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Abstract

In this work, we will analyze a class of large time-stepping methods for the Cahn–Hilliard equation. The equation is discretized
by Fourier spectral method in space and semi-implicit schemes in time. For first-order semi-implicit scheme, the stability and
convergence properties are investigated based on an energy approach. Here stability means that the decay of energy is preserved.
The numerical experiments are used to demonstrate the effectiveness of the large time-stepping approaches.
© 2006 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

We consider the initial-boundary-value problem for the Cahn–Hilliard equation:

∂tu + �
(
u − u3 + κ�u

) = 0, (x, t) ∈ Ω × R
+, (1.1)

u(·, t) is L-periodic for all t ∈ R
+, (1.2)

u(x,0) = u0(x), x ∈ Ω, (1.3)

where the domain Ω = (0,L1) × (0,L2) is an open set in R
2, κ is a positive constant, L = (L1,L2), u0 :Ω→R is

a given initial function.The L-periodic boundary condition (1.2) and the Cahn–Hilliard equation (1.1) lead the con-
servation of the total mass of the system. The Cahn–Hilliard equation was originally introduced in [3] to describe the
complicated phase separation and coarsening phenomena. There has been a significant research interest in simulating
the Cahn–Hilliard equation, see, e.g. [9,12,17,18,23] and the references therein. Finite element schemes have been
studied with mathematical rigor by Barrett et al. [1] and Elliott et al. [5–8]. Very recently, Feng and Prohl [10] pro-
posed and analyzed a semi-discrete and a fully discrete finite element method for a class of Cahn–Hilliard equation
involving a small parameter. Error estimates which are of quasi-optimal order in time and optimal order in space are
shown for their proposed methods under minimum regularity assumptions on the initial data and the domain. With
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finite difference approaches, Sun [19] proposed a linearized finite difference scheme which is uniquely solvable and
convergent with order two in a discrete L2(Ω)-norm. In [11], a conservative finite difference scheme was proposed
to solve the Cahn–Hilliard equation in one space dimension. It is proved that their proposed scheme is stable in the
sense that the decay of energy is preserved. numerically. In [22], a combined spectral and large-time stepping method
was proposed and studied for the nonlinear diffusion equations for thin film epitaxy which are also studied by Li and
Liu [16].

Our main interest in this work is to investigate the time-stepping methods for problem (1.1)–(1.3). The classical
first order semi-implicit scheme is of the form

un+1 − un

�t
= PN�f

(
un

) − κ�2un+1, n � 0, (1.4)

where PN is a L2(Ω)-projection defined in Section 2, f (u) = −u + u3, �t is the time-step and tn = n�t , un is an
approximation to u(x, tn). In practice, it is known that the semi-implicit treatment in time allows a consistently larger
time-step size. Their numerical simulations indicate that the time-step in a semi-implicit method can be two orders of
magnitude larger than that in an explicit method. To further improve the stability property of the semi-implicit method
(1.4), we propose to add an O(�t∂tu) term to the scheme (1.4):

un+1 − un

�t
= A�

(
un+1 − un

) + PN�f
(
un

) − κ�2un+1, (1.5)

where A is a positive constant. The purpose of adding the extra term is to improve the stability condition so that
larger time-steps can be used. In practice, the accuracy in time can be improved by using higher-order semi-implicit
schemes. For instance, a second-order backward difference (BDF) for ∂tu and a second-order Adams–Bashforth (AB)
for the explicit treatment of the nonlinear term for (1.1) lead to the following second-order BDF/AB scheme:

3un+1 − 4un + un−1

2�t
= PN�

(
2f

(
un

) − f
(
un−1)) − κ�2un+1. (1.6)

Again, to improve stability an O(�t2∂ttu) term is added in the above scheme, which gives the following second-order
time discretization scheme:

3un+1 − 4un + un−1

2�t
= A�δttu

n + PN�
(
2f

(
un

) − f
(
un−1)) − κ�2un+1, (1.7)

where δttu
n := un+1 − 2un + un−1. The purpose of the this work is to provide a stability and convergence analysis

for (1.5) and (1.7). A detailed numerical comparison for various time discretization schemes will be carried out in this
work.

The paper is organized as follows. In Section 2, we provide a theoretical analysis for the semi-implicit method. In
particular, for the first-order time-stepping method stability and convergence properties are investigated. Numerical
experiments are carried out in Section 3. It will be demonstrated that larger time-steps can be used by adding an extra
term consistent with the order of truncation errors. Some concluding remarks are given in the final section.

