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Abstract. Spline Galerkin approximation methods for the Sherman-Lauricella integral equation
on simple closed piecewise smooth contours are studied, and necessary and sufficient conditions
for their stability are obtained. It is shown that the method under consideration is stable if and
only if certain operators associated with the corner points of the contour are invertible. Numerical
experiments demonstrate a good convergence of the spline Galerkin methods and validate theoretical
results. Moreover, it is shown that if all corners of the contour have opening angles located in interval
(0.1π, 1.9π), then the corresponding Galerkin method based on splines of order 0, 1 and 2 is always
stable. These results are in strong contrast with the behaviour of the Nyström method, which has a
number of instability angles in the interval mentioned.
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1. Introduction. Let D be a simply connected planar domain bounded by a
piecewise smooth curve Γ. It is well known that the solution of various boundary
value problems for the biharmonic equation

∆2u(x, y) ≡ ∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+
∂4u

∂y4
= 0, (x, y) ∈ D,

where ∆ is the Laplace operator, can be constructed via solutions of boundary integral
equations. Consider, for example, the biharmonic Dirichlet problem

∆2|D = 0,

u|Γ = f1,
∂u

∂n

∣∣∣
Γ
= f2,

(1.1)

where ∂u/∂n denotes the normal derivatives and f1, f2 are sufficiently smooth func-
tions defined on the boundary Γ. This problem arises in various applications, in partic-
ular in the theory of viscous flows with small Reynolds numbers, bacteria movement,
deflection of plates, elastic equilibrium of solids, sintering [3, 14, 17, 20, 22, 23, 24].

Setting z = x + iy, i2 = −1, one can identify D with a domain in the complex
plane C. Let us equip the curve Γ with the counterclockwise orientation and consider
the Sherman–Lauricella equation

ω(t) +
1

2πi

∫

Γ

ω(ζ) d ln

(
ζ − t

ζ − t

)
− 1

2πi

∫

Γ

ω(ζ) d

(
ζ − t

ζ − t

)
= f(t), t = x+ iy ∈ Γ,

(1.2)
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where the bar denotes the complex conjugation and ω is an unknown function. Equa-
tion (1.2) originated in works of G. Lauricella (see [19]). He was the first who used
the method of integral equations in elasticity. Later D.I. Sherman rewrites Lauri-
cella equation in a complex form and proposes a new simple way to derive it [27].
The equation (1.2) is uniquely solvable in appropriate functional spaces, provided f
satisfies certain smoothness conditions and

Re

∫

Γ

f(t) dt = 0, (1.3)

[13, 20, 24]. Moreover, let α = α(x, y), (x, y) ∈ Γ denote the angle between the real
axis R and the outward normal n to Γ at the point (x, y) and let l be the unit vector
such that the angle between l and the real axis is α−π/2. If one defines the function
f = f(t) = f(x, y), t = x+ iy by

f(t) := e−iα

(
f2(t) + i

∂f1
∂l

(t)

)
, t ∈ Γ, (1.4)

then the solution of the Sherman-Lauricella equation (1.2) with such right-hand side
f can be used to determine a solution of the boundary value problem (1.1). More
precisely, if ω is a solution of the equation (1.2) with the right-hand side (1.4), then
consider two holomorphic functions ϕ = ϕ(z) and ψ = ψ(z), z ∈ D defined by

ϕ(z) =
1

2πi

∫

Γ

ω(ζ)

ζ − z
dζ, z ∈ D, (1.5)

ψ(z) =
1

2πi

∫

Γ

ω(ζ)

ζ − z
dζ +

1

2πi

∫

Γ

ω(ζ)

ζ − z
dζ − 1

2πi

∫

Γ

ζω(ζ)

(ζ − z)2
dζ, z ∈ D. (1.6)

According to [20], the boundary values of the functions ϕ and ψ satisfy the condition

ϕ(t) + tϕ′(t) + ψ(t) = e−iα

(
f2(t) + i

∂f1
∂l

(t)

)
, t ∈ Γ.

Therefore, by [11, Lemma 5.1.4] the function

u(x, y) := Re (zϕ(z) + ψ(z)), z = x+ iy ∈ D (1.7)

is the solution of the biharmonic Dirichlet problem (1.1).
Thus if an exact or an approximate solution of the integral equation (1.2) is

