
An adaptive time stepping method with efficient
error control for second-order evolution problems

HUANG Jian-Guo1,2, LAI Jun-Jiang3 & TANG Tao4

1 Department of Mathematics, and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
2 Division of Computational Science, E-Institute of Shanghai Universities, Shanghai Normal University,

China
3 Department of Mathematics, Minjiang University, Fuzhou 350108, China

4 Department of Mathematics, Hong Kong Baptist University, Hong Kong, China

Email: jghuang@sjtu.edu.cn, laijunjiang@sjtu.org, ttang@hkbu.edu.hk

Abstract This work is concerned with time stepping finite element methods for abstract second

order evolution problems. We will derive optimal order a posteriori error estimates and a posteriori

nodal superconvergence error estimates using the energy approach and the duality argument. With
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1 Introduction

Adaptive time stepping methods are very important in developing efficient algorithms for solv-
ing evolution problems arising from fluid dynamics, epitaxial growth and many other applied
sciences (cf. [11, 13, 18, 20]). Such methods enable us to adopt feasible time steps to carry out
time discretization, so that we are able to take much less computational cost to get numerical
solutions with desired accuracy. The strategy for choosing time steps adaptively is very techni-
cal and problem oriented, and one typical approach is based on the a posteriori error estimator
corresponding to the underlying problem (cf. [5, 7]). Hence, a posteriori error analysis in time
plays an important role in constructing adaptive time stepping methods.

As far as we know, there have existed a very sophisticated investigation on a posteriori error
analysis for abstract first order evolution problems (cf. [1–4, 10]). Precisely speaking, with the
help of higher order appropriate reconstructions of the approximate solutions, the optimal order
a posteriori error estimates of some time discretization methods were established in [1–3, 10].
Furthermore, a posteriori superconvergence estimates for the error at the nodes for Galerkin
and Runge-Kutta methods were derived in [4]. However, there are few results about a posteriori
error analysis for abstract second order evolution problems, which frequently occur in structural
analysis (cf. [6, 8, 9]).
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In this paper, we are interested in developing a posteriori error analysis for abstract second-
order evolution problems. More precisely, for any real number T > 0, seek u : [0, T ] → D(A)
satisfying 




u′′(t) + Au(t) = f(t), 0 < t < T,

u(0) = u0,

u′(0) = v0,

(1.1)

where (·)′ and (·)′′ denote respectively the first and second order derivatives in time, A is a
positive definite, self-adjoint, linear operator on a Hilbert space (H, 〈·, ·〉) with domain D(A)
dense in H, and f is a function from [0, T ] into H. Throughout this paper, we assume that

u0, v0 ∈ D(A), f ∈ L2(0, T ; H). (1.2)

To discretize Problem (1.1), we use a standard finite element approach for handling the second-
order evolution problems, see, e.g., [8,9]. To this end, we use a non-uniform subdivision for the
time interval I := (0, T ):

0 = t0 < t1 < · · · < tN = T,

and introduce the notations

Jn = (tn−1, tn], kn = tn − tn−1, 1 6 n 6 N.

Define

V2 =



v : Ī → D(A); v ∈ C(Ī), v|Jn

(t) =
2∑

j=0

tjwj , wj ∈ D(A), 1 6 n 6 N



 ,

W3 =



v : Ī → D(A); v ∈ C1(Ī), v|Jn

(t) =
3∑

j=0

tjwj , wj ∈ D(A), 1 6 n 6 N



 ,

Hq =



v : Ī → H; v|Jn

(t) =
q∑

j=0

tjwj , wj ∈ H, 1 6 n 6 N



 , q = 1, 2, 4.

Let V2(Jn) and W3(Jn) consist of the restrictions to Jn of the elements of V2 and W3, respec-
tively. Similarly, denote by Hq(Jn) the restriction of Hq to Jn. Then our C0-continuous time
stepping finite element method for (1.1) is to find U ∈ V2 such that





∫

Jn

(〈U ′′, w′〉+ 〈F (t, U), w′〉) dt + 〈U̇n−1
+ − U̇n−1

− , ẇn−1
+ 〉 = 0

∀w ∈ V2(Jn), 1 6 n 6 N,

U0 = u0, U̇0
− = v0,

(1.3)

where

ẇn−1
± := lim

s→0+
w′(tn ± s), wn−1 := w(tn−1),

F (t, U) := AU − f(t).

For the method (1.3), in order to develop a posteriori error analysis with desired accuracy,
we require as in [1–4, 10] to technically devise a higher order reconstruction Ũ or Û from U in
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advance. Then, in light of this reconstruction and using the energy method, we are able to obtain
suboptimal/optimal a posteriori error estimates for u − U and (u − U)′. Moreover, applying
the duality method in [8,9], we also derive a posteriori superconvergence error estimator at the
time nodes. All the estimates (estimators) given before are computable quantities depending
only on the discrete solution U and the prescribed data of the continuous problem, with the
constants explicitly given. Based on the available a posteriori error estimates, using the error
equidistribution strategy (cf. [5, 12]), and following some ideas implied in the Runge-Kutta-
Felberg method (cf. [17]), we then design an adaptive time stepping method related to (1.3).
Finally, we perform a series of numerical examples to show the reliability and efficiency of our a
posteriori error estimates (estimators) as well as the effectiveness of our adaptive time stepping
method.

The remainder of this paper is organized as follows. The higher order reconstruction Ũ or
Û from U and the corresponding suboptimal/optimal a posteriori error analysis are given in
Sections 2 and 3, respectively. The a posteriori superconvergence error estimator at the time
nodes is provided in Section 4. The adaptive time stepping method is devised and discussed
in Section 5. In Section 6, a series of numerical experiments are performed to illustrate the
reliability and efficiency of our a posteriori error estimates (estimators) and to assess the effec-
tiveness of our adaptive time stepping method. Some concluding remarks are given in the final
section.

2 Suboptimal a posteriori error analysis

The usual way for bounding the error e := u − U of (1.3) is based on the corresponding error
equation e′′(t) + Ae(t) = −R(t), where the residual R(t) is defined by

R(t) = U ′′(t) + AU(t)− f(t), t ∈ Jn, (2.1)

or equivalently,
R = −(u− U)′′ −A(u− U) (2.2)

in view of (1.1). However, by the error analysis for finite elements, the magnitude of the
quantity R(t) is O(kn), and hence we can not derive sharp estimate for the error e(t) through
the previous error equation. For completeness, we show R(t) is exactly O(kn) by an example.
Consider an ordinary differential equation u′′(t) = f(t) = ct + d with c 6= 0 and d two real
constants. First of all, we recall from [9] that in any Jn,

U(t) =
(

Un−1(t− tn)2 + Un
(− (t− tn−1)2 + 2kn(t− tn−1)

)

+ U̇n
−

(
kn(t− tn−1)2 − k2

n(t− tn−1)
))/

k2
n, (2.3)

which together with (2.1) implies

R(t) = (2Un−1 − 2Un + 2knU̇n
−)/k2

n − f(t), t ∈ Jn. (2.4)

On the other hand, we find after a direct manipulation that

Un = un, U̇n
− = u′(tn), 1 6 n 6 N. (2.5)
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The combination of (2.4) and (2.5) then gives

R(t) =
(
2un−1 − 2un + 2knu′(tn)

)
/k2

n − f(t)

=
2
k2

n

∫ tn

tn−1
(s− tn−1)u′′(s) ds− f(t)

=
2
k2

n

∫ tn

tn−1
(s− tn−1)f(s) ds− f(t)

=
2
k2

n

∫ tn

tn−1
(s− tn−1)(cs + d) ds− (ct + d)

= c(tn−1 − t) + 2ckn/3, t ∈ Jn,

which implies that R(t) is indeed of the size O(kn) in this case.

