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BOUNDARY LAYER RESOLVING PSEUDOSPECTRAL METHODS
FOR SINGULAR PERTURBATION PROBLEMS*

TAO TANG' AND MANFRED R. TRUMMER?

Abstract. Pseudospectral methods are investigated for singularly perturbed boundary value problems for ordinary
differential equations (ODEs) which possess boundary layers. It is well known that if the boundary layer is very small
then a very large number of spectral collocation points is required to obtain accurate solutions. We introduce here
a new effective procedure based on coordinate stretching and the Chebyshev pseudospectral method to resolve the
boundary layers. Stable and accurate restlts are obtained for very thin boundary layers with a fairly small number of
spectral collocation points.
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1. Introduction. We consider the pseudospectral (PS) method for the singular perturba-
tion boundary value problem (BVP) given by

1) ")+ p' () +gu) = fx), xe(=1,1), u-)=a, u(l)=S4,

where € > 0 denotes a fixed (small) constant. In many applications, (1) possesses boundary
layers, i.e., regions of rapid change in the solution near the endpoints, with widths o(1) as
€ — 0. Ithas been found that PS methods are attractive in solving this problem (see, e.g., [4]).
By clustering the gridpoints toward the boundaries, for example, as in the Chebyshev method
(x; = cos "Wj, j=0,1,..., N), PS methods are more efficient than finite difference methods
in resolving the boundary layers. However, in performance they still lag behind collocation
methods with adaptive mesh selection (e.g., COLSYS [1]).

Although PS methods are remarkably accurate in exact arithmetic, there are a number
of difficulties associated with its use. Especially with very small parameter ¢ in (1), large N
is required to obtain accurate solutions (see, e.g., [11]). In addition, ill conditioning of the
corresponding differentiation matrices with increasing N frequently causes degradation of the
observed precision. Furthermore, as clarified in recent studies by Trefethen and Trefethen and
Trummer {14, 15] the time step restrictions due to this ill conditioning can be more severe
than those predicted by the standard stability theory, if such methods were to be applied to a
time-dependent problem. Therefore, there has been considerable interest in recent years in
developing well-conditioned spectral methods (see, e.g., [5-7]).

Ife < 1(e.g.,€ < 1075)and the problem possesses a boundary layer of width O (¢), high
accuracy cannot be expected no matter how stable the spectral method is (see, e.g., [5, 11]).
In the Chebyshev PS method, the spacing between the collocation points near the boundary is
O(N~2). For good resolution of the numerical solution at least one of the collocation points
ought to lie in the boundary layer, which implies that N = O(e~'/2). If ¢ = 10~# then about
10* collocation points should be used, which is not practical in most calculations.

The Chebyshev spectral method and the finite difference method with coordinate stretch-
ing [8, 12] are two potentially useful methods for resolving the boundary layers. However,
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neither method works well if € « 1, since in this case N has to be very large. To avoid
this difficulty we combine the two methods (with a new coordinate stretching technique) to
solve (1). The idea is simple: first, the problem is replaced by an equivalent one using a
transformation of the computational domain; second, the transformed problem is solved with
the standard Chebyshev PS method. After the transformation more collocation points lie in
the boundary layer than before, and there are collocation points in the layer even for fairly
small values of N.

2. Transformations. Asmentioned in §1, at least one of the collocation points should lie
in a small neighborhood of x = =1 in order to resolve the boundary layers. Therefore, we in-
troduce a sequence of variable transformations so that there are some collocation points within
distance € from the boundaries +1 even for € « 1 and N = 0(10). These transformations
are iterated SINE functions x = g,,(y),m =0, 1, ..., where

@ 2=y, gn®) =sin(Zen1), m21

The theorem below characterizes these transformations based on the relative spacing of the
transformed Chebyshev—Gauss—-Lobatto nodes.

