume φ(x) is bounded and Ck smooth and let

C = {(x, t) | x = x0 + tAφ(x0), t > 0}.

Then precisely one of the following statements must hold:

• C ⊂ U and φ(x0) is the unique minimizing value for F (x, t, •); or
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• there exists a point (x1, t1) ∈ C such that φ(x0) is either the unique minimizing
value for F (x1, t1, •) which is degenerate or one of at least two minimizing values
for F (x1, t1, •). Thus, φ(x0) is the unique non-degenerate minimizing value for
F (x, t, •) for (x, t) ∈ C− := C ∩{(x, t) | t1 > t > 0} ⊂ U while φ(x0) is no longer
the minimizing value for F (x, t, •) for (x, t) ∈ C+ := C ∩ {(x, t) | t > t1}.

Definition 2.3. A characteristic segment Ct1 : x = x0 + Aφ(x0)t emanating from
point (x0, 0), 0 < t < t1(≤ ∞) is called regular characteristic if φ(x0) is a unique
non-degenerate minimizing value for F (x, t, •) for (x, t) ∈ Ct1 and φ(x0) is no longer
a minimizing value of F (x, t, •) for (x, t) ∈ Ct1 = {(x, t) | x = x0+Aφ(x0)t, t > t1}.

Suppose u0 is a minimizing value for F (x0, t0, •) (not necessarily unique).
Consider a characteristic C : x = y(x0, t0, u0) + tAφ(y(x0, t0, u0)) = x0 + (t −
t0)a(u0)(t > 0), which passes through (x0, t0) and (y(x0, t0, u0), 0). Consider the
segment Ct0 : x = x0 +(t− t0)a(u0)(0 < t < t0). It is a part of regular characteristic
according to Lemma 2.2. Therefore, a minimizing value for F (x0, t0, •) defines a
part of regular characteristic, on the other hand a regular characteristic provides
a unique non-degenerate minimizing value for F (x, t, •) for each given point (x, t)
belonging to a part of the regular characteristic. For each point (x, t) ∈ H , there
exists at least one characteristic passing through it. Lemma 2.2 will be used to
judge if F (x, t, •) has a unique non-degenerate (or degenerate) minimizing value, or
several minimizing values.

Lemma 2.4. If L3 = ∅, then for each point (x, t) ∈ H, there are finitely many
connected components of M(x,t), where M(x,t) is defined by (1.9a).

Proof. Each connected component of M is either an isolated point or a closed
interval. Let M1 = [u−

i , u+
i ], M2 = [u−

i+1, u
+
i+1] (u+

i < u−
i+1) be two neighboring

connected components of M . Thus there exists a point ui ∈ (u−
i+1, u

+
i ) such that

Fu(x, t, ui) = 0, Fuu(x, t, ui) ≤ 0, (2.11)

where ui is a local maximizing value for F (x, t, •). Set y±
i = y(x, t, u±

i ), y±
i+1 =

y(x, t, u±
i+1) and yi = y(x, t, ui). Now we claim

∃ x′
i ∈ [y−

i+1, yi] such that A′′
φ(x′

i) < 0. (2.12)

If (2.12) is not true, then

A′′
φ(y) ≥ 0, ∀ y ∈ [y−

i+1, yi]. (2.13)

Two cases need to be considered.

Case 1 (Fuu(x, t, u−
i+1) �= 0). In this case, we have A′

φ(y−
i+1) > −1/t ≥ A′

φ(yi) in
view of (2.11) and Fuu(x, t, u−

i+1) �= 0. On the other hand, A′
φ(y−

i+1) ≤ A′
φ(yi) due

to (2.13). This gives a contradiction, hence (2.12) holds for Case 1.
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Case 2 (Fuu(x, t, u−
i+1) = 0). In this case, we have

∃ δ0 > 0 such that A′′
φ(y) ≥ 0 for each y ∈ [y−

i+1, y
−
i+1 + δ0] (2.14)

according to L3 = ∅ or (2.5). Next we claim that

∃ ξ ∈ (y−
i+1, y

−
i+1 + δ) such that A′′

φ(ξ) > 0 for each δ > 0. (2.15)

If (2.15) is not true, thus according to (2.14), there exists a constant δ1 > 0 such
that A′′

φ(ξ) ≡ 0 for each ξ ∈ [y−
i+1, y

−
i+1 + δ1]. Consequently, ∀ξ ∈ [y−

i+1, y
−
i+1 + δ0],

we have Aφ
′(y) = Aφ

′(y−
i+1) = −1/t, which implies that Aφ(ξ) = −ξ/t + c, where

the constant c can be determined by letting ξ = y−
i+1:

c =
1
t
[y−

i+1 + tAφ(y−
i+1)] =

x

t
.