2. Stability and convergence for semi-implicit method

Let C∞
per(Ω) be the set of all restrictions onto Ω of all real-valued, L-periodic, C∞-functions on R

2. For each

integer q � 0, let H
q
per(Ω) be the closure of C∞

per(Ω) in the usual Sobolev norm ‖ · ‖q , and H
−q
per (Ω) be the dual space

of H
q
per(Ω). Note that H 0

per(Ω) = L2(Ω). We now define the weak solution of (1.1)–(1.3) as follows.

Definition 2.1. A function u :Ω × R
+ → R is called a weak solution of (1.1)–(1.3) if u ∈ L∞(R+;L2(Ω)) ∩

L2
loc(R

+;H 2
per(Ω)) and ∂tu ∈ L2

loc(R
+;H−2

per (Ω)) such that for all v ∈ H 2
per(Ω) there holds

(∂tu, v) + (∇(
u3 − u

)
,∇v

) + κ(�u,�v) = 0, t > 0, a.e., (2.1)

with the initial condition u(0) = u0, where (·, ·) is the standard inner product in L2(Ω).
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Due to periodic boundary conditions for (1.1)–(1.3), it is natural to use Fourier spectral method. For each integer
N � 1, we introduce the finite dimensional subspace of H 2

per(Ω):

HN = span

{
1, cos

(
2πk · x

L

)
, sin

(
2πk · x

L

)
,0 < |k| � N

}
,

where k = (k1, k2) and x
L

= ( x1
L1

, x2
L2

). Denote also PN :L2(Ω) → HN the L2(Ω)-projection onto HN , which is de-
fined by

(PNu − u,v) = 0, ∀v ∈ HN. (2.2)

Let {φj }J1 be an orthonormal basis of HN with respect to the L2(Ω) inner product. We define the spectral Galerkin
approximation: for each N � 1, find uN(t) ∈ HN such that

(∂tuN , vN) + (∇(
u3

N − uN

)
,∇vN

) + κ(�uN,�vN) = 0, ∀vN ∈ HN, (2.3)

for all t > 0 with uN(0) = PNu0. We further define the energy functional of the solution u:

E(u) = κ

2
‖∇u‖2

0 + 1

4

∥∥u2 − 1
∥∥2

0. (2.4)

In [15], some regularity results of the weak solution of (1.1)–(1.3) and convergence properties of the spectral Galerkin
approach (2.3) are established. The following results will be useful in our analysis.

Lemma 2.1. [15] If the initial data in (1.3) satisfies u0 ∈ H 4
per(Ω), then the weak solution u(t) for (1.1)–(1.3) satisfies

the following regularity results:

∥∥u(t)
∥∥2

4 � c0(κ,u0),

t∫
0

‖∂tu‖2
2 ds � c0(κ,u0) + tc(κ,u0), (2.5)

for all t � 0. Similarly, (2.3) admits a unique solution which satisfies

∥∥uN(t)
∥∥2

4 � c0(κ,u0),

t∫
0

‖∂tuN‖2
2 ds � c0(κ,u0) + tc(κ,u0), (2.6)

where c(κ,u0) and c0(κ,u0) are two generic positive constants depending on the data (κ,u0,Ω).

Lemma 2.2. [15] Let u be the solution of (1.1)–(1.3) and uN be the solution of (2.3). If u0 ∈ H 4
per(Ω), then the

spectral Galerkin solution uN(t) satisfies the following error estimate:∥∥u(t) − uN(t)
∥∥

0 � N−4c0(κ,u0) exp
(
c(κ,u0)t

)
, ∀t � 0. (2.7)

Furthermore, if the weak solution u of (1.1)–(1.3) satisfies the following regularity results:∥∥u(t)
∥∥2

q
� c0(κ,u0), t � 0, q � 1, (2.8)

then the solution uN(t) of (2.3) satisfies the following error estimate:∥∥u(t) − uN(t)
∥∥

0 � N−qc0(κ,u0) exp
(
c(κ,u0)t

)
, ∀t � 0. (2.9)

2.1. Stability analysis for the first order semi-implicit scheme

In the spectral Galerkin framework, the classical first order semi-implicit scheme is of the form:(
dtu

n+1, v
) + (∇((∣∣un

∣∣2 − 1
)
un − κ�un+1),∇v

) = 0, ∀v ∈ HN, (2.10)

for all n � 0 with u0 = uN(0) = PNu0. In (2.10), dtu
n+1 := 1

�t
(un+1 − un), where un is an approximation of

uN(x, tn). To increase the size of time-steps, an extra O(�t∂tu) term is added into the left side of (2.10), which
gives the following semi-discretized scheme:
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(
dtu

n+1, v
) + A

(∇(
un+1 − un

)
,∇v

) + (∇((∣∣un
∣∣2 − 1

)
un

)
,∇v

) + κ
(
�un+1,�v

) = 0,

∀v ∈ HN(Ω), (2.11)

where A is a positive constant.