THEOREM 2.1. The following two statements hold for any integer m > 0. (a) The map g,
is one-to-one and g, ([—1,1]) = [-1,1). (b) If y; = cos(%’), j=0,...,N, then

8 nz 2u+l
gm(¥0) = gm(¥1) = gm(Yn-1) — gm(yn) = =) (4—ﬁ) (1+ow™).
Proof. For (a) We need to show that g/ (y) # O for y € (-1,1), |gn(¥)| < 1 and
8m(£1) = %1, which can be proved by induction (see also (6)). To establish (b), we note that

£0(0) — g0(31) = & (1 + O(N2)). Assuming that

2 2k+1

) (1+oWw%)

8 [n
g(yo) — &) = = (Ev'

and noting that g¢(yo) = gk+1(yo) = 1, we obtain

84100 — e On) = 1 —sin (2.8 00))

e 8 [/72\2" -
2

—1- 4 (ﬁ)2k+l(l+0(N_2)) _i(ﬂ )2*+z(1+0N_2)
- cos 7 \4N T a2 \aN N7)-

Since gm(yn) = —gm(yo) and gm(yn-1) = —gm(31), the proof of (b) is hereby com-
plete. 0

From Theorem 2.1 it can be expected that the transformations (2) together with the
Chebyshev PS method can deal with extremely small boundary layers with a fairly small
number of collocation points. For m = 1, 2, and 3 (which correspond to one, two, and three
SINE transformations), the distance between each boundary point and its nearest interior point
is O(N™*), O(N~?), and O(N~19), respectively. Therefore, even for very small € such as
€ = 10712, at least one collocation point lies in the boundary layer even for moderate values
of N, if two or three SINE transformations are used.
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3. The transformed equations. We transform the singularly perturbed linear BVP (1)

via the variable transformation x > y(x) (or x = x(y)) into the new BVP

3) v (y) + POV + Qv (y) = F(y),
where v is the transplant of u, v(y) = u(x(y)). The transformed coefficients are

p(x) y'(x)

4 P = ’
@ » ¥ (x) Ey/(x)Z

q(x) f(x)
5 =— F =,
) O

where again x = x(y). Itis clear from (3)—(5) that for any variable transformation x > y(x)
the two quantities 1/y’(x) and y”(x)/[y’'(x)]* are of interest and should be easy to calculate.

We now consider the transformation x = x(y) := gm(y) of §2. In this case, the compu-
tation of 1/y’(x) is straightforward. Differentiating the recursion (2) we obtain

©) 80 =1 g =7 c0s(Ten10))gnr®, m21.
Since y'(x) = 1/g.,(y), we have

1 ml o 7
O] 7 = !:[0 (5 cos (Egk(y))), m>1.

Now we define the functions A, (x), mapping [—1, 1] onto itself, recursively via
2
®) ho(x) 1= x, hm(x) := p arcsin (hy—1(x)), m>1.

LEMMA 3.1. A,, = g;lform =0,1,....
Proof. The case m = 0 is trivial. Form > 1, we let z = A, (gm(y)). It can be shown by
induction that fork =0, ..., m,

® 8k(2) = hm_r(gm(¥)).

For k = m we therefore obtain

8m(2) = ho(gm(¥)) = gm(y),

and, since g,, is injective, it follows y = z;i.e., y = hn(gn(y)). ]
We now proceed to find a recursion for the quantity k), (x)/[h), (x)). From (8) we obtain
(10) sin (Zhn()) =hna(),  m2 1.

Differentiating (10) twice with respect to x yields

any  Zcos ( n(¥)) Bp(®) = Hpp_y(0),

2
2
12) - (%) sin ( ,,,(x)) (h, )" + ( ) cos (2 h,,,(x)) () = B, (x).
Finally, using (11) and (12) we obtain the recursion
hl(x) b1 hy_(x)
(13) — = hm(x)) + —cos —RAp (X)) ———.
(h’ (x))2 2 ( ) ( 2 ) (hl 1(.x))2

Note that hy(x) = 1 and hg(x) = 0. Since y(x) = h,,(x), the quantity y”(x)/[y (x)}? can be
computed easily using (13).
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TaBLE 1
Maximum errors for Example 1 (*-" indicates the error is greater than 10).