Therefore, we have

Aφ(ξ) = −1
t
ξ +

x

t
, ξ ∈ [y−

i+1, y
−
i+1 + δ1]. (2.16)

Set u = φ(ξ), for ξ ∈ [y−
i+1, y

−
i+1 + δ1]. According to (2.16),

Fu(x, t, u)|u=φ(ξ) = ta′(u)[u − φ(x − ta(u))]|u=φ(ξ)

= ta′(φ(ξ))[φ(ξ) − φ(x − tAφ(ξ))]

= ta′(u)(φ(ξ) − φ(ξ)) = 0. (2.17)

Thus F (x, t, u) is a constant for u ∈ [φ(y−
i+1 + δ1), φ(y−

i+1)] = [α′, u−
i+1], where

α′ = φ(y−
i+1 + δ1). This leads to a contradiction since [u−

i+1, u
+
i+1] is a connected

component, hence (2.15) holds. Similarly, it can be shown that

∃ η ∈ (y+
i+1 − δ, y+

i+1) such that A′′
φ(η) < 0 for each δ > 0. (2.18)

We have A′
φ(yi) > A′

φ(y−
i+1) according to (2.13) and (2.15). This is a contradiction

since A′
φ(yi) ≤ A′

φ(y−
i+1)=−1/t according to Fuu(x, t, u−

i+1)=0 and Fuu(x, t, ui)≤0.
Hence (2.12) holds for Case 2. Thus (2.12) is true.

Similar to the proof of (2.12), we can prove that it can be shown that there
exists x′′

i ∈ [yi, y
+
i ] such that A′′

φ(x′′
i ) > 0. This result, together with (2.12), yield

∃ x′
i ∈ [y−

i+1, yi] and x′′
i ∈ [yi, y

+
i ] such that A′′

φ(x′
i) < 0 and A′′

φ(x′′
i ) > 0. (2.19)

Next we claim there are finitely many connected components of M . If not, then
without loss of generality, there exists a monotone increasing sequence {Mi} =
{[u−

i , u+
i ]}. The sequence {[y+

i , y−
i ]} is monotone decreasing and bounded, then it

must be convergent to a point x0. It is easy to know that

lim
i→∞

x′
i = lim

i→∞
x′′

i = lim
i→∞

yi = x0.

It follows from A′
φ(yi) ≤ −1/t that A′

φ(x0) ≤ −1/t < 0. On the other hand,

A′′
φ(x0) = · · · = A

(k)
φ (x0) = 0 in light of (2.19). For each δ > 0, ∃ i0 > 0 such

that [y+
i , y−

i ] ⊂ (x0, x0 + δ) for each i > i0 due to the fact x0 < x′
i < x′′

i for each
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i > i0 since the sequence {[y+
i , y−

i ]} is monotone decreasing. Observing A′′
φ(x′

i) < 0,
x′

i ∈ (x0, x0 + δ), which implies x0 ∈ L3. This contradicts L3 = ∅. The proof is
complete.

The same result by Li and Wang [7] as to Lemma 2.4 was obtained under the
hypothesis that φ is locally finite to f .

Definition 2.5. Suppose (x0, t0) lies on a characteristic C : x = y0 + tAφ(y0),
(x0, t0) is called a degenerate point of the characteristic C, if Fuu(x0, t0, φ(y0)) = 0.

Let x = ξ + tAφ(ξ), t > 0, where Aφ(ξ) = a(φ(ξ)). Set Fu(x, t, φ(ξ)) = 0 and
Fuu(x, t, φ(ξ)) = 0. By a direct computation, we have

x(ξ) = ξ − Aφ(ξ)
A′

φ(ξ)
, t(ξ) = − 1

A′
φ(ξ)

,

which is just the degenerate point on the characteristic emanating from ξ according
to Definition 2.5. This motivation leads to the following result.

Lemma 2.6. Suppose that there exists a unique connected component [α, β] of
M(x0,t0), and Fuu(x0, t0, α) = 0. If L3 = ∅, then the locus of the degen-
erate points on all the characteristics emanating from some neighborhood of
[y(x0, t0, β), y(x0, t0, α)] form two half curves in the neighborhood Θ of (x0, t0)
for t ≥ t0 with a unique common point (x0, t0). Each of them is continuously
differentiable.

Proof. By (2.1), the critical set of F (x, t, •) is contained in the compact interval
J = {u : |u| ≤ M}, where M = supy |φ(y)|. First we claim that

for each (α − ε, β + ε), ∃ an open neighborhood Θ of (x0, t0) such that

all the minimizing values of F (x, t, •) belong to (α − ε, β + ε) for (x, t) ∈ Θ.
(2.20)

If the above claim is not true, then there exists a sequence (xn, tn) converging to
(x0, t0) and a sequence un ∈ J\(α − ε, β + ε) such that

F (xn, tn, un) = min
u∈R

F (xn, tn, u), (n = 1, 2, . . .).