known, then a solution of the biharmonic problem (1.1) can be obtained by using
formulas (1.5), (1.6) and (1.7). Therefore, the main effort should be directed to the
determination of solutions of the Sherman-Lauricella equation (1.2). Note that the
Nyström method for the Sherman-Lauricella equation on smooth contours has been
used in [14, 18] to find an approximate solution of biharmonic problems arising in fluid
dynamics. However, the authors of these works do not provide any stability analysis
for the method used. In the case of piecewise smooth curves, the study of the stability
requires even more efforts since the integral operators in (1.2) are not compact. For
piecewise smooth contours, conditions of the stability of the Nyström method are
established in [6, 7]. These results have been used in [8] in order to construct a
very accurate numerical method to find solutions of the biharmonic problem (1.1) in
piecewise smooth domains in the case of piecewise continuous boundary conditions.
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In the present paper, we consider spline Galerkin methods for the equation (1.2)
and study their stability. It is shown that the corresponding method is stable if and
only if certain operators Rτ from an algebra of Toeplitz operators are invertible. These
operators depend on the spline space used and on the opening angles of the corner
points τ ∈ Γ. Unfortunately, nowadays there is no analytic tool to verify whether
the operators in question are invertible or not. Nevertheless, we propose a numerical
approach which can handle this problem. Thus spline Galerkin methods are applied
to the Sherman–Lauricella equation on simple model curves and the behaviour of the
corresponding approximation operators provide an information about the invertibility
of the operators Rτ , τ ∈ Γ. Note that in comparison to the Nyström method, the
implementation of spline Galerkin methods requires more preparatory work. On the
other hand, numerical experiments suggest that these methods have no ”critical”
angles located in the interval [0.1π, 1.9π], i.e. if the boundary Γ does not possess
corners with opening angles from the interval mentioned, then these methods are
stable. In a sense, this is similar to the behaviour of the corresponding approximation
methods for Sherman–Lauricella and Muskhelishvili equations in the case of smooth
curves which always converge [5, 7, 10]. Of course, one also has to study the opening
angles in the intervals (0, 0.1π) and to (1.9π, 2π) but this is a time consuming operation
and will be considered elsewhere.

2. Splines and Galerkin method. We start this section with the construction
of spline spaces on the contour Γ. Let γ = γ(s), s ∈ R be a 1-periodic parametrization
of Γ, and let MΓ denote the set of all corner points τ0, τ1, . . . , τq−1 of Γ. Without loss
of generality we can assume that τj = γ(j/q) for all j = 0, 1, . . . , q − 1. In addition,
we also suppose that the function γ is two times continuously differentiable on each
interval (j/q, (j + 1)/q) and

∣∣∣∣γ
′

(
j

q
+ 0

)∣∣∣∣ =
∣∣∣∣γ

′

(
j

q
− 0

)∣∣∣∣ , j = 0, 1, . . . , q − 1.

Note that the last condition is not very restrictive and can always be satisfied by
changing the parametrization of Γ in an appropriate way.

Let f and g be functions defined on the real line R, and let f ∗ g denote the
convolution

(f ∗ g)(s) :=
∫

R

f(s− x)g(x)dx

of f and g. If χ is the characteristic function of the interval [0, 1),

χ(s) :=

{
1 if s ∈ [0, 1),
0 otherwise,

then φ̂ = φ̂(d)(s) refers to the function defined by

φ̂(d)(s) :=

{
χ(s) if d = 0,

(χ ∗ φ̂(d−1))(s) if d = 1, 2 . . . .

Recall that for any given non-negative integer d, the function φ̂ generates spline spaces
on R. Thus if an n ∈ N is fixed, then closure in the L2-norm of the set of all finite
linear combinations of the functions φ̂nj(s) := φ̂(ns − j), j ∈ Z constitutes a spline
space on R.
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Using the above defined spline functions, one can introduce spline spaces on the
contour Γ. More precisely, for a fixed non-negative integer d and an n ∈ N, n ≥ d+1,
we denote by Sd

n = Sd
n(Γ) the set of all linear combinations of the functions

φ̂nj(t) := φ̂(ns− j), t = γ(s) ∈ Γ, j = 0, 1, . . . , n− (d+ 1), s ∈ R,

the support of which belongs entirely to one of the arcs [τk, τk+1), k = 0, . . . , q and

τq+1 := τ0. This definition is correct since the support supp φ̂ of the function φ̂ is
contained in the interval [0, d+ 1] [26] and γ is a 1-periodic function.

In what follows, we also consider operators acting on various subspaces of the
Hilbert space l̃2 = l2(Z) of all sequences (ξk) of complex numbers ξk, k ∈ Z satisfying
the condition

||(ξk)|| :=
(
∑

k∈Z

|ξk|2
)1/2

<∞.

The space l̃2 is closely connected to spline spaces on the real line R. Indeed, the
following result is true.

Lemma 2.1 ([4]). Let n ∈ N. Then there are constants c1 and c2 such that for

any sequence (ξk) ∈ l̃2 the relations

||(ξk)|| ≤ c1
√
n
∣∣∣
∣∣∣
∑

k∈Z

ξkφ̂nk

∣∣∣
∣∣∣
L2(R)

≤ c2√
n
||(ξk)||

hold.
Further, let L2(Γ) denote the set of all Lebesgue measurable functions f such

that

||f ||L2 :=

(∫

Γ

|f(t)|2 |dt|
)1/2

<∞,

and let AΓ : L2(Γ) → L2(Γ) be the operator corresponding to the Sherman-Lauricella
equation (1.2). It is well known that the operator AΓ is not invertible on the space
L2(Γ) [20]. On the other hand, the invertibility of the corresponding operator is
a necessary condition for the applicability of any Galerkin method to any operator
equation. Therefore, for the approximate solution of the equation (1.2) we use the
equation with an operator BΓ instead of AΓ and choose the right-hand sides f of the
initial equation (1.2) from a suitable subspace of L2(Γ). More precisely, let W 1