L I | N=32 N=64 N =128 N =256 N =512 |

m=0 4.39(00) 3.02(-01) 1.60(—04) 6.84(—14) 2.36(—13)

€e=103 || m=1 | 1.50(-01) 427(-04) 222(-11) 9.30(-14) 2.13(-13)
m=2 | 220(-02) 391(-04) 1.74(-09) 557(-12) 9.02(-11)
m=1 - 8.37(00) 2.60(00) 1.14(-01) 2.32(-05)

€e=10% |l m=2 4.77(00) 2.11(-01) 7.50(—03) 6.82(—07) 1.10(-10)
m=3 1.01(00) 1.73(-01) 2.50(—03) 2.59(—07) 1.08(—10)
m=1 - - - — _

e=10"° || m=2 | 6.56(—01) 3.20(-01) 3.03(—01) 9.00(-02) 6.25(-5)
m=3 2.66(00) 9.11(-01) 2.33(-02) 3.06(—04) 1.08(—07)

4. Examples. We denote by Qy the space of polynomials of degree < N. We collocate
(3) at the Chebyshev—Gauss—Lobatto nodes y; = cos ,f=1,. — 1, leading to the
PS method for (3) as follows: find vy € Qu such that

(14) evyOy) + POy G + QD) =F(y), j=1,...,N—1;
(15) w(-D=ea wv1)=4

To solve (14) and (15), we have to solve a matrix equation of the form AV = b, where
A e RVN-DXWN-D and v b € R¥1, with V = (W, ..., Vy_1)T. The V; = un(y;) are
approximations of v(y;). The matrix equation is solved in MATLAB, which uses the standard
LINPACK routines. _

Example 1. Our first example has variable coefficients and the solution develops two
boundary layers of width O(¢) near x = +1. The equation is

1 X+ - 1 X
(16) eu’(x) — xu'(x) — u(x) = f(x) = (x ': - 1) eF 2 (x — + 1) e
where f is chosen such that the function

(17) u(x) = e 52 4 2%

is an exact solution of the differential equation. The boundary conditions are u(—1) = 1
and u(+1) = 2. Note that function (17) will satisfy these boundary conditions to machine
precision (machine epsilon equals 2.22 * 10716 in double precision) for all values of € < 0.05.

This is a difficult problem since high resolution is needed to avoid oscillations in the
middle of the interval. The Chebyshev PS method without transformation fails to resolve
the solution satisfactorily for e = 1074, even with N = 256 (the maximum error, defined
by max;{|v(y;) — V;l}, is approximately equal to 0.13 in this case, compared with errors of
approximately 2 x 10‘12 form = 1andm = 2). Table 1 contains the results of our experiments
fore = 1073, =105, ande = 107°.

Figure 1 shows the plot of the solution for € = 10~°, N = 256, and m = 3, and Figure 2
shows the corresponding error. It may not come as a surprise to find the major portion of the
error located in the middle of the interval since we have a coarser grid spacing there. However,
it is interesting to note that in this case the strategy of moving points out of the region of large
errors actually helps in the solution process. This indicates that a strategy for adaptive gridding
will have to be rather sophisticated, as it would appear natural to move more points into the
region exhibiting large errors.
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FiG. 1. Numerical solution of Example 1 for e = FIG. 2. Error of Example 1 fore = 1079, N =
10-°, N =256, andm = 3. 256, andm = 3.

Example 2. Our second example is a nonlinear one; namely the stationary Burgers
equation

(18) euw’'(x) +u(x)u'(x) =0, xe[-1,1],
with boundary conditions chosen such that the function
1
(19) u(x) = tanh (x ki )
2¢

is an exact solution. This function is 0 at the left boundary, and extremely close to 1 for most
of the interval, with a boundary layer of width O(e) at x = —1. The transformed equation
with new variable y = y(x) is simply

” 1 Y (x)
20) ev (y) + [y’(x) v(y) + ey’(x)?-
The solution is computed by Newton’s method with v = 1 as an initial guess; for small
values of the parameter € a continuation procedure for € to obtain better initial guesses is
advisable, and at times essential. Newton’s method converges quickly and often in monotone
(convergence problems during the first few iterations appear to indicate insufficient resolution
of the discretization). Table 2 lists the results for e = 103, ¢ = 1075, and € = 1079,

A similar procedure has been applied to obtain numerical solutions for

] v(y) =0, ye[~1,1].