Therefore, as in [1–4,10], we require a higher order reconstruction Ũ or Û from U , which are
devised in an appropriate way, in order to establish our a posteriori error analysis with desired
accuracy.

2.1 Reconstruction

We first introduce an invertible linear operator Ĩ3: V2 → W3 as follows. With every w ∈ V2

we associate an element w̃ := Ĩ3w ∈ W3 defined by locally interpolating in each subinterval
Jn(1 6 n 6 N), i.e. w̃|Jn

∈ W3(Jn) is uniquely determined by





w̃(tn) = w(tn),

w̃(tn−1) = w(tn−1),

w̃′(tn) = ẇn
−,

w̃′(tn−1) =

{
v0, n = 1,

ẇn−1
− , 2 6 n 6 N.

(2.6)

We call w̃ a time reconstruction of w. Conversely, if w̃ ∈ W3 is given and I2 : W3 → V2 is the
interpolation operator defined by





˙(I2ϕ)
n

− = ϕ′(tn),

I2ϕ(tn) = ϕ(tn),

I2ϕ(tn−1) = ϕ(tn−1),

1 6 n 6 N , we can recover w locally via interpolation, i.e. w = I2w̃. Thus, I2 = Ĩ−1
3 .

Using the reconstruction Ũ ∈ W3 of U ∈ V2 which is the solution of (1.3), we can deduce
from (2.6) that

∫

Jn

〈Ũ ′ − U ′, w′′〉dt = 0 ∀w ∈ V2(Jn). (2.7)
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Hence, for every w ∈ V2(Jn), 1 6 n 6 N using integration by parts, (2.7) and (2.6) gives
∫

Jn

〈Ũ ′′, w′〉dt = 〈Ũ ′(tn), ẇn
−〉 − 〈Ũ ′(tn−1), ẇn−1

+ 〉 −
∫

Jn

〈Ũ ′, w′′〉dt

= 〈Ũ ′(tn), ẇn
−〉 − 〈Ũ ′(tn−1), ẇn−1

+ 〉 −
∫

Jn

〈U ′, w′′〉dt

= 〈Ũ ′(tn), ẇn
−〉 − 〈Ũ ′(tn−1), ẇn−1

+ 〉 −
(
〈U̇n
−, ẇn

−〉 − 〈U̇n−1
+ , ẇn−1

+ 〉 −
∫

Jn

〈U ′′, w′〉dt
)

= 〈U̇n−1
+ − U̇n−1

− , ẇn−1
+ 〉+

∫

Jn

〈U ′′, w′〉dt. (2.8)

Plugging (2.8) into (1.3), we immediately obtain
∫

Jn

(〈Ũ ′′, w′〉+ 〈F (t, U), w′〉) dt = 0 ∀w ∈ V2(Jn), 1 6 n 6 N,

which is equivalent to
∫

Jn

(〈Ũ ′′, w′〉+ 〈F (t, I2Ũ), w′〉) dt = 0 ∀w ∈ V2(Jn), 1 6 n 6 N,

i.e.
Ũ ′′ + P1F (t, I2Ũ) = 0 ∀ t ∈ Jn, (2.9)

where Pq (q = 1, 2) is the (local) L2 orthogonal projection operator onto Hq(Jn) (cf. [4]).
Consequently, for each n,

∫

Jn

〈Pqv − v, w〉dt = 0 ∀w ∈ Hq(Jn).

2.2 Energy estimates

Let V := D(A1/2) and denote the norms in H and in V by | · | and ‖ · ‖, with ‖v‖ := |A1/2v| =
〈Av, v〉1/2, respectively. We also use the following norm notations:

‖v‖L∞(G) := ess sup
t∈G

‖v(t)‖, |v|L∞(G) := ess sup
t∈G

|v(t)|.

Under the assumption (1.2), we know from [15] that there exists a unique weak solution u ∈
C([0, T ]; V )

⋂
C1([0, T ]; H) to the evolution problem (1.1).

Let R̃ be the residual of Ũ given by

R̃(t) := Ũ ′′(t) + AŨ − f(t), t ∈ Jn, 1 6 n 6 N. (2.10)

Subtracting (2.10) from the differential equation in (1.1), we readily have

ẽ′′(t) + Aẽ = −R̃(t), (2.11)

where ẽ := u− Ũ . Testing (2.11) by ẽ′ and integrating over t ∈ [0, τ ] gives
∫ τ

0

(〈ẽ′′(s), ẽ′(s)〉+ 〈Aẽ(s), ẽ′(s)〉) ds =
∫ τ

0

〈−R̃(s), ẽ′(s)〉ds, (2.12)
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Using the fact that ẽ(0) = ẽ′(0) = 0 and integration by parts gives

1
2
|ẽ′(τ)|2 +

1
2
‖ẽ(τ)‖2 =

∫ τ

0

〈−R̃(s), ẽ′(s)〉ds, τ ∈ [0, t], (2.13)

which yields

1
2
(

max
06τ6t

|ẽ′(τ)| )2

6 max
06τ6t

∫ τ

0

|〈R̃(s), ẽ′(s)〉|ds

6
∫ t

0

|〈R̃(s), ẽ′(s)〉|ds 6 max
06τ6t

|ẽ′(τ)|
∫ t

0

|R̃(s)|ds.

Consequently, we have

max
06τ6t

|ẽ′(τ)| 6 2
∫ t

0

|R̃(s)|ds. (2.14)

It then follows from (2.13)-(2.14) that

1
2
(

max
06τ6t

‖ẽ(τ)‖ )2 6
∫ t

0

|〈R̃(s), ẽ′(s)〉|ds

6 max
06τ6t

|ẽ′(τ)|
∫ t

0

|R̃(s)|ds 6 2
( ∫ t

0

|R̃(s)|ds
)2

,

which leads to

max
06τ6t

‖ẽ(τ)‖ 6 2
∫ t

0

|R̃(s)|ds.

Obviously, using the triangle inequality we have

|(U − Ũ)′|L∞((0, t)) 6 |(u− U)′|L∞((0, t)) + max
06τ6t

|(u− Ũ)′(τ)|. (2.15)

Summarizing the above results, we can get a posteriori error estimates for the method (1.3)
as described in the following theorem.