2 (Γ)
denote the closure of the set of all functions f with bounded derivatives in the norm

||f ||W 1
2
:=

(∫

Γ

|f(t)|2 ds+
∫

Γ

|f ′(t)|2 ds
)1/2

,

and let TΓ : L2(Γ) → L2(Γ) refer to the operator defined by

TΓω(t) :=
1

(t− a)

1

2πi

∫

Γ

(
ω(ζ)

(ζ − a)2
dζ +

ω(ζ)

(ζ − a)2
dζ

)
, (2.1)

where a is a point in D.
Theorem 2.2. If Γ is a simple closed piecewise smooth contour, then the equation

BΓ = (AΓ + TΓ)ω = f (2.2)
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is uniquely solvable for any right-hand side f ∈ L2(Γ). Moreover, if f ∈ W 1
2 (Γ)

and satisfies condition (1.3), then the solution of equation (2.2) is simultaneously a
solution of the original Sherman-Lauricella equation (1.2).

Note that the proof of Theorem 2.2 involves information about the behaviour of
the operators AΓ and BΓ in both L2(Γ) and W 1

2 (Γ) spaces. All the results concerning
the operators AΓ and BΓ acting on W 1

2 (Γ) and similar operators connected with the
Muskhelishvili equation follow from [13] where they proved even in a more general
context of the spaces W 1

p (Γ, ρ), 1 < p < ∞ with Khvedelidze weights ρ. The same
operators but acting in Lp(Γ, ρ) have been considered in [10]. In the special case of L2

space, Fredholm properties of the Muskhelishvili and Sherman-Lauricella operators
are also presented in [7, 9].

Thus if the right hand sides f ∈ W 1
2 (Γ), an exact or an approximate solution

of the equation (1.2) can be derived from the corrected Sherman-Lauricella equation
(2.2). In the present paper, we employ spline based Galerkin methods to the equation
(2.2) and study their stability and convergence. Let us describe these methods in
more detail. First of all, we normalize all the basis spline functions used. If n is fixed,
then for any j ∈ Z the norm ||φ̂nj || of any basis element φ̂nj is

||φ̂nj ||2 =
1

n

∫ d+1

0

φ̂2(s) ds.

Therefore, if νd refers to the number

νd :=

(∫ d+1

0

φ̂2(s) ds.

)−1/2

, (2.3)

then

φnj := νd
√
n φ̂nj , j ∈ Z (2.4)

are unit norm vectors. An approximate solution of the equation (2.2) is sought in the
form

ωn(t) =
∑

φnk∈Sd
n(Γ)

akφnk(t), (2.5)

the coefficients ak of which are obtained from the following system of algebraic equa-
tions

(BΓωn, φnj) = (f, φnj), φnj ∈ Sd
n(Γ), (2.6)

where

(u, v) :=

∫

Γ

u(t)v(t) |dt|, u, v ∈ L2(Γ).

An important problem now is to study the solvability of the equations (2.6) and
convergence of the approximate solutions to an exact solution of the original Sherman–
Lauricella equation (1.2). In Section 3, this problem is discussed in a more detail but,
at the moment, we would like to illustrate the method by a few numerical examples.
Thus we present Galerkin solutions of the equation (1.2) with the right-hand side
f = f1,

f1(z) = f(x, y) = 4x3 − 12xy2 + i(4y3 − 12x2y); z = x+ iy ∈ Γ, (2.7)
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on the unit square and rhombuses, and trace the evolution of the solution when
the initial contour is transformed from the unit square into rhombuses with various
opening angle α. Some of these contours have been used in [7] in order to illustrate
the behaviour of the Nyström method. Note that in the corresponding examples from
[7], approximate solutions of the equation (1.2) with the right-hand side

f2(z) = |z|

have been determined. We apply the spline Galerkin method to the equations with
such right-hand side, too. The results obtained have a very good correlation with [7]
and the error evaluation for both cases are reported in Table 2.1, where Efi

n,α denotes
the relative error ‖ω2n−ωn‖2/‖ω2n‖2 computed for the righthand side fi and equation
(1.2) is considered on the rhombus with the opening angle α. In addition, Figures

Table 2.1
Relative error of the spline Galerkin methods

n Ef1
n,π/2 Ef1

n,π/3 Ef1
n,π/4 Ef1

n,π/5 Ef2
n,π/2 Ef2

n,π/3 Ef2
n,π/6

128 0.0373 0.6194 1.3577 2.1716 0.0121 0.0217 0.0205
256 0.0198 0.0268 0.2046 0.6169 0.0067 0.0112 0.0245
512 0.0096 0.0059 0.0616 0.1888 0.0045 0.0102 0.0193

2.1–2.4 show the convergence of the approximate solutions of the equation (1.2) with
the right-hand side (2.7) obtained by the Galerkin method based on the splines of
degree d = 0 and the transformation of these approximate solutions when n increases.

Let us mention a few technical details related to the examples below. Thus the
rhombus with an opening angle α is parameterized as follows,

γ(s) =





4s− cos
(α
2

)
eiα/2 if 0 ≤ s < 1/4,

(4s− 1)eiα − i sin
(α
2

)
eiα/2 if 1/4 ≤ s < 1/2,

−(4s− 2) + cos
(α
2

)
eiα/2 if 1/2 ≤ s < 3/4,

−(4s− 3)eiα + i sin
(α
2

)
eiα/2 if 3/4 ≤ s ≤ 1.