¥3)) eu’(x) + %u(x)u’(x) - %u(x) =0, x e[-1,1],

with boundary conditions u(—1) = u(1) = % This problem has the same type of nonlinearity
as the stationary Burgers equation; it has been studied in detail in [9], and has been solved
with COLSYS [2, pp. 382-383]. We find that for € = 10™* and N = 64 the method without
transformation is developing oscillations near the boundary layer, whereas the approximation
obtained with one SINE transformation (m = 1) easily resolves the boundary layer. Our
results appear to be more accurate than the ones obtained with COLSYS for a comparable
number of collocation points. In fact, with m = 2 we have no problem in resolving the
boundary layer with N = 128 for € as small as € = 1078 (see [13] for more details).



PSEUDOSPECTRAL METHODS FOR SINGULAR PERTURBATION PROBLEMS 435

TABLE 2
Maximum errors for Example 2 (“x” indicates an error > 1 or convergence difficulties in the Newton process).

[ I [ N=32 N=64 N =128 N =25 ]

m=0 * 1.8144(—02) 3.6293(—04) 3.3776(—07)

€e=10"3 [ m=1 | 3.5818(-02) 4.5561(—04) 1.3573(-07) 3.4528(—14)
m=2 | 1.6063(—02) 3.6709(—04) 6.3134(—08) 4.9238(—14)
m=1 * * 4.3554(-02) 1.3762(—03)

€e=10"% | m=2 * 2.5004(—02) 2.4636(—03) 9.7656(—07)
m=3 * 3.7734(—02) 7.1848(-04) 2.3793(-07)
m=1 * * * *

e=10"7 |[m=2 * * * 6.1103(-03)
m=3 * * 6.7784(~03) 1.0602(—04)

5. Conditioning. Some recent work on spectral methods for BVPs is concerned with
improving the condition numbers of the matrices for which linear systems have to be solved
(e.g., [3, 5, 7]). Since the second-order Chebyshev differentiation matrix has a condition
number O(N*), the corresponding linear systems quickly become very ill conditioned, even
for moderate values of N. Interestingly enough, these large condition numbers do not appear
to affect the accuracy in the solutions nearly as badly as one would expect. This was first
observed by Berrut {3], who transformed the BVP to the circle and solved it with the much
better conditioned Fourier spectral method, without seeing any improvement in the accuracy
of solutions. However, the large condition numbers would be important in time stepping (so
in this sense the PDE case is more difficult than the ODE case), or, if one were to solve the
linear systems by iterative methods.

We would like to give a heuristic argument why our solutions are surprisingly accu-
rate (we get close to machine precision, even in cases where the condition number of
the linear system is approximately 10%). Denoting the n-by-n matrix (n = N — 1)
of our linear system by A, we compute the singular value decomposition A = WE VT,
¥ is a diagonal matrix with the singular values 0y > o = --- > 0, > 0 on its di-
agonal. The singular vectors vy, v, ..., are the columns of V. Both V and W are or-
thogonal n-by-n matrices. It is easy to see that the maximum magnification of roundoff
errors in the right-hand side occurs when the exact solution # of the system is a multi-
ple of the first singular vector v; and the perturbation du is entirely in the direction of the
last singular vector v,. Figure 3 shows plots of four of the singular vectors! for the ma-
trix A of Example 1, with ¢ = 1072, Singular vectors belonging to large singular values
are highly oscillatory, whereas singular vectors associated with small singular values are
smooth (here, v; has n 4+ 1 — j local extrema). This is not surprising, as A is a discretization
of a differential operator, and therefore the statement above holds not only for Example 1.
The exact solution has a substantial smooth component and roundoff errors cannot be ex-
pected to produce a completely smooth perturbation to the exact solution—on the contrary,
a nonsmooth perturbation is much more likely to emerge. Thus, the actual amplification
of the roundoff error is much smaller than the worst-case scenario of an amplification by
cond(A) = oy /0,.