Theorem 2.1. Let u and U be the solutions of (1.1) and (1.3), respectively and let Ũ be the
reconstruction of U by (2.6). Then, for t ∈ [0, T ], there hold the following a posteriori error
estimates:

max
06τ6t

∣∣(u− Ũ)′(τ)
∣∣ 6 2

∫ t

0

|R̃(s)|ds, (2.16)

max
06τ6t

∥∥(u− Ũ)(τ)
∥∥ 6 2

∫ t

0

|R̃(s)|ds, (2.17)

where the a posteriori quantity R̃ is given by (2.10). Moreover, we have the following lower
estimate:

|(U − Ũ)′|L∞((0, t)) 6 |(u− U)′|L∞((0, t)) + max
06τ6t

|(u− Ũ)′(τ)|.

Let τ1 and τ2 be the zeroes of l2(t) :=
√

5
8 (3t2 − 1), where l2(t) is exactly the third or-

thonormal Legendre polynomial in [−1, 1]. Write

tn,i :=
tn−1 + tn

2
+

kn

2
τi, i = 1, 2, 1 6 n 6 N.
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Lemma 2.2. For s ∈ Jn, 1 6 n 6 N ,

U(s)− Ũ(s) = −1
6
k3

nŨ (3)
(s− tn−1

kn

)(s− tn
kn

)2
, (2.18)

U(s)− P1U(s) =
1
8
k2

nU ′′
2∏

i=1

(2s− tn−1 − tn
kn

− τi

)
. (2.19)

Moreover, for t ∈ Jn, 1 6 n 6 N , there holds

2
∫ t

0

|R̃(s)|ds (2.20)

6
n∑

m=1

(
1
36

k4
m|AŨ (3)|L∞(Jm) +

√
3

27
k3

m|AU ′′|L∞(Jm) + 2
∫

Jm

|f(s)− P1f(s)|ds

)
.

Proof. It follows from (2.6) that

(U − Ũ)(tn−1) = (U − Ũ)(tn) = U̇n
− − Ũ ′(tn) = 0,

which yields

U(s)− Ũ(s) = −1
6
k3

nŨ (3)

(
s− tn−1

kn

)(
s− tn

kn

)2

.

Let p2 be the third Legendre polynomial shifted to Jn and normalized, i.e.

p2(t) =
√

2
kn

l2

(
2t− tn−1 − tn

kn

)
, t ∈ Jn.

Noting that

U(s)− P1U(s) = P2U(s)− P1U(s) =
∫

Jn

U(t)p2(t) dt · p2(s),

we have
(U − P1U)(tn,i) = 0, i = 1, 2,

from which it follows that

U(s)− P1U(s) =
1
8
k2

nU ′′
2∏

i=1

(
2s− tn−1 − tn

kn
− τi

)
, s ∈ Jn.

From (2.9) and (2.10), R̃(s) can be expressed as

R̃(s) = A(Ũ − U)(s) + A(U − P1U)(s)− (f − P1f)(s). (2.21)

Using (2.18)-(2.19) and (2.21), we can obtain (2.20) by some direct computation.

We then differentiate (2.18) with respect to s to get

(U − Ũ)′(s) = −1
6
k2

nŨ (3)
((s− tn

kn

)2 + 2
(s− tn−1

kn

)(s− tn
kn

))
,

leading to

|(U − Ũ)′|L∞(Jn) =
1
6
k2

n|Ũ (3)|L∞(Jn), 1 6 n 6 N. (2.22)

Applying (2.16), (2.22) and noting that

|(u− U)′|L∞((0, t)) 6 max
06τ6t

∣∣(u− Ũ)′(τ)|+ |(U − Ũ)′|L∞((0, t)),

we obtain the following result.
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Theorem 2.3. Let u and U be the solutions of (1.1) and (1.3), respectively and let Ũ be the
reconstruction of U by (2.6). Then, for t ∈ Jn, 1 6 n 6 N , there holds

|(u− U)′|L∞((0, t)) 6 1
6

max
16m6n

k2
m|Ũ (3)|L∞(Jm) + 2

∫ t

0

|R̃(s)|ds.

The following result is a direct consequence of Theorems 2.1, 2.3 and (2.22).

Corollary 2.1. Let u and U be the solutions of (1.1) and (1.3), respectively and let Ũ be the
reconstruction of U by (2.6). Then, for t ∈ Jn, 1 6 n 6 N , there hold the following lower and
upper bounds:

1
6

max
16m6n

k2
m|Ũ (3)|L∞(Jm)

6 |(u− U)′|L∞((0, t)) + max
06τ6t

∣∣(u− Ũ)′(τ)
∣∣

6 1
6

max
16m6n

k2
m|Ũ (3)|L∞(Jm) + 4

∫ t

0

|R̃(s)|ds,

where the a posteriori quantity R̃ is given by (2.10).

Recall that Ũ is C1-continuous on Ī and its restriction to any Jn is a third order polynomial
in the variable t, so Ũ |Jn

is uniquely determined by Un−1, Un, U̇n−1
− and U̇n

−. After some direct
computation we have, for t ∈ Jn, 1 6 n 6 N ,

Ũ(t) = Un−1λ0

(
t− tn−1

kn

)
+ knU̇n−1

− φ0

(
t− tn−1

kn

)

+Unλ1

(
t− tn−1

kn

)
+ knU̇n

−φ1

(
t− tn−1

kn

)
,

where

λ0(ξ) = (1− ξ)2(2ξ + 1), φ0(ξ) = ξ(1− ξ)2,

λ1(ξ) = ξ2(3− 2ξ), φ1(ξ) = −ξ2(1− ξ),

which are the Hermite cubic interpolation basis functions on the reference interval [0, 1] (cf.
[14, 16]). Thus, it is easy to get

Ũ (3)(t) =
6
k3

n

(
2Un−1 − 2Un + knU̇n−1

− + knU̇n
−

)
, t ∈ Jn.

On the other hand, we note that

U(t) = Un−1λ0

(
t− tn−1

kn

)
+ knU̇n−1

+ φ0

(
t− tn−1

kn

)

+Unλ1

(
t− tn−1

kn

)
+ knU̇n

−φ1

(
t− tn−1

kn

)
,

which leads to

U − Ũ = kn(U̇n−1
+ − U̇n−1

− )φ0

(
t− tn−1

kn

)
, t ∈ Jn.
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Consequently, we obtain

Ũ (3)(t) = − 6
k2

n

(U̇n−1
+ − U̇n−1

− ), t ∈ Jn. (2.23)

That means, the a posteriori error estimate given in Theorem 2.3 can be expressed as

|(u− U)′|L∞((0, t)) 6 max
16m6n

|U̇n−1
+ − U̇n−1

− |+ 2
∫ t

0

|R̃(s)|ds, (2.24)

which is quite similar to the a posteriori error estimate corresponding to the finite element
method in space (cf. [19]).