(2.8)

We also have to compute the scalar products (BΓωn, φnj). Recall that suppφnj ⊂
[j/n, (j+d+1)/n] and use the Gauss-Legendre quadrature rule with quadrature points
which coincide with the zeros of the Legendre polynomial P24(x) on the canonical
interval [−1, 1], scaled and shifted to the interval [j/n, (j+d+1)/n]. More specifically,
the corresponding formula is

(BΓωn, φnj) =

∫ (j+d+1)/n

j/n

BΓωn(γ(s))φnj(γ(s))ds ≈
24∑

k=1

wkBΓωn(γ(sk))φnj(γ(sk)),

(2.9)
where wk, sk are the Gauss-Legendre weights and the Gauss-Legendre points on the
interval [j/n, (j + d + 1)/n]. In order to find the values of the corresponding line
integrals at the Gauss-Legendre points, the composite Gauss-Legendre quadrature is
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used [7, Section 3], namely,

∫

Γ

k(t, τ)x(τ)dτ =

∫ 1

0

k(γ(σ), γ(s))x(γ(s))γ′(s)ds

≈
m−1∑

l=0

r−1∑

p=0

wpk(γ(σ), γ(slp))x(γ(slp))τ
′
lp/m,

(2.10)

where τ ′lp = γ′(slp) with m = 40 and r = 24.
Table 2.1 and Figures 2.1-2.2 show a good convergence of approximate solutions

if the corner point of the contour has an opening angle close or equal to π/2. On the
other hand, the presence of opening angles of a small magnitude can cause problems
and leads to a convergence slowdown (see Figures 2.3-2.4). Note that although the
focus of this work is on the stability, the error estimates presented in Table 2.1 are
comparable with estimates of the recent work [16] for fast Fourier–Galerkin method for
an integral equation used to solve boundary value problem (1.1) in smooth domains.
Moreover, further improvement of the convergence rate is possible if for the approxi-
mations of singular integrals and inner products arising in the Galerkin method one
employs graded meshes of various kind [2, 15].

3. Galerkin method. Local operators and stability. Our next task is
to find conditions of applicability of the spline Galerkin methods to the equation
(2.2). It is worth mentioning that for smooth contours Γ, the methods considered
here are always applicable and provide satisfactory results. For details the reader
can consult [5], where similar methods for the Muskhelishvili equation on smooth

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2.1. Approximate solution ωn(t) of the Sherman–Lauricella equation (1.2) on the unit square

Γ with f := f1 defined by (2.7) and d = 0. From the left to the right: n = 128, 256, 512, 1024
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Fig. 2.2. Approximate solution ωn(t) of the Sherman–Lauricella equation (1.2) on the rhombus Γ,
α = π/3 with f := f1 defined by (2.7) and d = 0. From the left to the right: n = 128, 256, 512, 1024
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Fig. 2.3. Approximate solution ωn(t) of the Sherman–Lauricella equation (1.2) on the rhombus Γ,
α = π/4 with f := f1 defined by (2.7) and d = 0. From the left to the right: n = 128, 256, 512, 1024
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Fig. 2.4. Approximate solution ωn(t) of the Sherman–Lauricella equation (1.2) on the rhombus Γ,
α = π/5 with f := f1 defined by (2.7) and d = 0. From the left to the right: n = 128, 256, 512, 1024

contours are considered. On the other hand, the presence of corners changes the
situation drastically, and the applicability of the approximation method is not always
guaranteed.

Let Pn be the orthogonal projection from L2(Γ) on the subspace Sd
n(Γ). Then

the systems (2.6) are equivalent to the following operator equations

PnBΓPnωn = Pnf, n ∈ N. (3.1)

Definition 3.1. We say that the sequence (PnBΓPn) is stable if there is an
m ∈ R and an n0 ∈ N such that for all n ≥ n0 the operators PnBΓPn : Sd

n(Γ) → Sd
n(Γ)

are invertible and

||(PnBΓPn)
−1Pn|| ≤ m

for all n ≥ n0.
Recall that if the stability of the corresponding sequence (PnBΓPn) is established,

then the convergence of the Galerkin method and error estimates can be obtained from
well known results, cf. [11, Section 1.6, inequality (1.30)]. Therefore, in this work
we mainly deal with the stability and our approach is based on C∗-algebra methods
often used in operator theory. Let Ladd(L

2(Γ)) refer to the real C∗-algebra of all
additive continuous operators acting on the space L2(Γ). One can show [11] that
every operator A ∈ Ladd(L

2(Γ)) admits the unique representation A = A1 + A2M ,
where A1, A2 are linear operators andM is the operator of complex conjugation. This
representation allows one to introduce the operation of involution on Ladd(L

2(Γ)) as
follows

A∗ := A∗
1 +MA∗

2, (3.2)
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with A∗
1, A

∗
2 being the usual adjoint operators to the linear operators A1, A2, cf. [11,

Theorem 1.3.8 and Example 1.3.9]. By AΓ we denote the set of all bounded sequences
(An) of bounded additive operators An : imPn → imPn such that there is an operator
A ∈ Ladd(L