Since the set J\(α−ε, β+ε) is compact, we can choose a subsequence of un, written
again as un for convenience, convergent to u1 ∈ J\(α − ε, β + ε). Then

F (x0, t0, α) = lim
n→∞F (xn, tn, un) = F (x0, t0, u1).

Since F (x, t, u) is a continuous function of (x, t) for fixed u, the function m(x, t) =
minu∈R F (x, t, u) is continuous. This implies that there are at least two connected
components of M(x0,t0), which contradicts to the assumption that there is a unique
connected component of M(x0,t0). Thus the assertion (2.20) is true. According to
(2.20), there exists a sufficiently small constant ε0 > 0 and a neighborhood Θ of



June 26, 2007 6:18 WSPC/JHDE 00118

On the Piecewise Smoothness of Entropy Solutions to Scalar Conservation Laws 379

(x0, t0) such that for each (x, t) ∈ Θ and u ∈ (α − ε0, β + ε0), we have x − ta(u) ∈
(y(x0, t0, β) − δ, y(x0, t0, α) + δ), for each given δ > 0.

Let I(α, δ0) := [y(x0, t0, α), y(x0, t0, α) + δ0] and J(β, δ0) := [y(x0, t0, β) −
δ0, y(x0, t0, β)]. We can choose δ0 sufficiently small such that A′′

φ(ξ) ≥ 0 for each
ξ ∈ I(α, δ0) and A′′

φ(ξ) ≤ 0 for each ξ ∈ J(β, δ0) according to L3 = ∅ or (2.5).
The locus of the degenerate points on all the characteristics that emanate from

the interval I(α, δ0) can be written in the form

x(ξ) = ξ − Aφ(ξ)
A′

φ(ξ)
,

t(ξ) = − 1
A′

φ(ξ)
,

ξ ∈ I(α, δ0). (2.21)

Similarly, the locus of the degenerate points on all the characteristics that emanate
from the interval J(β, δ0) can be written in the form

x(ξ) = ξ − Aφ(ξ)
A′

φ(ξ)
,

t(ξ) = − 1
A′

φ(ξ)
,

ξ ∈ J(β, δ0). (2.22)

They have a common point (x0, t0). Moreover, the tangents to the curves (2.21)
and (2.22) at (x0, t0) are a(α) and a(β), respectively.

Next we claim that

(2.21) and (2.22) are one to one continuous mappings. (2.23)

In fact, if there exist ξ1, ξ2 (ξ1 < ξ2) such that t(ξ1) = t(ξ2) and [ξ1, ξ2] ⊂ I(α, δ0),
then there exists ξ0 ∈ I(α, δ0), ξ0 < ξ1 such that A′′

φ(ξ0) < 0 according to L3 = ∅,
which is contradictory to the fact that A′′

φ(ξ) ≥ 0 ∀ξ ∈ I(α, δ0). A similar argument
can be applied to the case (2.22). Thus (2.23) is true.

Therefore, (2.21) and (2.22) define two continuous curves x = xl(t) and x =
xr(t), respectively. By a direct computation, we have

x′
l(t) = Aφ(ξ). (2.24)

Since Aφ(ξ) is strictly decreasing, x = xl(t) is strictly concave. Similarly, x = xr(t)
is strictly convex. Let (xl(t1), t1), (xr(t1), t1) ∈ Θ (t1 > t0). Then xr(t1)−xl(t1) > 0.
Thus these two curves have a unique common point (x0, t0).

Remark 2.7. In fact xl(t) is the envelope of all the characteristics emanating from
I(α, δ0); xr(t) is the envelope of all the characteristics emanating from J(β, δ0).

Lemma 2.8. Assume [u−
1 , u+

1 ] and [u−
2 , u+

2 ] are two neighboring connected compo-
nents of M(x1,t1), where u−

1 ≤ u+
1 < u−

2 ≤ u+
2 . If L3 = ∅, then there exists an open

neighborhood Θ̃ of (x1, t1) such that Θ̃ ∩ G ∩ Γ1 contains a half curve x = γ−(t)
terminating at (x1, t1), where G is the triangle domain formed by t = 0, the char-
acteristics x = y(x1, t1, u

−
2 ) + ta(u−

2 ) and x = y(x1, t1, u
+
1 ) + ta(u+

1 ).
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Proof. By an argument similar to the proof of assertion (2.20), there exists a
neighborhood Θ̃ of (x1, t1) and two intervals

J1 := (y(x1, t1, u
+
1 ) − δ, y(x1, t1, u

+
1 ))

and

J2 := (y(x1, t1, u
−
2 ), y(x1, t1, u

−
2 ) + δ)

such that for each given (x, t) ∈ Θ̃′ ∩ G and any minimizing value, say u, for
F (x, t, •), y(x, t, u) belongs to J1 and/or J2. Now we claim that:

∃ at most one minimizing value u(x, t) for F (x, t, •)
such that y(x, t, u(x, t)) ∈ J1, ∀(x, t) ∈ Θ̃′ ∩ G,

and u(x, t) is non-degenerate if it exists. (2.25)

In fact, there are only two cases to be considered

Case 1 (Fuu(x1, t1, u
+
1 ) = 0). In this case, assume there has a point (x̃, t̃) ∈ Θ̃′ ∩G

such that there exist at least two minimizing values u∗ and u∗∗ for F (x̃, t̃, •) and
y(x̃, t̃, u∗), y(x̃, t̃, u∗∗) ∈ J1. Thus there exist at least two characteristics passing
through (x̃, t̃):

x = y(x̃, t̃, u∗) + ta(u∗); x = y(x̃, t̃, u∗∗) + ta(u∗∗). (2.26)

On the other hand, using the fact that A′
φ(x) is strictly monotone decreasing on

the interval J1 (by the assumption L3 = ∅ and (2.18), or (2.5)), we have

t̃ = −y(x̃, t̃, u∗) − y(x̃, t̃, u∗∗)
a(u∗) − a(u∗∗)

= − 1
A′

φ(η̃)
> t1,

where η̃ is between y(x̃, t̃, u∗) and y(x̃, t̃, u∗∗). This is contradictory to the fact that
t̃ < t1. Furthermore, suppose ũ is the unique minimizing value for F (x, t, •) such
that y(x, t, ũ) ∈ J1 and Fuu(x, t, ũ) = 0. Thus t = −1/A′

φ(y(x, t, ũ)) > t1. Since
A′

φ(x) is monotone, ũ must be non-degenerate. Hence the assertion (2.1) is true for
Case 1.

Case 2 (Fuu(x1, t1, u
+
1 ) �= 0). In this case, since Fuu(x1, t1, u

+
1 ) �= 0, it follows from

the implicit function theorem that there is an open neighborhood U(u+
1 ) of u1 such

that for (x, t) sufficiently close to (x1, t1) the equation (∂F/∂u)(x, t, u) = 0 has a
unique solution u(x, t) ∈ U(u+

1 ). Consequently, there is a unique minimizing value
u(x, t) such that y(x, t, u(x, t)) ∈ J1 and u(x, t) must be non-degenerate. Thus the
assertion (2.25) is true for Case 2. Consequently, (2.25) is true.



June 26, 2007 6:18 WSPC/JHDE 00118

On the Piecewise Smoothness of Entropy Solutions to Scalar Conservation Laws 381

Similarly, we can deduce that

∃ at most one minimizing value u(x, t) for F (x, t, •)
such that y(x, t, u(x, t)) ∈ J2, ∀(x, t) ∈ Θ̃′ ∩ G,

and u(x, t) is non-degenerate if it exists. (2.27)

Let

At2 = {x | (x, t2) ∈ Θ̃′ ∩ G,

∃ a regular characteristic emanating from (y(x1, t1, u
+
1 ), 0)

or a point on the left of (y(x1, t1, u
+
1 ), 0) and passes through (x, t2)},

(2.28)

Bt2 = {x | (x, t2) ∈ Θ̃′ ∩ G,

∃ a regular characteristic emanating from (y(x1, t1, u
−
2 ), 0)

or a point on the right of (y(x1, t1, u
−
2 ), 0) and passes through (x, t2)}.

(2.29)

Let (xl2, t2) be the point on the characteristic x = y(x1, t1, u
−
2 ) + ta(u−

2 ), (xr2, t2)
be the point on the characteristic x = y(x1, t1, u

+
1 ) + ta(u+

1 ). Then (xl2, t2) ∈ Bt2 ,
(xr2, t2) ∈ At2 . Thus At2 �= ∅, Bt2 �= ∅. Let x1 be the infimum of the set At2 and
x2 be the supremum of the set Bt2 . Next we will show

∃ two minimizing values for F (x1, t2, •). (2.30)

First we claim that

∃ at least two minimizing values for F (x1, t2, •). (2.31)

If this is not true, then there is a unique minimizing value u1 for F (x1, t2, •). In this
case, there exists a unique characteristic passing through (x1, t2), which satisfies
one of the following possibilities:

Case (i): It emanates from a point on the left of (y(x1, t1, u
+
1 ), 0) and u1 is non-

degenerate. In this case, according to Lemma 2.1, we can find a neighborhood U(x1)
of x1 such that for each x ∈ U(x1), there exists only one characteristic that emanates
from a point on the left of (y(x1, t1, u

+
1 ), 0) and passes through (x, t2). Thus there

exists a point x̃ ∈ U(x1), x̃ < x1 such that there exists a regular characteristic
passing through (x̃, t2) that emanates from a point on the left of (y(x1, t1, u