Remark 1. If f admits two time derivatives and the discrete solution U admits the optimal
a priori error estimates, then we can check from (2.20) that the magnitude of the quantity∫ t

0
|R̃(s)|ds is of order 2 with respect to the time step km. Hence, noting that U is a piecewise

polynomial of degree 2, we get the optimal order (2 order) a posteriori error estimates for the
time derivative of the error u − U (cf. Theorem 2.3 and Corollary 2.1). However, (2.17) only
yields an a posteriori error estimate of order 2 for the error u − U , which is suboptimal (the
best order is 3). To recover the optimal order a posteriori error estimate on u−U , we require to
introduce a new reconstruction Û of the approximate solution U , as shown in the next section.

3 Optimal a posteriori error analysis

3.1 Optimal reconstruction

Denote Û(t) ∈ H4 by

Û(t) = Ũ(t) +
∫ t

tn−1

( ∫ σ

tn−1

(P2 − P1)
(−AU(s) + f(s)

)
ds

)
dσ, t ∈ Jn, 1 6 n 6 N. (3.1)

We call Û an optimal reconstruction of U . It is easy to check that Û(tn) = Ũ(tn) = U(tn) by
changing the order of integration in (3.1) and conclude Û is continuous in [0, T ]. On the other
hand, for t ∈ Jn,

Û ′(t) = Ũ ′(t) +
∫ t

tn−1

(P2 − P1)
(−AU(s) + f(s)

)
ds,

which implies
Û ′(tn) = Ũ ′(tn) = U̇n

− (3.2)

and Û ′(t) is continuous in [0, T ]. It is also easy to show that

Û ′′(t) = Ũ ′′(t) + (P2 − P1)
(−AU(t) + f(t)

)
, t ∈ Jn, (3.3)

which combined with (2.9) gives

Û ′′(t) = P2

(
f(t)−AU(t)

)
, t ∈ Jn, (3.4)

i.e. Û satisfies
Û ′′ + P2F (t, I2Ũ) = 0, t ∈ Jn.
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Let R̂ be the residual of Û ,

R̂(t) := Û ′′(t) + AÛ − f(t), t ∈ Jn, 1 6 n 6 N. (3.5)

Subtracting (3.5) from the differential equation in (1.1), we can get the error equation

ê′′(t) + Aê = −R̂(t), (3.6)

where ê := u− Û .

3.2 Error estimates

We first note that
ê(0) = ê′(0) = 0. (3.7)

Then applying the similar argument for deriving Theorem 2.1 (see (2.12)-(2.15)), we can readily
obtain the a posteriori error estimates for u − Û and its time derivative, as described in the
following theorem.

Theorem 3.1. Let u and U be the solutions of (1.1) and (1.3), respectively and let Û be the
optimal reconstruction of U by (3.1). Then, for t ∈ [0, T ], there hold

max
06τ6t

∣∣(u− Û)′(τ)
∣∣ 6 2

∫ t

0

|R̂(s)|ds, (3.8)

max
06τ6t

∥∥(u− Û)(τ)
∥∥ 6 2

∫ t

0

|R̂(s)|ds, (3.9)

where the a posteriori quantity R̂ is given by (3.5). Moreover, we have the lower estimate

max
06τ6t

‖(U − Û)(τ)‖ 6 max
06τ6t

‖(u− U)(τ)‖+ max
06τ6t

‖(u− Û)(τ)‖.

Lemma 3.2. For s ∈ Jn, 1 6 n 6 N ,

Û(s)− Ũ(s) =
1
32

k4
nÛ (4)ψ

(2s− tn−1 − tn
kn

)
, (3.10)

where ψ(x) = 1
12 (x2 − 1)2. Thus, for 1 6 m 6 N , we have

‖Û − Ũ‖L∞(Jm) =
1

384
k4

m‖Û (4)‖L∞(Jm), (3.11)

|(Û − Ũ)′|L∞(Jm) =
√

3
216

k3
m|Û (4)|L∞(Jm). (3.12)

Moreover, for t ∈ Jn, 1 6 n 6 N , there hold the following explicit upper estimates:

max
06τ6t

‖(U − Û)(τ)‖ 6 1
384

max
16m6n

k4
m‖Û (4)‖L∞(Jm) +

1
81

max
16m6n

k3
m‖Ũ (3)‖L∞(Jm),(3.13)

2
∫ t

0

|R̂(s)|ds 6
n∑

m=1

( 1
360

k5
m|AÛ (4)|L∞(Jm) +

1
36

k4
m|AŨ (3)|L∞(Jm)

+2
∫

Jm

|f(s)− P2f(s)|ds
)
. (3.14)

10



Proof. It follows from (3.3) and the fact that (Û− Ũ)′′ is a multiple of the Legendre polynomial
of second order that

(Û − Ũ)′′(tn, i) = 0, i = 1, 2, (3.15)

(Û − Ũ)′′(s) =
1
2
Û (4)(s− tn, 1)(s− tn, 2). (3.16)

Integrating (3.16) twice with respect to s gives (3.10), and a direct consequence of (3.10) yields
(3.11) and (3.12). Moreover, the estimate (3.13) follows immediately from (3.11), (2.18) and
the triangle inequality.

Owing to (3.4) and (3.5), R̂(s) can be expressed as

R̂(s) = A(Û − U)(s)− (f − P2f)(s),

= A(Û − Ũ)(s) + A(Ũ − U)(s)− (f − P2f)(s).

Thus, using (2.18) and (3.10) we can get (3.14) by some direct computation.

Remark 2. It follows from (3.4) that

Û (4) =
(
P2(f −AU)

)′′ = −AU ′′ + (P2f)′′,

so the constant Û (4) can be computed easily.

Since u−U = (u−Û)+(Û−U), we can readily obtain the following result by using Theorem
3.1 and the triangle inequality.

Theorem 3.3. Let u and U be the solutions of (1.1) and (1.3), respectively and let Û be the
optimal reconstruction of U by (3.1). Then, for t ∈ Jn, 1 6 n 6 N , there holds the following
optimal order a posteriori error estimate:

max
06τ6t

∥∥(u− U)(τ)
∥∥ 6 2

∫ t

0

|R̂(s)|ds + max
06τ6t

‖(U − Û)(τ)‖,

where the a posteriori quantity R̂ is given by (3.5).

Applying Theorem 3.1 and Theorem 3.3 we can easily have

Corollary 3.1. Let u and U be the solutions of (1.1) and (1.3), respectively. Let Û be the
optimal reconstruction of U by (3.1). Then, for t ∈ Jn, 1 6 n 6 N , there hold the following
lower and upper bounds:

max
06τ6t

‖(U − Û)(τ)‖

6 max
06τ6t

‖(u− U)(τ)‖+ max
06τ6t

∥∥(u− Û)(τ)
∥∥

6 max
06τ6t

‖(U − Û)(τ)‖+ 4
∫ t

0

|R̂(s)|ds,

where the a posteriori quantity R̂ is given by (3.5).