Theorem 1. If A in (2.11) is sufficiently large, then the energy defined by (2.4) is decreasing in time. More precisely,
if the positive constant A satisfies

A � max
x∈Ω

{
1

2

∣∣un(x)
∣∣2 + 1

4

∣∣un+1(x) + un(x)
∣∣2

}
− 1

2
, ∀n � 0, (2.12)

then for all m � 0 there holds

E
(
um

) + �t

m−1∑
n=1

∥∥∇(
A

(
un+1 − un

) + (∣∣un
∣∣2 − 1

)
un − κ�un+1)∥∥2

0 � E(u0), (2.13)

where E(u) is defined by (2.4) and u0 is the initial data given by (1.3).

Proof. Taking v = (A(un+1 − un) + (|un|2 − 1)un − κ�un+1)�t in (2.11) and using the equalities

2a(a − b) = a2 − b2 + (a − b)2, 2ab = a2 + b2 − (a − b)2, (2.14)

we have

0 = ∥∥∇(
A

(
un+1 − un

) + (∣∣un
∣∣2 − 1

)
un − κ�un+1)∥∥2

0�t + A
∥∥un+1 − un

∥∥2
0

+κ

2

(∥∥∇un+1
∥∥2

0 − ∥∥∇un
∥∥2

0 + ∥∥∇(
un+1 − un

)∥∥2
0

) + In, (2.15)

where

In = ((∣∣un
∣∣2 − 1

)
un,un+1 − un

)
= 1

2

(∣∣un
∣∣2 − 1,

∣∣un+1
∣∣2 − ∣∣un

∣∣2 − ∣∣un+1 − un
∣∣2)

= 1

2

(
1 − ∣∣un

∣∣2
,
∣∣un+1 − un

∣∣2) − 1

2

∥∥un+1
∥∥2

0 + 1

2

∥∥un
∥∥2

0 − 1

4

∥∥∣∣un+1
∣∣2−∣∣un

∣∣2∥∥2
0 + 1

4

∥∥un+1
∥∥4

L4 − 1

4

∥∥un
∥∥4

L4

= 1

2

(
1 − ∣∣un

∣∣2 − 1

2

∣∣un+1 + un
∣∣2

,
∣∣un+1 − un

∣∣2) + 1

4

∥∥∣∣un+1
∣∣2 − 1

∥∥2
0 − 1

4

∥∥∣∣un
∣∣2 − 1

∥∥2
0. (2.16)

Combining (2.15) and (2.16) yields

0 �
∥∥∇(

A
(
un+1 − un

) + (∣∣un
∣∣2 − 1

)
un − κ�un+1)∥∥2

0�t + E
(
un+1) − E

(
un

)
+

(
A + 1

2
− 1

2

∣∣un
∣∣2 − 1

4

∣∣un+1 + un
∣∣2

,
∣∣un+1 − un

∣∣2
)

,

which gives the desired result (2.13) provided that the assumption (2.12) is satisfied. �
We point out that the condition for A, i.e. (2.12), is not a satisfactory one in the sense that the right-hand side

of (2.12) depends also on A. In other words, it is an implicit relationship for A. An ideal condition will be that the
right-hand side of (2.12) depends only on the values of un, but not on un+1. If this is the case, we can obtain an explicit
way to compute the value of A (which depends only in time) at each time level. In any case, the condition (2.12) only
serves as some intuited way in computations. If the solution of (2.11) is convergent (as �t is sufficiently small and N

is sufficiently large) then the condition (2.12) can be roughly regarded as

A � 3

2
max
t�0

∣∣u(x, t)
∣∣2 − 1

2
, a.e. in Ω.

However, for some larger values of A, the computations of (2.11) may lead to divergent solutions.
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2.2. Error estimate of the first order scheme

In this subsection, we will consider the error estimate for the first order time-stepping scheme (2.11). To do this,
the following lemmas are useful.