2(Γ)) with the property

s− limAnPn = A, s− lim (AnPn)
∗Pn = A∗,

where s− limAn denotes the strong limit of the operator sequence (An).
Endowed by the natural operations of addition, multiplication, multiplication by

scalars λ ∈ C, by an involution introduced according to (3.2), and by the norm

||(An)|| := sup
n∈N

||An||,

the set AΓ becomes a real C∗-algebra. Consider also the subset J Γ ⊂ AΓ consisting
of all sequences (Jn) of operators Jn : imPn → imPn which can be represented in the
form

Jn = PnTPn + Cn, n ∈ N,

where the operator T belongs to the ideal Kadd(L
2(Γ)) ⊂ Ladd(L

2(Γ)) of all compact
operators and the sequence (Cn) tends to zero uniformly, i.e.

lim
n→∞

||Cn|| = 0.

The stability of sequences from the algebra AΓ can be characterized as follows.
Theorem 3.2 (cf. [11, Proposition 1.6.3]). A sequence (An) ∈ AΓ such that

A := s− limAnPn is stable if and only if the operator A is invertible in Ladd(L
2(Γ))

and the coset (An) + J Γ is invertible in the quotient algebra AΓ/J Γ.
Consider now the sequence (PnBΓPn) of the Galerkin operators defined by the

projection operators Pn. Recall that on the space L2(Γ) the sequence of the orthogonal
projections (Pn) strongly converges to the identity operator I and P ∗

n = Pn, n ∈ N.
This implies that for any operator A ∈ Ladd(L

2(Γ)) the following relations

s− limPnAPn = A, s− lim(PnAPn)
∗Pn = A∗

hold [25]. Therefore, combining Theorem 2.2 and Theorem 3.2 one obtains the fol-
lowing result.

Corollary 3.3. Let Γ be a simple closed piecewise smooth curve. The spline
Galerkin method (3.1) is stable if and only if the coset (PnBΓPn) + J Γ is invertible
in the quotient algebra AΓ/J Γ.

Thus in order to establish the stability of the Galerkin method, one has to study
the invertibility of the coset (PnBΓPn)+J Γ in the algebra AΓ/J Γ. This problem can
be tackled more efficiently, if we restrict ourselves to a smaller algebra containing the
coset (PnBΓPn)+J . More precisely, let SΓ be the Cauchy singular integral operator,

SΓφ(t) :=
1

πi

∫

Γ

φ(ζ)

ζ − t
dζ.

Consider the smallest closed real C∗-subalgebra BΓ of the algebra AΓ which con-
tains all operator sequences of the form (PnMPn), (PnSΓPn) and also the sequences
(PnfPn), f ∈ CR(Γ) and (Gn), where limn→∞ ||Gn|| = 0 and CR(Γ) is the set of all
continuous real-valued functions on the contour Γ.
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Remark 3.4. It follows from [10, 12, 21, 25] that J Γ ⊂ BΓ and that the sequence
(PnBΓPn) belongs to BΓ. Therefore, BΓ/J Γ is a real C∗-subalgebra of AΓ/J Γ, and
by [11, Corollary 1.4.10] the coset (PnBΓPn)+J Γ is invertible in AΓ/J Γ if and only
if it is invertible in BΓ/J Γ. Therefore, one can now study the invertibility of the coset
(PnBΓPn)+J Γ in the smaller algebra BΓ/J Γ. To this end we will employ a localizing
principle.

Thus with each point τ ∈ Γ we associate a model contour Γτ as follows. Let θτ be
the angle between the right and the left semi-tangents to Γ at the point τ , and let βτ
refer to the angle between the right semi-tangent to Γ and the real line R. Consider
now the curve

Γτ := ei(βτ+θτ )R
+
− ∪ eiβτR

+
+

where R
+
− and R

+
+ denote the positive semi-axis R+ correspondingly directed to and

out of the origin. Further, on each such contour Γτ , τ ∈ Γ we consider the corre-
sponding Sherman-Lauricella operator

Aτ = I + Lτ −KτM, (3.3)

where

Lτω(t) :=
1

2πi

∫

Γτ

ω(ζ) d ln

(
ζ − t

ζ − t

)
, Kτω(t) :=

1

2πi

∫

Γτ

ω(ζ) d

(
ζ − t

ζ − t

)
.

Analogously to the algebra BΓ and to the ideal J Γ one can introduce algebras BΓτ

and ideals J Γτ ⊂ BΓτ , τ ∈ Γ, which allow to establish conditions of the applicability
of the corresponding Galerkin method for the operator (3.3). For this we also need
appropriate spline spaces on both the contour Γτ and the positive semi-axis R+ := R

+
+.