Remark 3. If f admits three time derivatives and the discrete solution U admits the optimal
a priori error estimates, then we have from (3.14) that the order of the quantity

∫ t

0
|R̂(s)|ds

is 3. Hence, from (3.13) we find the optimal order (3 order) a posteriori error estimates are
obtained in Theorem 3.3 and Corollary 3.1.
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The following result is a direct consequence of Theorem 3.1, (3.11)-(3.12).

Corollary 3.2. Let u and U be the solutions of (1.1) and (1.3), respectively. Let Ũ be the
reconstruction of U by (2.6) and Û be the optimal reconstruction of U by (3.1). Then, for
t ∈ [0, T ],

max
06τ6t

∣∣(u− Ũ)′(τ)
∣∣ 6 2

∫ t

0

|R̂(s)|ds +
√

3
216

max
16m6n

k3
m|Û (4)|L∞(Jm), (3.17)

max
06τ6t

‖(u− Ũ)(τ)‖ 6 2
∫ t

0

|R̂(s)|ds +
1

384
max

16m6n
k4

m‖Û (4)‖L∞(Jm), (3.18)

where the a posteriori quantity R̂ is given by (3.5).

Using Theorems 2.1 and 2.3, (2.22) and (3.17), we can get the following result.

Corollary 3.3. Let u and U be the solutions of (1.1) and (1.3), respectively. Let Ũ be the
reconstruction of U by (2.6) and Û be the optimal reconstruction of U by (3.1). Then, for
t ∈ Jn, 1 6 n 6 N ,

1
6

max
16m6n

k2
m|Ũ (3)|L∞(Jm)

6 |(u− U)′|L∞((0, t)) + max
06τ6t

∣∣(u− Ũ)′(τ)
∣∣

6 1
6

max
16m6n

k2
m|Ũ (3)|L∞(Jm) + 2

∫ t

0

|R̃(s)|ds + 2
∫ t

0

|R̂(s)|ds

+
√

3
216

max
16m6n

k3
m|Û (4)|L∞(Jm), (3.19)

where the a posteriori quantities R̃ and R̂ are given by (2.10) and (3.5), respectively.

Remark 4. If f admits three time derivatives and the discrete solution U admits the optimal
a priori error estimates, then all the right terms in (3.17)-(3.18) are of three order while those in
(2.16)-(2.17) are of two order. Therefore, Corollaries 3.2 and 3.3 improve the results in Theorem
2.1 and Corollary 2.1, respectively.

4 Nodal superconvergence

In this section, we shall apply the duality method used in [8, 9] to obtain a posteriori error
estimates at the time nodes.

For n ∈ {1, . . . , N}, let g be the solution of the following backward homogeneous problem




g′′(t) + Ag(t) = 0, 0 < t < tn,

g(tn) = µ,

g′(tn) = ν.

(4.1)

It is easy to see that ∫ tn

t

〈g′′ + Ag, g′〉dt = 0,

12



from which and the integration by parts it follows that

‖g(t)‖2 + |g′(t)|2 = ‖µ‖2 + |ν|2, t ∈ [0, tn]. (4.2)

Hence, we take µ = 0, ν = ê′(tn) in (4.1) to get

|ėn
−|2 = |ê′(tn)|2 =

∫ tn

0

〈ê′, g′〉′ dt =
∫ tn

0

(〈ê′′, g′〉+ 〈ê′, g′′〉) dt

=
∫ tn

0

(〈ê′′, g′〉 − 〈ê′, Ag〉) dt =
∫ tn

0

(〈ê′′, g′〉+ 〈ê, Ag′〉) dt

=
∫ tn

0

〈ê′′ + Aê, g′〉dt = −
∫ tn

0

〈R̂, g′〉dt

6 max
t∈[0, tn]

|g′(t)|
∫ tn

0

|R̂|dt 6 |ê′(tn)|
∫ tn

0

|R̂|dt, (4.3)

where we have used (3.2), (3.6), (3.7) and (4.2). It follows from (4.3) that

|ėn
−| 6

∫ tn

0

|R̂|dt.

Similarly, choosing µ = ê(tn), ν = 0 in (4.1) yields

‖e(tn)‖2 = ‖ê(tn)‖2 =
∫ tn

0

〈Aê, g〉′ dt =
∫ tn

0

(〈Aê, g′〉+ 〈Aê′, g〉) dt

=
∫ tn

0

(〈Aê, g′〉+ 〈ê′, Ag〉) dt =
∫ tn

0

(〈Aê, g′〉+ 〈ê′, −g′′〉) dt

=
∫ tn

0

(〈Aê, g′〉+ 〈ê′′, g′〉) dt = −
∫ tn

0

〈R̂, g′〉dt

6 max
t∈[0, tn]

|g′(t)|
∫ tn

0

|R̂|dt 6 ‖ê(tn)‖
∫ tn

0

|R̂|dt,

which implies

‖e(tn)‖ 6
∫ tn

0

|R̂|dt.

Thus, we obtain the following result, which gives a posteriori error estimates at the nodes.

Theorem 4.1. Let u and U be the solutions of (1.1) and (1.3), respectively. Then, for 1 6
n 6 N , there hold

|ėn
−| 6

∫ tn

0

|R̂|dt, (4.4)

‖e(tn)‖ 6
∫ tn

0

|R̂|dt. (4.5)

where the a posteriori quantity R̂ is given by (3.5).

Remark 5. If f admits three time derivatives and the discrete solution U admits the optimal
a priori error estimates, then we have from (3.14) that the order of

∫ tn

0
|R̂|dt with respect to

the time step is three. Hence (4.4) gives us a superconvergent result at the nodes.
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5 An adaptive algorithm

Based on the a posteriori error estimates given in Corollary 3.3, we are able to construct an
adaptive time stepping method related to the method (1.3). Let ε be the total error tolerance
allowed for the a posteriori error estimate in (3.19), i.e.

η :=
1
6

max
16m6N

k2
m|Ũ (3)|L∞(Jm) + 2

∫ T

0

|R̃(s)|ds + 2
∫ T

0

|R̂(s)|ds

+
√

3
216

max
16m6N

k3
m|Û (4)|L∞(Jm)

6ε. (5.1)

To ensure (5.1) holds, a natural way is to adjust the time step size km such that the following
conditions are satisfied:

1
6
k2

m|Ũ (3)|L∞(Jm) 6 1
3
ε,

√
3

216
k3

m|Û (4)|L∞(Jm) 6 1
3
ε,

2
T

km

∫ tm

tm−1

(|R̃(s)|+ |R̂(s)|) ds 6 1
3
ε,

which motivates us to use the following time-stepping strategy

Θ :=3 max

{
1
6
k2

m|Ũ (3)|L∞(Jm),

√
3

216
k3

m|Û (4)|L∞(Jm), 2
T

km

∫ tm

tm−1

(|R̃(s)|+ |R̂(s)|) ds

}

6ε. (5.2)

It deserves to point out that in the derivation of the above time stepping rule, we have used the
well known error equidistribution strategy (cf. [5,12]). Consequently, using (5.2) and following
some ideas implied in the Runge-Kutta-Felberg method (cf. [17]), we can get the following
adaptive algorithm to control the time step size at each time step m.