+
1 ), 0),

which implies that x̃ ∈ At2 . This is contradictory to the fact that x1 is the infimum
of the set At2 .
Case (ii): It emanates from a point on the right of (y(x1, t1, u

−
2 ), 0) and u2 is non-

degenerate. Similar to Case (i) above, a contradiction can be also obtained.
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Next, we claim that

∃ at most two minimizing values for F (x1, t2, •). (2.32)

If this is not true, then there exist two minimizing values u1 and u2 for F (x1, t2, •)
such that both y(x1, t2, u1) and y(x1, t2, u2) belong to J1 or J2. Without loss of
generality, suppose both y(x1, t2, u1), y(x1, t2, u2) ∈ J1. However, this is impossible
according to (2.25). Therefore, (2.32) is true. Combining (2.31) and (2.32), we obtain
(2.30).

Similarly, we can prove that

∃ only two minimizing values for F (x2, t2, •) and they are non-degenerate.

(2.33)

Now we claim

x1 = x2. (2.34)

If not, i.e. x1 �= x2, then it follows from (2.30) and (2.33) that there is a charac-
teristic passing through (x1, t2) and a characteristic passing through (x2, t2), both
are regular before t = t2, such that they intersect with each other at a time earlier
than t2. This is a contradiction since they will not be regular after they intersect
according to Lemma 2.2. Therefore x1 = x2.

In summary, a unique curve x = γ−(t) terminating at (x1, t1) is defined in Θ̃′∩G

such that there are only two minimizing values for F (γ−(t), t, •). This completes
the proof of Lemma 2.8.

We point out that (x1, t1) is the center of the centered compression wave when
u−

1 < u+
1 or/and u−

2 < u+
2 . Therefore, there does not exist one to one correspondence

between the shock generation point and the center of a centered compression waves
in general.

Lemma 2.9. Assume the assumptions in Lemma 2.6 hold. If L3 = ∅, then all
the characteristics that emanate from the interval I(α, δ0) (respectively, J(β, δ0))
can only intersect with each other after t = t0. Moreover, for any two
characteristics emanating from the points on the right (left) of (y(x0, t0, α), 0)
(respectively, (y(x0, t0, β), 0)), the time when the one closer to (y(x0, t0, α), 0)
(respectively, (y(x0, t0, β), 0)) touches the curve (2.21) (respectively, (2.22)) is ear-
lier than the time when they intersect with each other, where δ0 > 0 is the same
constant given in Lemma 2.6.

Proof. Consider the following two characteristics:

x = x1 + tAφ(x1), (2.35)

x = x2 + tAφ(x2), (2.36)
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where x1, x2 ∈ (y(x0, t0, α), y(x0, t0, α)+ δ0). Suppose (x12, t12) is their intersection
point; i.e.

t12 = − x1 − x2

Aφ(x1) − Aφ(x2)
= − 1

A′
φ(x12)

,

where x1 < x12 < x2. Let t1 = −1/A′
φ(x1) and t2 = −1/A′

φ(x2). Thus
Fu(xi, ti, φ(xi)) = 0 and Fuu(xi, ti, φ(xi)) = 0, where xi = xi + tiAφ(xi) (i = 1, 2).
It can be verified that

t0 < t1 < t12 < t2 (2.37)

according to (2.14) and (2.23). A similar conclusion can be also obtained if x1, x2 ∈
(y(x0, t0, β) − δ0, y(x0, t0, β)). Thus the proof of this lemma is complete.

Lemma 2.10. Assume the assumptions in Lemma 2.6 hold. If L3 = ∅, then all the
minimizing values for F (x, t, •) are non-degenerate for (x, t) ∈ Θ′ = Θ\{(x0, t0)}.
Moreover, there exists a unique minimizing value for F (x, t, •) for (x, t) ∈ Θ′ lying
under and on the curves (2.21) and (2.22), i.e. (x, t) ∈ Θ′∩{x ≤ xl(t) or x ≥ xr(t)}.

Proof. Recall I(α, δ0) = [y(x0, t0, α), y(x0, t0, α)+δ0] and J(β, δ0) = [y(x0, t0, β)−
δ0, y(x0, t0, β)]. We consider two possible cases.

Case 1 (under the curves). The points of characteristics emanating from the
interval I(α, δ0) and J(β, δ0) are non-degenerate in θl,r, where θl,r = Θ′∩{(x, t)|x <

xl(t) or x > xr(t)}. Furthermore, they will not intersect with each other in θl,r by
Lemma 2.9. Thus there is a unique non-degenerate minimizing value for F (x, t, •)
for (x1, t1) ∈ θl,r.