Lemma 2.3. [16,20] There hold

‖v‖4
L4 � c0‖v‖2

0‖v‖2
1, ∀v ∈ H 1

per(Ω), (2.17)

‖v‖4
L∞ � c1‖v‖2

0

(‖v‖2
0 + ‖�v‖2

0

)
, ∀v ∈ H 2

per(Ω), (2.18)

where c0 and c1 are positive constants depending on Ω .

Lemma 2.4. [13,14] Let yn, dn,hn and �t be non-negative numbers such that

yn+1 − yn � dnyn�t + hn�t, ∀n � 0. (2.19)

Then for all m � 1,

ym � exp

(
�t

m−1∑
n=0

dn

)(
y0 + �t

m−1∑
n=0

hn

)
. (2.20)

Theorem 2. Let u(t) be the solution of (1.1)–(1.3) and un be the solution of (2.11). If �t and A are chosen such that

�t � 2κ

κ + 8/7
, (2.21)

A � 3 max
x∈Ω

{∣∣un(x)
∣∣2 + ∣∣uN(x, tn) − un(x)

∣∣2} − 1, ∀n � 0, (2.22)

and if u0 ∈ H 4
per(Ω) and u satisfies the regularity result (2.8), then we have the following error estimate:∥∥u(tm) − um

∥∥
0 � c0(κ,u0)e

c(κ,u0)tm
(
�t + N−q

)
, q � 4. (2.23)

Proof. Let em = uN(tm) − um, where uN is the spectral Galerkin solution of (2.3). Integrating (2.3) from tn to tn+1
gives

1

�t

(
uN(tn+1) − uN(tn), v

) + A
(∇(

uN(tn+1) − uN(tn)
)
,∇v

)
+ (

�
(
uN(tn) − u3

N(tn)
)
, v

) + κ
(
�uN(tn+1),�v

) = (
En+1, v

)
, ∀v ∈ HN(Ω), (2.24)

for all n � 0, where

(
En+1, v

) = −A

( tn+1∫
tn

�(∂tuN)dt, v

)
+ 1

�t

( tn+1∫
tn

(t − tn+1)�
(
∂tuN − 3u2

N∂tuN

)
dt, v

)

+ κ

�t

( tn+1∫
tn

(t − tn)�∂tuN dt,�v

)
.

Subtracting (2.24) from (2.11) yields

1

�t

(
en+1 − en, v

) + A
(∇(

en+1 − en
)
,∇v

) + κ
(
�en+1,�v

)
+ (

3
∣∣un

∣∣2 − 1,∇en · ∇v
) + 3

(
2uN(tn)e

n − ∣∣en
∣∣2

,∇uN(tn) · ∇v
) = (

En+1, v
)
, (2.25)

for all v ∈ HN(Ω) and n � 0. Taking v = en+1 in (2.25) and using (2.14) yields
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1

2�t

(∥∥en+1
∥∥2

0 − ∥∥en
∥∥2

0 + ∥∥en+1 − en
∥∥2

0

) + κ
∥∥�en+1

∥∥2
0 + A

2

(∥∥∇en+1
∥∥2

0 − ∥∥∇en
∥∥2

0 + ∥∥∇(
en+1 − en

)∥∥2
0

)
+ 1

2

(
3
∣∣un

∣∣2 − 1,
∣∣∇en+1

∣∣2 + ∣∣∇en
∣∣2 − ∣∣∇(

en+1 − en
)∣∣2)

+ 3
(∣∣en

∣∣2 + 2unen,∇uN(tn) · ∇en+1) = (
En+1, en+1). (2.26)

Using the Young inequality, the Schwartz inequality and Lemma 2.3, we estimate the second last term in (2.26):

3
(
2unen,∇uN(tn) · ∇en+1) � −3

2

∥∥un∇en+1
∥∥2

0 − 6
(∣∣en

∣∣2
,6

∣∣∇uN(tn)
∣∣2)

, (2.27)

and

3
(∣∣en

∣∣2
,∇uN(tn) · ∇en+1)

= 3

2

(∣∣en
∣∣2

,−∣∣∇(
en+1 − en

)∣∣2 + ∣∣∇en
∣∣2 + ∣∣∇en+1

∣∣2) + 3
(∣∣en

∣∣2
,∇un · ∇en+1)