Algorithm 5.1. (Time step size control)

1. Given an error tolerance ε and a parameter δ ∈ (0, 1) (usually we take δ = 1
4).

Also assume that we have maximum and minimum for the time step size, denoted

kmax and kmin. These terms may be specified by the user, or they may be set

to default values in a given software package.

2. At the node tm−1, begin with an initial step size, km.

3. Compute Um and U̇m
− using (1.3) with the step size km. And then get U, U ′

and Θ at this time step.

4. If δε 6 Θ 6 ε, then U ′(t) is an acceptable approximation of u′(t), t ∈ (tm−1, tm−1+
km]. The step size km is acceptable, and it is used to advance to the next

grid point, km+1 = km.

5. If Θ < δε, the step size is more than adequate, and we try to increase it.

We double the step size as long as the larger step size is still smaller than

kmax. That is, we set km+1 = 2km.
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6. If Θ > ε, then we decrease the step size. Replace km = 1
2km provided that

the smaller step size satisfies km > kmin. Return to Step 3, where new values

of Um, U̇m
− and U, U ′, Θ are computed for this smaller step size.

Remark 6. If the time step km (m = 1, 2, · · · ) determined by the above algorithm all lie in
(kmin, kmax), then we easily have from (3.19), (5.2) and the definition of η (cf. (5.1)) that

|(u− U)′|L∞((0, T )) ≤ η ≤ ε.

Table 1 Example 1: order of Etd and E2 + E3

N Etd Order E2 + E3 Order E1 Order

2 1.5444e–01 7.6389e–01 8.8555e–01

4 2.2409e–02 2.7849 1.0161e–01 2.9102 1.7984e–01 2.2998

8 3.2049e–03 2.8057 1.3080e–02 2.9577 4.3014e–02 2.0639

16 4.2320e–04 2.9209 1.6594e–03 2.9786 1.0545e–02 2.0283

32 5.4140e–05 2.9666 2.0904e–04 2.9888 2.6153e–03 2.0115

64 6.8387e–06 2.9849 2.6232e–05 2.9944 6.5204e–04 2.0039

128 8.5908e–07 2.9929 3.2854e–06 2.9972 1.6282e–04 2.0017

256 1.0764e–07 2.9965 4.1109e–07 2.9986 4.0681e–05 2.0008

512 1.3470e–08 2.9984 5.1411e–08 2.9993 1.0168e–05 2.0004

1024 1.6840e–09 2.9998 6.4276e–09 2.9997 2.5416e–06 2.0002

Table 2 Example 1: order of Et and E2 + E4

N Et Order E2 + E4 Order E1 Order

2 2.6461e–01 7.4734e–01 8.8555e–01

4 3.3352e–02 2.9880 9.7186e–02 2.9429 1.7984e–01 2.2998

8 4.1044e–03 3.0225 1.2132e–02 3.0019 4.3014e–02 2.0639

16 5.0659e–04 3.0183 1.5075e–03 3.0086 1.0545e–02 2.0283

32 6.2854e–05 3.0107 1.8762e–04 3.0062 2.6153e–03 2.0115

64 7.8257e–06 3.0057 2.3392e–05 3.0037 6.5204e–04 2.0039

128 9.7620e–07 3.0030 2.9200e–06 3.0020 1.6282e–04 2.0017

256 1.2190e–07 3.0015 3.6474e–07 3.0010 4.0681e–05 2.0008

512 1.5230e–08 3.0007 4.5575e–08 3.0005 1.0168e–05 2.0004

1024 1.9032e–09 3.0004 5.6959e–09 3.0003 2.5416e–06 2.0002
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Table 3 Example 1: order of Ed and E1 + E5

N Ed Order E1 + E5 Order

2 1.3500 2.3185

4 3.5796e–01 1.9150 5.5465e–01 2.0635

8 9.7078e–02 1.8826 1.4232e–01 1.9624

16 2.4735e–02 1.9726 3.5564e–02 2.0007

32 6.2218e–03 1.9912 8.8735e–03 2.0028

64 1.5611e–03 1.9947 2.2177e–03 2.0004

128 3.9090e–04 1.9977 5.5429e–04 2.0004

256 9.7796e–05 1.9989 1.3855e–04 2.0002

512 2.4458e–05 1.9995 3.4635e–05 2.0001

1024 6.1157e–06 1.9997 8.6584e–06 2.0001

6 Numerical Experiments

6.1 Efficiency of the estimators

Example 1. In this subsection, we perform a simple numerical example to illustrate the
effectiveness of the a posteriori error estimates developed in the previous sections. Consider an
initial value problem





u′′(t) + 2u(t) = 2et(cos t− sin t), 0 < t < 2,

u(0) = 1,

u′(0) = 1,

which has the exact solution u(t) = et cos t and ‖ · ‖ =
√

2| · |.
In our numerical computation, for a given natural number N , we adopt the uniform parti-

Table 4 Example 1: order of E5 and E7

N E5 Example 1: order Ed Ed+Etd E7 Order

2 1.4329 1.3500 1.5044 3.0824

4 3.7481e–01 1.9347 3.5796e–01 3.8037e–01 6.5627e–01 2.2317

8 9.9308e–02 1.9162 9.7078e–02 1.0028e–01 1.5540e–01 2.0783

16 2.5019e–02 1.9889 2.4735e–02 2.5158e–02 3.7223e–02 2.0617

32 6.2581e–03 1.9992 6.2218e–03 6.2759e–03 9.0825e–03 2.0350

64 1.5657e–03 1.9989 1.5611e–03 1.5680e–03 2.2440e–03 2.0170

128 3.9147e–04 1.9998 3.9090e–04 3.9176e–04 5.5757e–04 2.0088

256 9.7868e–05 2.0000 9.7796e–05 9.7904e–05 1.3896e–04 2.0045

512 2.4467e–05 2.0000 2.4458e–05 2.4472e–05 3.4686e–05 2.0022

1024 6.1168e–06 2.0000 6.1157e–06 6.1174e–06 8.6649e–06 2.0011
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Table 5 Example 1: order of Ehd and Eh