These spline spaces can be constructed by using the functions (2.4) again. More
precisely, consider the functions

φ̃nj(t) :=





{
φnj(s) if t = eiβτ s

0 otherwise
j ≥ 0

{
φn,j−d(s) if t = ei(βτ+θτ )s

0 otherwise
j < 0

. (3.4)

Let Sd
n(Γτ ) and S

d
n(R

+) be, respectively, the smallest closed subspaces of L2(Γτ ) and
L2(R+) which contains all functions (3.4) and all functions φnj , j ≥ 0 of (3.4) for
βτ = 0. Moreover, let P τ

n , n ∈ N and P+
n denote the orthogonal projections onto

the subspaces Sd
n(Γτ ) and Sd

n(R
+), respectively. In order to study the stability of

the sequence (P τ
nAτP

τ
n ), one can apply Theorem 3.2 and Remark 3.4 to obtain the

following result.
Corollary 3.5. The sequence (P τ

nAτP
τ
n ) ∈ BΓτ is stable if and only if the

operator Aτ is invertible in Bτ and the coset (P τ
nAτP

τ
n ) + J Γτ is invertible in the

quotient algebra BΓτ /J Γτ .
Further, let L2

2(R
+) be the space of all pairs (ϕ1, ϕ2)

T , ϕ1, ϕ2 ∈ L2(R+) endowed
by the norm

||(ϕ1, ϕ2)
T || := (| |ϕ1||2 + ||ϕ2||2)1/2,

and let η : L2(Γτ ) → L2
2(R

+) be the mapping defined by

η(ϕ) = (ϕ(sei(βτ+ωτ )), ϕ(seiβ))T , s ∈ R
+,
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where aT denotes the transposition of the vector a. It is clear that η is a linear isometry
from L2(Γτ ) onto L

2
2(R

+). Moreover, the mapping Ψ : Ladd(L
2(Γτ )) → Ladd(L

2
2(R

+))
defined by

Ψ(A) = ηAη−1, (3.5)

is an isometric algebra isomorphism. In particular, straightforward calculations show
that

Ψ(P τ
n ) = diag(P+

n , P
+
n ), (3.6)

Ψ(M) = diag(M̃, M̃), (3.7)

Ψ(Lτ ) =

(
0 Nθτ

Nθτ 0

)
, (3.8)

Ψ(Kτ ) =

(
0 ei2βτM2π−θτ

−ei2(βτ+θτ )Mθj 0

)
, (3.9)

where

Nθτϕ(σ) =
1

2

1

2πi

∫ ∞

0

(
1

1− (σ/s)eiθτ
− 1

1− (σ/s)ei(2π−θτ )

)
ϕ(s)

ds

s
,

Mθτϕ(σ) :=
1

π

∫ ∞

0

(σ
s

) sin θτ
(1− (σ/s)eiθτ )2

ϕ(s)
ds

s
,

and the symbol M̃ in the right-hand side of (3.7) refers to the operator of the complex
conjugation on the space L2(R+). Moreover, one can observe that the operators Nθτ

and Mθτ have a special form – viz.

Kϕ(σ) :=

∫ ∞

0

kθτ

(σ
s

)
ϕ(s)

ds

s
(3.10)

and

kθτ = kθτ (u) := nθτ (u) =
1

2π

u sin θτ
|1− ueiθτ |2 , if K = Nθτ , (3.11)

kθτ = kθτ (u) := mθτ (u) =
1

π

u sin θτ
(1− ueiθτ )2

, if K = Mθτ . (3.12)

On the space l2 of the sequences (ξk) of complex numbers ξk, k = 0, 1, . . .,

l2 := {(ξk)∞k=0 :
∞∑

k=0

|ξk|2 <∞},

the function kθτ defines a bounded linear operator A(kθτ ) with the matrix represen-
tation

A(kθτ ) =

(
ν2d

∫ d+1

0

φ̂(t)

∫ d+1

0

kθτ

(
u+ l

t+ q

)
φ̂(u)

du

u+ q
dt

)∞

q,l=0

, (3.13)
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where νd is the constant (2.3).
Theorem 3.6. Let nθτ and mθτ be the functions defined by (3.11) and (3.12),

respectively. The spline Galerkin method (3.1) is stable if and only if the operators
Rτ : l2 × l2 → l2 × l2,

Rτ :=
(

I A(nθτ )

A(nθτ ) I

)
+

(
0 eiβτA(m2π−θτ )

−e−i(βτ+θτ )A(mθτ ) 0

)(
M 0

0 M

)
(3.14)

are invertible for all τ ∈ MΓ.
Proof. By Corollary 3.3 the sequence (PnBΓPn) is stable if and only if the coset

(PnBΓPn) + J Γ is invertible. Moreover, since TΓ of (2.1) is a compact operator, the
sequences (PnAΓPn) and (PnBΓPn) belong to the same coset (PnAΓPn) + J Γ of the
quotient algebra BΓ/J Γ. However, by a version of the Allan’s Local Principle [1] for
real C∗-algebras [11, Theorem 1.9.5], the coset (PnAΓPn) + J Γ is invertible if and
only if for every τ ∈ Γ the coset (P τ

nAΓτ
P τ
n ) + J Γτ is invertible in the corresponding

algebra BΓτ /J Γτ . Therefore, the stability of our operator sequence will be established
if we manage to show the invertibility of all cosets (P τ

nAΓτ
P τ
n ) + J Γτ , τ ∈ Γ. Let

us start with the case where τ is not a corner point of Γ. If τ /∈ MΓ, then θτ = π,
and straightforward calculations show that Lτ and Kτ are the zero operators. Hence,
Aτ is just the identity operator I in the corresponding space, so that P τ

nAτP
τ
n = P τ

n .
The sequence (P τ

n ) is obviously stable so that the corresponding coset (P τ
n ) + J τ is

invertible.
Consider next the case where τ ∈ MΓ. The operator Aτ is invertible on the space