� 3

2

(∣∣en
∣∣2

,−∣∣∇(
en+1 − en

)∣∣2 + ∣∣∇en
∣∣2) − 3

2

(∣∣en
∣∣2

,
∣∣∇un

∣∣2)
� 3

2

(∣∣en
∣∣2

,−∣∣∇(
en+1 − en

)∣∣2) − 3

2

∥∥en
∥∥2

L∞
∥∥∇un

∥∥2
0

� 3

2

(∣∣en
∣∣2

,−∣∣∇(
en+1 − en

)∣∣2) − 3

2
c

1
2
1

∥∥en
∥∥

0

(∥∥en
∥∥

0 + ∥∥�en
∥∥

0

)∥∥∇un
∥∥2

0

� 3

2

(∣∣en
∣∣2

,−∣∣∇(
en+1 − en

)∣∣2) − κ

16

∥∥�en
∥∥2

0 − 3

2
c1

∥∥∇un
∥∥2

0

(
c
−1/2
1 + 6κ−1

∥∥∇un
∥∥2

0

)∥∥en
∥∥2

0. (2.28)

Similarly, the last term in (2.26) can be estimated:

(
En+1, en+1) �

tn+1∫
tn

(
(A + 1)‖�∂tuN‖0 + 3

∥∥�
(
u2

N∂tuN

)∥∥
0

)
dt

∥∥en+1
∥∥

0 + κ

tn+1∫
tn

‖�∂tuN‖0 dt
∥∥�en+1

∥∥
0

� 1

8

∥∥en+1
∥∥2

0 + κ

16

∥∥�en+1
∥∥2

0 + 4
(
κ + (A + 1)2)�t

tn+1∫
tn

∥∥�∂tuN

∥∥2
0 dt

+ 36�t

tn+1∫
tn

∥∥�
(
u2

N∂tuN

)∥∥2
0 dt. (2.29)

We can also estimate the last term above:
tn+1∫
tn

∥∥�
(
u2

N∂tuN

)∥∥2
0 dt

� 2

tn+1∫
tn

∥∥2∂tuN |∇uN |2 + 2uN∂tuN�uN

∥∥2
0 dt + 4

tn+1∫
tn

∥∥4uN∇uN · ∇∂tuN + u2
N�∂tuN

∥∥2
0 dt

� 16

tn+1∫
tn

(‖∂tuN‖2
L∞‖∇uN‖4

L4 + ‖uN‖2
L∞‖∂tuN‖2

L∞‖�uN‖2
0

)
dt

+ 8

tn+1∫
tn

(
16‖uN‖2

L∞‖∇uN‖2
L4‖∇∂tuN‖2

L4 + ‖uN‖4
L∞‖�∂tuN‖2

0

)
dt

� 40
(
c1 + 5c0c

1/2
1

) tn+1∫
‖uN‖4

2

(‖∂tuN‖2
0 + ‖�∂tuN‖2

0

)
dt.
tn
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Using the Young inequality and the Schwartz inequality gives

1

2

(∥∥∇en+1
∥∥2

0 + ∥∥∇en
∥∥2

0

)
� 7κ

16

(∥∥�en+1
∥∥2

0 + ∥∥�en
∥∥2

0

) + 1

7κ

(
2
∥∥en+1 − en

∥∥2
0 + 3

∥∥en
∥∥2

0

)
,

and
1

8

∥∥en+1
∥∥2

0 � 1

4

∥∥en+1 − en
∥∥2

0 + 1

4

∥∥en
∥∥2

0.

Applying the above inequalities to (2.26) and using Lemma 2.1 yields∥∥en+1
∥∥2
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0

)
�t + κ

(∥∥�en+1
∥∥2

0 − ∥∥�en
∥∥2

0

)
�t

+
(

1 −
(

1

2
+ 4

7κ

)
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,
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en+1 − en
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)
�t

� dn

∥∥en
∥∥2

0�t + 8
(
κ + (1 + A)2 + c0(κ,u0)

)
�t2

tn+1∫
tn

(‖∂tuN‖2
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0

)
dt, (2.30)

where

dn = κ−1 + 1

2
+ 3c

1/2
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∥∥∇un
∥∥2

0

(
c
−1/2
1 + 6κ−1

∥∥∇un
∥∥2

0

)
. (2.31)