N Ehd Order Eh Order E2 Order

2 1.6022e–01 2.6461e–01 7.3328e–01

4 1.9640e–02 3.0282 3.3352e–02 2.9880 9.5865e–02 2.9353

8 2.4953e–03 2.9765 4.1044e–03 3.0225 1.2009e–02 2.9969

16 3.0409e–04 3.0367 5.0658e–04 3.0183 1.4982e–03 3.0028

32 3.7656e–05 3.0136 6.2855e–05 3.0107 1.8699e–04 3.0022

64 4.6720e–06 3.0107 7.8256e–06 3.0057 2.3351e–05 3.0014

128 5.8197e–07 3.0050 9.7621e–07 3.0029 2.9173e–06 3.0008

256 7.2607e–08 3.0028 1.2190e–07 3.0015 3.6457e–07 3.0004

512 9.0672e–09 3.0014 1.5230e–08 3.0007 4.5565e–08 3.0002

1024 1.1330e–09 3.0005 1.9032e–09 3.0004 5.6952e–09 3.0001

Table 6 Example 1: order of E and E2 + E6

N E Order E2 + E6 Order

2 1.6139e–01 1.0270

4 2.5746e–02 2.6482 1.3419e–01 2.9362

8 4.1044e–03 2.6491 1.7188e–02 2.9647

16 5.0658e–04 3.0183 2.1533e–03 2.9968

32 6.2855e–05 3.0107 2.6891e–04 3.0013

64 7.8254e–06 3.0058 3.3601e–05 3.0005

128 9.7616e–07 3.0030 4.1989e–06 3.0004

256 1.2184e–07 3.0021 5.2476e–07 3.0003

512 1.5213e–08 3.0017 6.5588e–08 3.0001

1024 1.8994e–09 3.0017 8.1979e–09 3.0001

tions with km = 2/N, 1 6 m 6 N. For ease of exposition, write

E1 := 2
∫ 2

0

|R̃(s)|ds, E2 := 2
∫ 2

0

|R̂(s)|ds, E3 :=
√

3
216

max
16m6N

k3
m|Û (4)|L∞(Jm),

E4 :=
1

384
max

16m6N
k4

m‖Û (4)‖L∞(Jm), E5 :=
1
6

max
16m6N

k2
m|Ũ (3)|L∞(Jm), E6 := max

06τ62
‖(U − Û)(τ)‖,

E := max
06τ62

‖(u− U)(τ)‖, Ed :=
∣∣(u− U)′

∣∣
L∞((0, 2))

, Et := max
06τ62

‖(u− Ũ)(τ)‖,

Etd := max
06τ62

|(u− Ũ)′(τ)|, Eh := max
06τ62

‖(u− Û)(τ)‖, Ehd := max
06τ62

|(u− Û)′(τ)|,

Es := ‖u(2)− U(2)‖, Esd := |u′(2)− U̇N
− |, E7 := E1 + E2 + E3 + E5.

In Tables 1 and 2 we give the values of a posteriori error estimators E2 + E3, E2 + E4 and E1

as well as their orders. These numerical results confirm the theoretical results of Corollary 3.2
and (2.16)-(2.17). Similarly, the numerical results in Tables 3-8 validate the theoretical results
of Theorem 2.3, Corollary 3.3, Theorems 3.1, 3.3, Corollary 3.1 and Theorem 4.1, respectively.
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Table 7 Example 1: order of E6 and 2E2 + E6

N E6 Order E+Eh 2E2 + E6 Order

2 2.9374e–01 4.2600e–01 1.7603

4 3.8320e–02 2.9384 5.9098e–02 2.3005e–01 2.9358

8 5.1796e–03 2.8872 8.2088e–03 2.9197e–02 2.9780

16 6.5505e–04 2.9832 1.0132e–03 3.6515e–03 2.9993

32 8.1919e–05 2.9993 1.2571e–04 4.5590e–04 3.0017

64 1.0250e–05 2.9985 1.5651e–05 5.6952e–05 3.0009

128 1.2815e–06 2.9997 1.9524e–06 7.1162e–06 3.0006

256 1.6019e–07 3.0000 2.4374e–07 8.8933e–07 3.0003

512 2.0023e–08 3.0000 3.0443e–08 1.1115e–07 3.0002

1024 2.5026e–09 3.0002 3.8026e–09 1.3893e–08 3.0001

Table 8 Example 1: order of Esd and Es

N Esd Order Es Order E2/2 Order

2 6.9299e–02 2.6461e–01 3.6664e–01

4 1.2580e–02 2.4617 3.3353e–02 2.9880 4.7933e–02 2.9353

8 1.7970e–03 2.8075 4.1045e–03 3.0225 6.0044e–03 2.9969

16 2.3743e–04 2.9200 5.0660e–04 3.0183 7.4911e–04 3.0028

32 3.0436e–05 2.9636 6.2857e–05 3.0107 9.3495e–05 3.0022

64 3.8505e–06 2.9827 7.8259e–06 3.0057 1.1675e–05 3.0014

128 4.8414e–07 2.9915 9.7624e–07 3.0030 1.4587e–06 3.0008

256 6.0692e–08 2.9958 1.2190e–07 3.0015 1.8228e–07 3.0004

512 7.5974e–09 2.9979 1.5230e–08 3.0008 2.2782e–08 3.0002

1024 9.5035e–10 2.9990 1.9033e–09 3.0004 2.8476e–09 3.0001

Next, we study the efficiency of the lower and upper estimators in Corollaries 3.1 and 3.3,
using the indices as given in [1]. With respect to the reference error E+Eh the lower effectivity
index Effl and the upper effectivity index Effu are defined as

Effl :=
E6

E+Eh
, Effu :=

2E2 + E6

E+Eh
,

respectively. Similarly, with respect to the reference error Ed+Etd, we denote the lower and
upper effectivity indices

Effld :=
E5

Ed+Etd
, Effud :=

E7

Ed+Etd
.

We compute these indices in Table 9 and graphically demonstrate them in log-log scale in Figure
1. It is observed that Effld≈ 1, Effud≈ √

2, Effl≈ 2/3, and Effu≈ 11/3.
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Table 9 Example 1: effectivity indices of lower and upper estimators

N Effld Effud Effl Effu

2 0.9525 2.0489 0.6895 4.1322

4 0.9854 1.7253 0.6484 3.8927

8 0.9903 1.5496 0.6310 3.5568

16 0.9945 1.4796 0.6465 3.6040

32 0.9972 1.4472 0.6517 3.6266

64 0.9986 1.4311 0.6549 3.6389

128 0.9993 1.4233 0.6564 3.6449

256 0.9996 1.4194 0.6572 3.6486

512 0.9998 1.4174 0.6577 3.6512

1024 0.9999 1.4164 0.6581 3.6535

1 2 3 4 5 6 7 8 9 10
N

 

Lower  estimator (Effld)
Upper  estimator (Effud)
Lower  estimator (Effl)
Upper  estimator (Effu)

Figure 1 Log-log graphs of the effectivity indices of lower and upper estimators (the base of
the logarithms is 2).
6.2 Efficiency of the adaptive algorithm

Example 2. In order to test the effectiveness of our adaptive Algorithm 5.1, we first consider
the ODE case (cf. (1.1)) with A = 2, T = 10, and the right term f is taken such that the exact
solution of (1.1) is

u(t) = α(t) := e−800(sin(πt/2)−1)2 sin(4πt). (6.1)

We set kmax = 1 in the computation. In Figure 2 we give the numerical solutions for u and
u′. The error of (u − U)′(t) is depicted in Figure 3(a) and the time stepsize trajectory is
shown in Figure 3(b). In Table 10 we have reported the numerical results when running the
adaptive algorithm for different values of ε and kmin, where (N∗− 1) is the total number of the
time iterative step in the adaptive computation. Moreover, we adopt the uniform partitions
to compute with the same iteration number (N∗ − 1) , and the numerical results are shown in
Table 11, from which we know the adaptive algorithm is very efficient.
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1 2 3 4 5 6 7 8 9 10
t

 

Exact solution
Numerical solution at the nodes

1 2 3 4 5 6 7 8 9 10
t

 

Exact solution
Numerical solution at the nodes

Figure 2 Example 2: solution curve (top) and derivative curve (bottom) with ε = 10−1, kmin =
10−2.