L2(Γτ ), [7, Theorem 2.2]. Note that the invertibility of the operator Aτ in L2(Γ) also
follows from [10, 9]. Therefore, by Corollary 3.5 the coset (P τ

nAτP
τ
n )+J τ is invertible

in BΓτ /J Γτ if and only if the sequence (P τ
nAτP

τ
n ) is stable. However, the stability of

this sequence is equivalent to the stability of the sequence (Ψ(P τ
nAτP

τ
n )), where the

mapping Ψ is defined by (3.5). Consider also the operators Λn : Sd
n(R

+) → l2 defined
by

Λn




∞∑

j=0

ξjφnj


 = (ξ0, ξ1, . . . , ).

By Lemma 2.1 these operators are bounded and continuously invertible. Set Λ−n :=
Λ−1
n and note that the sequence (Ψ(P τ

nAτP
τ
n )) is stable if and only if so is the sequence

(Rτ
n), where

Rτ
n = diag(Λn,Λn) ·Ψ(P τ

nAτP
τ
n ) · diag(Λ−n,Λ−n) : l

2 × l2 → l2 × l2.

From the definition of the mappings Ψ and Λ±n one obtains that the operators Rτ
n

have the form

Rτ
n = (A

(n,τ)
lp )2l,p=1 + (D

(n,τ)
lp )2l,p=1 diag(M,M),

with the operators A
(n,τ)
lp , D

(n,τ)
lp : l2 → l2 defined according to the relations (3.6)-

(3.9), (3.13)-(3.14). However, these operators do not depend on the parameter n at

all. Really, consider the matrix representations of the operators A
(n,τ)
12 , A

(n,τ)
21 , D

(n,τ)
12 ,
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D
(n,τ)
21 . It follows from (3.10) that the entries alq of the corresponding matrices

(alq)
∞
l,q=0 are

apq =

∫

R+

Kφqn(σ)φln(σ) dσ =

∫

R+

∫

R+

kθτ

(σ
s

)
φ(ns− q)

ds

s
φ(nσ − l) dσ

=
1

n

∫

R+

∫

R+

kθτ

(
u+ l

t+ q

)
φ(u)

du

u+ q
φ(t) dt

=
1

n

∫

R+

∫

R+

kθτ

(
u+ l

t+ q

)
(νd

√
nφ̂(u))

du

u+ q
(νd

√
nφ̂(t)) dt

= ν2d

∫ d+1

0

φ̂(t)

∫ d+1

0

kθτ

(
u+ l

t+ q

)
φ̂(u)

du

u+ q
dt,

hence these operators are independent of n. Moreover, D
(n,τ)
11 , D

(n,τ)
22 = 0 and A

(n,τ)
11 =

A
(n,τ)
22 = I. Combining all the above representations, one obtains that the operators

Rτ
n do not depend on the parameter n. Therefore, (Rτ

n) is a constant sequence and it
is stable if and only if any of its members, say Rτ

1 , is invertible. It remains to observe
that Rτ = Rτ

1 , which completes the proof.

4. Numerical approach to the invertibility of local operators. .
As was already mentioned, there is no efficient analytic method to verify the

invertibility of the local operators Rτ . On the other hand, numerical approaches turn
out to be surprisingly fruitful. Recall that the operators Rτ , τ ∈ MΓ do not depend
on the shape of the contour Γ but only on the relevant angles θτ and βτ . Therefore, for
contours having only one corner point, Theorem 3.6 can be reformulated as follows.

Corollary 4.1. If τ is the only corner point of the contour Γ, then the operator
Rτ is invertible if and only if the Galerkin method (PnBΓPn) is stable.

Thus in order to determine the critical angles, i.e. the opening angles θ for which
the operators Rτ are not invertible, one can consider the behaviour of the spline
Galerkin methods on special contours. A family of such contours Γθ

1, θ ∈ (0, 2π),

Γθ
1 := {t ∈ C : t = γ1(s) = sin(πs) exp(iθ(s− 0.5)), s ∈ [0, 1]}

has been used in [6, 9] to study the local operators of the Nyström method for
Sherman–Lauricella and Muskhelishvili equations. Changing the parameter θ in the
interval (0, 2π), one obtains contours located at the origin and having only one corner
of various magnitude. In the present paper, we use the same contours to detect the
critical angles of the spline Galerkin methods. It is worth mentioning that the opera-
tor Rτ depends not only on θτ but also on the angle βτ between the right semi-tangent
to the contour Γθ

1 at the point τ and the real line R. However, numerical experiments
conducted for both the Nyström and spline Galerkin methods show that, in fact, the
angle βτ does not influence the invertibility of the operator Rτ (see Figure 4.4 below
and Remark 4.3). This opens a way for verifying the results obtained for contour Γθ

1

by conducting similar tests for equations on contours with two or more corners, all of
the same magnitude. To this end, we will use another contour Γθ