Using (2.21)–(2.22) and setting

yn = ∥∥en
∥∥2

0 + A
∥∥∇en

∥∥2
0 + κ

∥∥�en
∥∥2

0,

hn = 8
(
κ + (1 + A)2 + c0(κ,u0)

)
�t

tn+1∫
tn

(‖∂tuN‖2
0 + ‖�∂tuN‖2

0

)
dt,

we deduce from (2.30) that yn+1 − yn � dnyn + hn for n � 0. Using Lemma 2.4, together with Lemma 2.1 and
Theorem 1, yield∥∥em

∥∥2
0 + A

∥∥∇em
∥∥2

0 + κ
∥∥�em

∥∥2
0 � c0(κ,u0)e

c(κ,u0)tm�t2. (2.32)

This result, together with Lemma 2.2, leads to the desired estimate (2.23). �
The condition (2.21) indicates that �t is linearly proportional to κ . It will be seen in the next section that if κ is

very small then the time-step �t has to be also very small in order to preserve solution accuracy.

3. Numerical experiments

A complete numerical algorithm also requires a discretization strategy in space. Since Fourier spectral method
is one of the most suitable spatial approximation methods for periodic problems [2,4,21], it will be employed to
handle the spatial discretization. To demonstrate the main ideas of the numerical schemes, we begin by considering
the problem (1.1)–(1.3) in one space dimension. We use the following Fourier transformations:

û(k, t) = 1

N

N−1∑
j=0

u(xj , t)e
−ikxj , −N/2 � k � N/2 − 1 (3.1)

uN(xj , t) =
N/2−1∑

k=−N/2

û(k, t)eikxj , 0 � j � N − 1. (3.2)

Denote f (u) = −u + u3. Taking Fourier transforms to (1.1) gives, for 0 � j � N − 1,

N/2−1∑ d

dt
û(k, t)eikxj = −

N/2−1∑
f̂ (k, t)k2eikxj − κ

N/2−1∑
û(k, t)k4eikxj , (3.3)
k=−N/2 k=−N/2 k=−N/2



Y. He et al. / Applied Numerical Mathematics 57 (2007) 616–628 623
Fig. 1. Numerical results obtained by using the second-order time-stepping method with N = 128. κ = 0.1.

Table 1
�tmax with different κ and A

κ A �tc for scheme (3.6) �tc for scheme (3.7)

κ = 0.1 A = 0 �tc ≈ 0.2 �tc ≈ 0.06
A = 0.5 �tc > 1 �tc ≈ 0.15
A = 1 �tc > 1 �tc ≈ 0.8

κ = 0.01 A = 0 �tc ≈ 0.02 �tc ≈ 0.004
A = 0.5 �tc ≈ 0.2 �tc ≈ 0.013
A = 1 �tc ≈ 0.2 �tc ≈ 0.07

κ = 0.001 A = 0 �tc ≈ 0.003 �tc ≈ 0.0004
A = 0.5 �tc ≈ 0.013 �tc ≈ 0.0013
A = 1 �tc ≈ 0.03 �tc ≈ 0.005

where

f̂ (k, t) = 1

N

N−1∑
j=0

f
(
u(xj , t)

)
e−ikxj , −N/2 � k � N/2 − 1.

Consequently, we have an ODE system in the Fourier space

d

dt
û(k, t) = −k2f̂ (k, t) − κk4û(k, t), −N/2 � k � N/2 − 1. (3.4)

The ODE system (3.4) can be approximated by using the classical first-order semi-implicit method:

ûn+1(k) = ûn(k) − k2�tf̂ n(k) − κk4�tûn+1(k), −N/2 � k � N/2 − 1. (3.5)
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Fig. 2. Numerical results obtained by using the second-order time-stepping method with N = 128. κ = 0.01.

Table 2
Numerical errors obtained by using the second-order time-stepping scheme (3.7) with κ = 0.001 and N = 256

�t L2-error L∞-error

A = 0 �t = 0.00005 3.98E−5 1.32E−4
�t = 0.0001 1.62E−4 5.40E−4
�t = 0.0005 unstable unstable

A = 0.25 �t = 0.00005 5.55E−5 1.85E−4
�t = 0.0001 2.21E−4 7.36E−4
�t = 0.0005 2.70E−3 8.98E−3

A = 0.5 �t = 0.00005 7.11E−5 2.37E−4
�t = 0.0001 2.78E−4 9.27E−4
�t = 0.0005 3.01E−3 1.00E−2