Case 2 (on the curves). If x1 = xl(t1), we claim that

∃ a unique minimizing value for F (x1, t1, •) and it is non-degenerate. (2.38)

In fact, there exists a unique minimizing value u1 for F (x1, t1, •) such that
y(x1, t1, u1) ∈ J(β, δ0) according to Lemma 2.9. Assume there exists another
minimizing value u2 for F (x1, t1, •) such that y(x1, t1, u2) ∈ I(α, δ0). Let ξ2 =
y(x1, t1, u2) and ξ1 = y(x1, t1, u1). Then there exists a characteristic passing through
(x1, t1):

x = ξ2 + tAφ(ξ2), 0 < t ≤ t1, (2.39)

which is the characteristic tangent to the curve (2.21) at the point (x1, t1) =
(xl(t1), t1), i.e. x′

l(t1) = Aφ(ξ2). Let

x = ξ1 + tAφ(ξ1), 0 < t ≤ t1. (2.40)

Now u1 and u2 are the only two minimizing values for F (x1, t1, •). In light of
Lemma 2.8, there exists an open neighborhood Θ̃ of (x1, t1) such that Θ̃ ∩ Γ1

contains a half curve x = γ−(t) terminating at (x1, t1). Furthermore, we have

dγ−(t)
dt

=
f(u1(x, t)) − f(u2(x, t))

u1(x, t) − u2(x, t)
, (2.41)
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y(x, t, u1(x, t)) ∈ (ξ1, ξ1 + δ)⊂J(β, δ0), and y(x, t, u2(x, t)) ∈ (ξ2 − δ, ξ2)⊂I(α, δ0),
(t < t1). Letting t → t1−, we have

lim
t→t1−0

dγ−(t)
dt

=
f(u1) − f(u2)

u1 − u2
∈ (a(u2), a(u1)).

On the other hand, the slope of the line tangent to the curve (2.21) at (x, t) tending
to (x1, t1) converges to a(u2). Consequently, the curve x = γ−(t) lies between the
characteristic (2.39) and the characteristic (2.40) for t close to t1. Thus the curve
x = γ−(t) must lie on the left of the curves (2.21), which is impossible according
to Case 1. Hence (2.38) is proved for x1 = xl(t1). Similarly, (2.38) is true for
x1 = xr(t1).

2.2. Local piecewise smoothness

Theorem 2.11. Assume that there is a unique connected component [α, β] of
M(x0,t0). If L3 = ∅ and Fuu(x0, t0, α) = 0, then (x0, t0) has a neighborhood Θ such
that Γ1 ∩ Θ consists of a Ck+1 half-curve emanating at (x0, t0). The minimizing
function is smooth on Θ′\Γ1.

Proof. We will prove that there exists a Ck+1 smooth shock emanating at (x0, t0).
For each given t1 > t0, let

At1 = {x | (x, t1) ∈ Θ, ∃ a regular characteristic emanating from a point

on the left of (y(x0, t0, β), 0) and passes through (x, t1)}, (2.42)

Bt1 = {x | (x, t1) ∈ Θ, ∃a regular characteristic emanating from a point

on the right of (y(x0, t0, α), 0) and passes through (x, t1)}. (2.43)

According to (2.38), there exists a unique regular characteristic passing through
(xl(t1), t1), then (xl(t1), t1) ∈ At1 , which implies that At1 �= ∅. Similarly, Bt1 �= ∅.
Let x1 be the supremum of the set At1 and x2 be the infimum of the set Bt1 .

Next we will show that

∃ two minimizing values for F (x1, t1, •). (2.44)

First we claim that

∃ at least two minimizing values for F (x1, t1, •). (2.45)

The proof is the same as that for (2.31). Next, we claim that

∃ at most two minimizing values for F (x1, t1, •). (2.46)

If (2.46) is not true, thus there exist two minimizing values u1 and u2 for F (x1, t1, •)
such that y(x1, t1, u1) = x1 − t1a(u1) and y(x1, t1, u2) = x1 − t1a(u2) ∈ J(β, δ0)
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or I(α, δ0). Without loss of generality, suppose y(x1, t1, u1), y(x1, t1, u2) ∈ I(α, δ0).
Then there exist two characteristics passing through (x1, t1)

x = x1 + tAφ(x1), (2.47)

x = x2 + tAφ(x2), (2.48)

(x1, t1) is the intersection point of them, where x̄1 < x̄2. On the other hand, the
points of the two characteristics are non-degenerate before and at the time t1,
thus characteristics (2.47) and (2.48) cannot intersect with each other at (x1, t1)
according to Lemma 2.9. It is a contradiction. Consequently, the assertion (2.46) is
true.

Combining (2.45) and (2.46), we conclude that there are only two minimizing
values for F (x1, t1, •) and they are non-degenerate. By a similar argument to the
assertion (2.44), it can be demonstrated that there are two minimizing values for
F (x2, t1, •). Now we claim that x1 = x2. The proof is the same as the proof of
assertion (2.34). In this way a unique curve x = γ(t) is defined for t > t0. Therefor
there are only two minimizing values for F (γ(t), t, •).