2, which is the union
of two circular arcs with the parametrization

γ1(s) = −0.5 cot(0.5θ) + 0.5/ sin(0.5θ) exp(iθ(s− 0.5)), 0 ≤ s ≤ 1,

γ2(s) = 0.5 cot(0.5θ)− 0.5/ sin(0.5θ) exp(iθ(s− 0.5)), 0 ≤ s ≤ 1.
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To find the angles of instability, the interval [0.1π, 1.9π] has been divided by the
points θk := π(0.1+0.01k) and for each opening angle θk we constructed the matrices
of the corresponding approximation operators for the Galerkin methods based on
the splines of degree d = 0, d = 1 and d = 2. Note that we consider Galerkin
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Fig. 4.1. Condition numbers vs. opening angles in case n = 128. From row 1 to row 3: splines of

degree 0, 1 and 2, respectively. Left column: one-corner geometry, right column: two-corner geometry.

methods for two choices of n, namely for n = 128 and n = 256, and the integrals
arising in the equation (2.2) and in the method (2.6) have been approximated by
quadrature formulas (2.9), (2.10). Further, to verify the stability of the method, for
each angle θk we compute the condition numbers of the corresponding matrices and
the results of these computations are presented in Figures 4.1-4.3, where possible
presence of peaks might indicate critical angles. Thus it seems that inside of the
interval (0.1π, 1.9π) neither of the Galerkin methods based on splines of degree 0, 1
or 2 has critical angles. This differs from the Nyström method, where critical angles
have been discovered for both Sherman–Lauricella and Muskhelishvili equations [6, 9].
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Contrariwise, information about the critical angles at the interval ends is not so
conclusive. Thus in the case n = 256, the computation of the condition numbers for
both one and two corner geometry shows that for the Galerkin method based on the
splines of degree zero there can be a critical angle at the right end of the interval
mentioned.

For splines of the degree d = 0 and d = 1, the one and two corner geometries
give contradictory results (see Figure 4.2). To clarify the situation one has to refine
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Fig. 4.2. Condition numbers vs. opening angles in case n = 256. From row 1 to row 3: splines of

degree 0, 1 and 2, respectively. Left column: one-corner geometry, right column: two-corner geometry.

the mesh {θk} and essentially increase the dimension of the matrices used. Note
that while discovering a suspicious critical angle for n = 256, we refined the mesh
{θk} in a neighbourhood of that angle by reducing its step to 0.001π, and calculated
the condition numbers for the corresponding Galerkin methods with n changed to
512. This allows us to show that, in fact, there are no critical angles in the interval
mentioned. However, the computing time increases drastically.
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Fig. 4.3. Condition numbers vs. opening angles in case n = 256 and n = 512 after refining

the mesh in neighbourhoods of suspicious points. From row 1 to row 3: splines of degree 0, 1 and 2,

respectively. Left column: one-corner geometry, right column: two-corner geometry.

Remark 4.2. Note that that condition numbers of the Galerkin methods for the
Sherman-Lauricella equation are quite large and one can raise a question, whether
the methods are stable for at least one curve Γθ

1, 0 < θ < 2π. The answer to this
question is affirmative: The method is stable for the curve Γπ

1 , since in this case the
corresponding integral operators are compact. Taking into account the invertibility of
the corrected Sherman-Lauricella operator and strong convergence of the projections
to the identity operators, one obtains the claim.

Remark 4.3. As was already mentioned, numerical experiments do not show that
the stability depends on the angle β. The results obtained for both curves show the
same behavior of condition numbers even if the parameter β is different for Γθ

1 and Γθ
2.

Moreover, we rotate the curve Γθ
1 by various angles and compute the corresponding

condition numbers. The results of the numerical experiments are presented in Figure
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4.4. Note that although for the rotated curves, the condition numbers corresponding
to the same angle θ are different, the graphs in Figure 4.4 do not indicate the presence
of any ”infinite” peaks. Let us emphasize that if any suspicious point was discovered,
then the initial mesh has been refined in a neighbourhoud of such a point and the
experiment was repeated with a modified mesh.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.5

2

2.5

3

3.5

4

4.5

0.1 ≤ θ/π ≤ 1.9

 

 

ϑ=0.3π
ϑ=0.5π
ϑ=1.2π
ϑ=1.4π

Fig. 4.4. Condition numbers vs. opening angles in case n = 256 and the curve Γθ
1
rotated by

0.3π, 0.5π, 1.2π and 1.4π. The mesh has been refined in neighbourhoods of suspicious points and no

”infinite” peaks are discovered.

The numerical experiments are performed in MATLAB environment (version
7.9.0) and executed on an Acer Veriton M680 workstation equipped with a Intel
Core i7 vPro 870 Processor and 8GB of RAM, and it took from one to two weeks of
computer work in order to obtain every single graph presented in Figure 4.1, 4.2 or
4.3.
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[21] S. G. Mikhlin and S. Prössdorf, Singular integral operators, Springer-Verlag, Berlin,
1986.

[22] N. I. Muskhelishvili, Fundamental problems in the theory of elasticity, Nauka, Moscow,
1966.

[23] H. Ockendon and J. R. Ockendon, Viscous flow, Cambridge Texts in Applied
Mathematics, Cambridge University Press, Cambridge, 1995.

[24] V. Z. Parton and P. I. Perlin, Integral equations in elasticity, “Mir”, Moscow, 1982.
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