Colloquium/Seminar

YearMonth
2017 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Oct   Nov   Dec  
2016 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Oct   Nov   Dec  
2015 Jan   Feb   Mar   Apr   May   Jun   Aug   Sep   Oct   Nov   Dec  
2014 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2013 Jan   Feb   Mar   Apr   May   Jun   Aug   Sep   Nov   Dec  
2012 Jan   Feb   Apr   May   Jun   Jul   Aug   Sep   Nov   Dec  
2011 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2010 Jan   Feb   Mar   Apr   May   Jun   Sep   Oct   Nov   Dec  
2009 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2008 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2007 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2006 Jan   Feb   Mar   Apr   May   Jun   Jul   Sep   Oct   Nov   Dec  
2005 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2004 Jan   Feb   Mar   Apr   May   Aug   Sep   Oct   Nov   Dec  

Event(s) on February 2007


  • Thursday, 1st February, 2007

    Title: Centre for Mathematical Imaging and Vision (CMIV) Lecture Series Lecture 2: Projecting onto a Polytope Simplifies Data Distributions: Theory and Some Applications
    Speaker: Prof. Francois Malgouyres, Laboratoire Analyse, Gomtrie et Applications, Universiti Paris 13, France
    Time/Place: 14:00  -  15:00
    FSC 1217


  • Friday, 2nd February, 2007

    Title: Centre for Mathematical Imaging and Vision (CMIV) Lecture Series Lecture 3: Primal-dual Implementation of the Basis Pursuit Algorithm
    Speaker: Prof. Francois Malgouyres, Laboratoire Analyse, Gomtrie et Applications, Universiti Paris 13, France
    Time/Place: 14:00  -  15:00
    FSC 1217


  • Tuesday, 6th February, 2007

    Title: Optimal Shrinkage Estimation of Variances with Applications to Microarray Data Analysis
    Speaker: Prof. Yuedong Wang, Department of Statistics and Applied Probability, University of California - Santa Barbara, USA
    Time/Place: 11:30  -  12:30
    FSC 1217
    Abstract: Microarray technology allows a scientist to study genome-wide patterns of gene expression. Thousands of individual genes are measured with relatively little replication which poses challenges to traditional statistical methods. In particular,the gene-specific estimates of variances are not reliable and gene-by-gene tests have low power. We propose a family of shrinkage estimators for variances raised to a fixed power. We derive optimal shrinkage parameters under both Stein and the squared loss functions. Our results show that the standard sample variance is inadmissible under both loss functions. We conduct simulations to evaluate performance of the optimal shrinkage estimators and compare them with some existing methods. We construct F statistics using these shrinkage variance estimators and apply them to detect differentially expressed genes in a microarray experiment. We also conduct simulations to evaluate performance of these F statistics and compare them with some existing methods.


  • Friday, 9th February, 2007

    Title: CMIV Lecture Series: Optimization for Image Processing (Lecture 1)
    Speaker: Prof. Mila Nikolova, CMLA ENS de Cachan, France
    Time/Place: 14:30  -  16:30
    FSC 1217


  • Tuesday, 27th February, 2007

    Title: CMIV Lecture Series: Optimization for Image Processing (Lecture 2)
    Speaker: Prof. Mila Nikolova, CMLA ENS de Cachan, France
    Time/Place: 14:30  -  16:30
    FSC 1217


  • Wednesday, 28th February, 2007

    Title: Enhanced Snake Algorithm for Noisy Images based on Integrated Region Information
    Speaker: Mr. Chi Pan Tam, Department of Mathematics, Hong Kong Baptist University, HKSAR, China
    Time/Place: 14:30  -  15:30
    FSC 1217
    Abstract: In this paper, an improved parametric active contour is proposed based on the techniques of binarization and the utilization of region information. Traditional active contour models are mainly based on gradient information; therefore it may be difficult to find the boundary of objects if the image is noisy. Our model makes use of binarization techniques to extract region information which is integrated with gradient information. This approach can greatly improve the results for noisy images. We present various experimental results to demonstrate the performance of this model to different types of noisy images. Also, we will show that it is robust to change in parameter settings as compared with traditional snakes.