Consider any point (x1, t1) ∈ Θ ∩ {t > t0}. If x1 < γ(t1), then there is a unique
u which minimizes F (x1, t1, •) since (x1, t1) lies on the left of (γ(t1), t1). Thus the
minimizing function is smooth at (x, t) in view of Lemma 2.1. The same result holds
for the case when x1 > γ(t1). If x1 = γ(t1), then there are only two values of u

which minimizes F (x1, t1, •) and they are non-degenerate according to the above
arguments. These results, together with Lemma 2.2, complete the proof of this
theorem.

Remark 2.12. [9, Lemma 1.4] is a special case of Theorem 2.11, even if we set
α = β in Theorem 2.11. In particular, this theorem allows our solutions to contain
centered compression waves, and if this is the case then the generation point of the
shock is the center of centered compression wave if α �= β.

Theorem 2.13. Assume that [u−
1 , u+

1 ], [u−
2 , u+

2 ], . . . , [u−
n , u+

n ] are the n connected
components of M(x0,t0) (suppose u−

1 ≤ u+
1 < u−

2 ≤ u+
2 · · · < u−

n ≤ u+
n ), where n ≥ 2.

If L3 = ∅, then (x0, t0) has a neighborhood Θ such that Γ1 ∩ Θ consists of n half-
curves, one emanating from (x0, t0) and the other (n− 1)’s terminating at (x0, t0).
Moreover, the minimizing function is smooth on Θ′\Γ1, where Θ′ = Θ\{(x0, t0)}.

Proof. Set

l+i : x = y(x0, t0, u
+
i ) + tAφ(y(x0, t0, u

+
i )), (2.49)

l−i : x = y(x0, t0, u
−
i ) + tAφ(y(x0, t0, u

−
i )), (2.50)

where i = 1, . . . , n, 0 < t < t0. In light of Lemma 2.8, there exists a unique half-
curve terminating at (x0, t0), denoted by x = γ−

i (t), in a neighborhood Θ of (x0, t0).
More precisely, x = γ−

i (t) is defined in the triangle domain Gi
i+1 formed by the line
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t = 0, the characteristic l+i and l−i+1. Moreover, for each x = γ−
i (t), 1 ≤ i ≤ n − 1,

there exist two minimizing values for F (x, t, •), which are non-degenerate.
Similar to the proof of Theorem 2.11, there exists a half-curve emanating

from (x0, t0) denoted by x = γ+(t), (t > t0). Thus, the proof of this theorem is
complete.

Corollary 2.14. Any point (x0, t0) ∈ Γ1 has a neighborhood Θ such that Γ1 ∩ Θ
is a curve x = γ(t) passes through (x0, t0) is Ck+1 smooth at each point except at
t = t0. The minimizing function u(x, t) is smooth on both components of Θ\Γ1.

The smoothness of the curve x = γ(t) can be decided by the following cases:

Case 1 (M(x0,t0) = {u1, u2} for F (x0, t0, •)). In this case,

• If Fuu(x0, t0, u1) = 0 or Fuu(x0, t0, u2) = 0, then the curve x = γ(t) is Ck+1 at
each point except t = t0. In fact, x = γ(t) is only C1 on the line t = t0 since
u1(x, t) and u2(x, t) are continuous, but u1x(x, t0) → ∞ or u2x(x, t0) → ∞ as
x → x0 − 0 or x → x0 + 0.

• If Fuu(x0, t0, u1) �= 0 and Fuu(x0, t0, u2) �= 0, then the curve x = γ(t) is Ck+1

smooth.

Case 2 (M(x0,t0) = [u−
1 , u+

1 ] ∪ [u−
2 , u+

2 ], where u−
1 < u+

1 or u−
2 < u+

2 ). In this case,
the curve x = γ(t) is continuous at the point t = t0.

3. Piecewise Smoothness

In the last section, we demonstrated that the shocks are Ck+1 smooth except at
the shock interaction points and points belonging to Γ1\Γ1; the shocks are not
differentiable at the shock interaction points and at the center points of the centered
compression waves. In other words, all the shocks are piecewise Ck+1 smooth. In
this section, more precise statements on the piecewise smoothness will be given
based on the local structure analysis given in Sec. 2. In particular, we show that the
total number of shocks is finite when the initial data belongs to S (R)\Ω4, where
S (R) is the Schwartz space and Ω4 is a set of first category. To our knowledge,
Ω4 is the smallest set to be excluded in obtaining the piecewise smoothness and
finiteness of shock numbers. In particular, the set S (R)\Ω4 allows our solutions to
contain centered compression waves, which is not possible in the previous works.