A = 1 �t = 0.00005 1.02E−4 3.40E−4
�t = 0.0001 3.89E−4 1.30E−3
�t = 0.0005 3.46E−3 1.15E−2

If we add an O(ut�t) term as discussed in the last two sections, we need to solve a modified system

ûn+1(k) = ûn(k) − Ak2�t
(
ûn+1(k) − ûn(k)

) − k2�tf̂ n(k) − κk4�tûn+1(k), (3.6)

for −N/2 � k � N/2 − 1. The corresponding second-order BDF/AB scheme is of the form:

3ûn+1(k) − 4ûn(k) + ûn−1(k)

2�t

= −Ak2(ûn+1(k) − 2ûn(k) + ûn−1(k)
) − k2[2f̂ n(k) − f̂ n−1(k)

] − κk4ûn+1(k), (3.7)
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Fig. 3. Solution of κ = 0.001 at t = 0.1, 1 and 5. Left: A = 0, �t = 0.0001; right: A = 0.5, �t = 0.0005. N = 256.

for −N/2 � k � N/2 − 1. The schemes (3.6) and (3.7) can be easily extended to two space dimensions, and we will
omit the details here. Standard FFTs have been used to speed up the computations.

We first investigate the stability issue. Consider the problem (1.1)–(1.3) in 1D with u0 being a random data. Define
�tc to be the largest possible time which allows stable numerical computation. In other words, if the time-step is larger
than �tc then the numerical solution will blow up. In Table 1, we list the values of �tc with different κ and different
choices of A, from which it is observed that time-steps can be increased a few times larger by adding a non-zero A

term in both first and second order semi-implicit schemes.
To demonstrate convergence property of the proposed numerical schemes, we present some numerical simulations

for the Cahn–Hilliard equation (1.1) with the second-order scheme (3.7). The simulations are carried out in the do-
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Fig. 4. Same as Fig. 3, except with N = 512.

main Ω = [0,2π]2, with a double periodic boundary condition. The initial condition is a random state by assigning
a random number varying from −0.05 to 0.05 to each grid point. The spatial discretization is based on a Fourier
pesudospectral approximation with N denoting the number of the Fourier mode.

Figs. 1 and 2 show the solutions for κ = 0.1 and κ = 0.01 with different values of A and �t : Fig. 1 with (A,�t) =
(0,001), (0.5,0.1), (1,0.1) and Fig. 2 with (A,�t) = (0,0.0001), (0.5,0.01), (1,0.01). It is observed that there is a
good agreement between the numerical results obtained by using standard semi-implicit time-stepping method (i.e.,
A = 0) with small �t and the modified method (3.7) with larger �t . Qualitatively, the results in Figs. 1 and 2 are in
good agreement with those presented in [11], where �t = 1/1200 is used.
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We now turn to time accuracy comparison. Since the exact solution of (1.1) is unknown, we use numerical results
of the second-order scheme (3.7) with �t = 10−7 and N = 256 as the “exact” solution. In our computations, we set
κ = 0.001 and the final time T = 1. Table 2 shows the L2-errors and L∞-errors obtained by using the second-order
scheme (3.7). It is seen that the numerical errors are almost the same for computations with and without using the A

terms, and larger time-steps can be used by adding an A term.
For 2D problems, we plot the contour lines of the solution at different times with A = 0, �t = 10−4 and A = 0.5,

�t = 5 × 10−4, respectively. Figs. 3 and 4 show the solution comparisons with 256 Fourier modes (i.e., N = 256)
and 512 modes, respectively. The agreement in each case is excellent. It is noted that the corresponding solutions in
Figs. 3 and 4 are different, since the random data using different sampling size N gives different initial condition.

4. Conclusions

In this work, we performed a preliminary study of larger time stepping techniques for the Cahn–Hilliard equation.
It is known that the time-step in a semi-implicit method can be orders of magnitude larger than that in an explicit
method. In this work, it is demonstrated that the classical semi-implicit method can be further improved by simply
adding a linear term consistent with the truncation errors in time. This treatment can be used to increase the time-step
size a few times larger. Some preliminary error and stability analysis has been performed, which provides some simple
conditions on the magnitude of the extra term.

The future works along this direction are to carry out more rigorous analysis for the large time-stepping techniques,
including more realistic condition for A. The conditions (2.12) and (2.22) depend on the numerical solutions and are
therefore unsatisfactory. Theoretical analysis for higher order schemes of type (3.7) also seems challenging.
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