The condition numbers of the matrices generated by our repeated SINE transformations
exhibit the same growth rates with N as the matrices for the original problem. The conditioning
problem is largely unaffected by the transformation.

1The vectors are plotted against a stretched version of the interval (0, 1) to make the oscillations near the
boundaries more visible.
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v_100 v_125

FiG. 3. Singular vectors v1, vi2, vio0, and vi2s of A of Example 1 for ¢ = 1072, plotted against a stretched
interval (0, 1).

Denoting again the Chebyshev—-Gauss-Lobatto nodes by y; = cos %1, J=0,...,N, the
first-order Chebyshev differentiation matrix D is given by

¢ (—1)/+* .
22) Dy =2
Ci Ye— Y
(23) Du=-——2 _ k0N
2(1 _ykz)’ ’ ’
2N2 +1
(24) Dy = —Dyy = ra

where c; = 1, except for ¢co = cy = 2. It has been observed [4] that for large N the direct
implementation of (22)—(24) suffers from cancellation, causing errors in the elements of the
matrix D. Thus, it is advisable to replace (22) and (23) using trigonometric identities by the
formulas

@25) Dy =2 SnlVitl k)
Y= G s (K + /@Y sm (G = pr/aNy <7
- Yk
(26) Dy = ey KEON

Finally, to avoid computing the SINE of arguments larger than /2 in absolute value, one can
take advantage of the symmetry property

27 Dy_in—j = Dy;.

Thus the most accurate method of computing D is using formulas (25)~(26) to find the upper
left triangle of D (i.e., compute Dy; with k + j < N), and then use relation (27) for the other
elements. This also appears to be more efficient (at least in our MATLAB implementation).
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It should be noted that the effect of a more accurate matrix D cannot always be felt. To be
noticeable, N has to be quite large, and the approximate solution must be extremely accurate.
For Example 1 (see §4) with € = 1072, N = 128, and m = 2, the maximum error is
1.29 % 10~14, if the more accurate D is used, whereas the error with D computed by formulas
(22)-(24)is 1.22 % 10722

6. Conclusions. Very thin boundary layers still must have one or more collocation points
within the boundary layer. This results in extremely fine discretizations if the relative spacing
of the gridpoints remains unchanged. Although the Chebyshev PS methods are more efficient
than finite difference methods in resolving boundary layers, for € « 1 they still may need
extremely large N to produce reasonable results, as discussed in §1. A much better approach
for resolving the boundary layer is to use a mapping. However, a single mapping such as that
of [8] is often not sufficient when ¢ « 1.

To obtain good resolution for boundary layer problems, at least one of the grid points
should lie in the boundary layer no matter how small the boundary layer is. The iterated SINE
transformations introduced in §2 provide a very useful coordinate stretching technique to
achieve this goal. Theoretically, as indicated in Theorem 2.1, these particular transformations
together with the Chebyshev PS method can deal effectively with very small boundary layers
using only a fairly small number of collocation points. Even for very small € suchas € = 1072,
two or three SINE transformations with N =~ 100 are found to be sufficient to resolve the
boundary layer, while most of the previously reported finite difference or spectral calculations
cannot handle the case when ¢ is as small as 10~°.

Section 3 of this paper gives a practical procedure for implementing the transformations.
The transformation technique is also successful for nonlinear BVPs whose solutions have
boundary layers. To date the most reliable methods for solving two-point BVPs are based
on the collocation method with adaptive mesh selection (e.g., COLSYS [1, 2]). However,
for boundary layer problems the present method is a serious competitor, in particular when
spectral accuracy is a desirable feature.

The ill conditioning of the linear systems to be solved does not appear to be a serious
problem as our experiments and the heuristic argument in §5 indicate. However, care must be
taken if one uses these matrices in explicit time stepping in the time-dependent case, or, in the
ODE case, if iterative methods are employed to solve the linear system.

Many practical problems possess boundary layers. For example, viscous flows have
boundary layers next to solid surfaces where the tangential velocity is reduced to zero. The
use of the finite difference method or the Chebyshev PS method is expensive for high Reynolds
number flows. The numerical technique introduced in this work can be applied to solve more
practical problems (see, e.g., [10]).
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