Let Ω2 and Ω3 be defined in (1.15) and (1.16), respectively. Dafermos in [2] has
proved that the set Ω2 is of first category in Ck. Thus Ω3 as a proper subset of Ω2

is also of first category in Ck. Now we will show all of the results mentioned above.

Theorem 3.1. Let Ω2 and Ω3 be defined in (1.15) and (1.16), respectively. Consider
the initial value problem (1.1). For any initial data φ ∈ Ck(R)\Ω3, we have H =
U∪Γ1∪Γ

(f)

0 ∪Γ
(c)

0 , where these sets are defined in Sec. 1. In particular, Ω3 ⊂ Ck(R)
of the first category is a proper subset of Ω2. Moreover, the solutions of (1.1) are
piecewise Ck smooth.
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Below we outline the proof of the above theorem. First we can show that (x, t) ∈
U ∪ Γ1 ∪ Γ

(f)

0 ∪ Γ
(c)

0 for each (x, t) ∈ H , namely, H = U ∪ Γ1 ∪ Γ
(f)

0 ∪ Γ
(c)

0 provided
that L3 = ∅, since there are only finitely many connected components of M(x,t)

for each given (x, t) ∈ H , where M(x,t) is defined by (1.9a). By Lemma 2.1, Γ =

Γ1 ∪ Γ
(f)

0 ∪ Γ
(c)

0 is a closed subset of H , and Γ is covered by open neighborhoods
of the type as described in Theorems 2.11 and 2.13. For any compact set K ⊂ H ,
by choosing a finite subcover of K ∩ Γ such that K ∩ Γ consists of the union of a
finite number of shocks where each shock is piecewise Ck+1 smooth. Therefore, if
φ ∈ Ck(R)\Ω3, then the minimizing function u(x, t) is piecewise Ck smooth since
Ck(R)\Ω3 = {φ ∈ Ck(R) |L3 = ∅}.

Theorem 3.2. Let Ω4 = (Ω3∩S (R))∪�c ⊂ S (R), where Ω3 is defined by (1.16),
S (R) is the Schwartz space, �c = S (R)\�, � is an open and dense set. For
φ ∈ S (R)\Ω4, we have H = U ∪ Γ1 ∪ Γ

(f)

0 ∪ Γ
(c)

0 . Moreover, the solutions of (1.1)
are piecewise C∞ smooth and the total number of possible shocks is finite.

We outline the proof of Theorem 3.2. Li–Wang in [6, Theorems 4 and 5] proved
that there is an open and dense set � ⊂ S (R) such that for any φ ∈ �, the
associated function Φ attains its minimum over R only at points ai (|ai| < ∞)
and φ(li)(ai) �= 0, φ(li−1)(ai) = · · · = φ(ai) = 0, where li (i = 1, . . . , m) is some
integer. Then for sufficiently large t there are precisely m + 1 smooth shocks. The
proofs of these results are the refinement of [9, Lemma 4.1 and Proposition 4.2].
Consequently, we see there is an open and dense set � ⊂ S (R) such that for any
φ ∈ �, there are finitely many shock curves for sufficiently large t, say t > T . It is
easy to show that there is a constant X such that no shock can be formed in the
region {(x, t) : |x| ≥ X, 0 ≤ t ≤ T }. Consequently, only finitely many shocks can be
formed in the compact region {(x, t) : |x| ≤ X, 0 ≤ t ≤ T } by Theorem 3.1. This
completes the proof of the above theorem.

4. Concluding Remarks

In this work, we proved that if the initial data do not belong to a very small subset
of Ck then the solutions of scalar conservation laws are piecewise Ck smooth. It is
important to understand the conditions under which the solution of the conserva-
tion law (1.1) is piecewise smooth since most practical cases deal with the piecewise
smooth solutions. For this reason, there have many studies on approximation meth-
ods for conservation laws whose solutions are piecewise smooth. For example, for
systems of conservation laws, Goodman and Xin [3] proved that the viscosity meth-
ods approximating piecewise smooth solutions with finitely many noninteracting
shocks have a local first-order rate of convergence away from the shocks; on the
other hand, for scalar conservation laws, the global rate of convergence for the vis-
cosity methods can be obtained [13, 14], and the point-wise rate of convergence for
the viscosity methods has been obtained [11, 12].
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In this work, we have introduced a new approach for studying the solution
structures for the conservation laws, which is particularly suitable for handling the
larger class of initial data considered in this works. We point out that Thom’s theory
of catastrophes [15], which plays a key role in Schaeffer [9], cannot be used to analyze
the larger class of initial data. The main motivation of this study is to develop a new
analysis approach which can be extended to study the solution structures for the
Hamilton–Jacobi equations. The study along this direction is under investigation,
and some relevant results will be reported elsewhere.
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