Table 10 Example 2: adaptive numerical results with different ε and kmin

ε kmin η |(u− U)′|L∞((0, T )) N N∗
1e–1 1e–2 1.3458 1.3907e–1 237 265

1e–1 5e–3 3.2883e–1 3.4921e–2 432 465

1e–1 3e–3 1.1643e–1 1.2582e–2 670 713

1e–1 2e–3 5.1986e–2 5.5931e–3 960 1014

1e–1 1e–3 1.7596e–2 5.2996e–3 1748 1834

1e–2 8e–4 8.2489e–3 8.9507e–4 2373 2440

Table 11 Example 2: numerical results with uniform partitions

N∗ 265 465 713 1014 1834 2440

η 2.0302e+1 6.4139 2.6775 1.3100 3.9251e–1 2.1752e–1

|(u− U)′|L∞ 1.8839 6.3710e–1 2.7348e–1 1.3554e–1 4.1577e–2 2.3495e–2
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(a)
1 2 3 4 5 6 7 8 9 10

x 10
−3

t

(b)
1 2 3 4 5 6 7 8 9 10

t

Figure 3 Example 2: (a) the error of (u − U)′(t) and (b) the time stepsize trajectory with
ε = 10−2, kmin = 8 ∗ 10−4.

Example 3. Next, we turn to the results in the PDE case. The problem under consideration
is





∂2u

∂t2
− 2

∂2u

∂x2
= f(x, t), 0 < x < 1, 0 < t < T,

u(0, t) = u(1, t) = 0, 0 6 t 6 T,

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = v0(x), 0 6 x 6 1,

(6.2)

and define the solution of (6.2) by

Case (a) u(x, t) = α(t) ∗ sin(πx), T = 10, (6.3)

Case (b) u(x, t) = β(t) ∗ sin(πx), T = 1, (6.4)

where α(t) is given in (6.1) and β(t) = 0.1 ∗ (1 − e−10000∗(t−1/2)2), which is used in [5] for
numerical experiments.

We apply the adaptive time stepping Algorithm 5.1 to solve these problems. In the space
direction, we adopt linear finite element with uniform partitions, and the space step size is
1/1000. The error of |(u − U)′(t)| and the time step size at each time step are displayed in
Figures 4-5. The adaptive numerical results with different ε and kmin are shown in Tables 12-13.
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(a)
1 2 3 4 5 6 7 8 9 10

x 10
−4

t

(b)
1 2 3 4 5 6 7 8 9 10

t

Figure 4 Example 3: (a). the error of |(u− U)′(t)| and (b) the time stepsize trajectory with
ε = 10−2, kmin = 10−3, kmax = 1, case (a).
Table 12 Example 3: adaptive numerical results with different ε and kmin, kmax = 1, case (a)

ε kmin η |(u− U)′|L∞((0, T )) N N∗
1e–1 1e–2 9.3824e–1 9.8521e–2 232 256

1e–1 5e–3 2.2978e–1 2.4697e–2 428 463

1e–1 3e–3 8.1437e–2 8.8953e–3 665 716

1e–2 1e–3 9.0067e–3 9.8934e–4 1915 1965

Table 13 Example 3: adaptive numerical results with different ε and kmin, kmax = 10−1, case
(b)

ε kmin η |(u− U)′|L∞((0, T )) N N∗
1e–1 1e–3 1.3900e–1 4.5905e–2 88 96

1e–1 8e–4 8.8610e–2 2.9403e–2 103 111

1e–2 3e–4 1.2183e–2 4.1365e–3 257 271

1e–2 2e–4 5.4196e–3 1.8400e–3 361 375

1e–3 1e–4 1.3490e–3 4.6005e–4 736 749

1e–3 8e–5 8.6463e–4 2.9446e–4 893 909
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(a)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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t

(b)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

Figure 5 Same as Figure 4, except for case (b).
7 Concluding remarks

This work is concerned with developing adaptive time stepping methods for second-order evo-
lution problems in terms of a posteriori error analysis. Based on the energy approach and
the duality argument, optimal order a posteriori error estimates and a posteriori nodal su-
perconvergence error estimates have been derived. Using these estimates, an adaptive time
stepping strategy is developed. A number of numerical experiments are performed to assess the
effectiveness of the proposed adaptive time stepping method.

We conclude this work by summarizing our main observations from the numerical results
reported in the last section:

• The a posteriori error estimators developed in this paper are reliable and efficient. In
particular, the estimator given in Corollary 3.3 performs better than the one given in
Corollary 2.1.

• The adaptive time stepping Algorithm 5.1 is efficient for solving time evolution problems
under consideration. This is seen by comparing the numerical errors obtained using the
uniform partition and adaptive partition, i.e., Tables 11 and 10).

• For the adaptive time stepping Algorithm 5.1, the choice of kmin is critical for the efficiency
of the algorithm. If it is taken too large, the total error may not be dominated by the
prescribed error tolerance; and if too small, the algorithm may lead to over-refinement.
Although kmin can be chosen quite easily by numerical experience, some theoretical jus-
tification is certainly needed.
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12 Nochetto R H, Savaré G, Verdi C. A posteriori error estimates for variable time-step
discretizations of nonlinear evolution equations. Comm Pure Appl Math, 2000, 53: 525–
589

24



13 Qiao Z, Zhang Z, Tang T. An adaptive time-stepping strategy for the molecular beam
epitaxy models, SIAM J Sci Comput, 2011, 33: 1303–1414

14 Quarteroni A, Sacco R, Saleri F. Numerical Mathematics. Berlin: Springer, 2000

15 Renardy M, Rogers R C. An Introduction to Partial Differential Equations (Second Edi-
tion). Berlin: Springer, 2004

16 Shen J, Tang T, Wang L. Spectral Methods: Algorithms, Analysis and Applications, Berlin:
Springer, 2011

17 Stoer J, Bulirsch R. Introduction to Numerical Analysis (Third Edition). New York:
Springer, 2002

18 Tan Z, Zhang Z, Huang Y, Tang T. Moving mesh methods with locally varying time steps,
J Comput Phys, 2004, 200: 347–367

19 Verfürth R. A Review of A Posteriori Estimation and Adaptive Mesh–Refinement Tech-
niques, Chichester: Wiley-Teubner, 1996

20 Xu C, Tang T. Stability analysis of large time-stepping methods for epitaxial growth models,
SIAM J Numer Anal, 2000, 44: 1759–1779

25


