Colloquium/Seminar

YearMonth
2017 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Oct   Nov   Dec  
2016 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Oct   Nov   Dec  
2015 Jan   Feb   Mar   Apr   May   Jun   Aug   Sep   Oct   Nov   Dec  
2014 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2013 Jan   Feb   Mar   Apr   May   Jun   Aug   Sep   Nov   Dec  
2012 Jan   Feb   Apr   May   Jun   Jul   Aug   Sep   Nov   Dec  
2011 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2010 Jan   Feb   Mar   Apr   May   Jun   Sep   Oct   Nov   Dec  
2009 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2008 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2007 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2006 Jan   Feb   Mar   Apr   May   Jun   Jul   Sep   Oct   Nov   Dec  
2005 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2004 Jan   Feb   Mar   Apr   May   Aug   Sep   Oct   Nov   Dec  

Event(s) on August 2017


  • Friday, 11th August, 2017

    Title: Sparse Poisson Regression with Penalized Weighted Score Function
    Speaker: Dr. Lihu XU, Department of Mathematics, University of Macau, Macau
    Time/Place: 11:00  -  12:00
    FSC1111, Fong Shu Chuen Library, HSH Campus, Hong Kong Baptist University
    Abstract: We proposed a new penalized method in this paper to solve sparse Poisson Regression problems. Being different from $ell_1$ penalized log-likelihood estimation, our new method can be viewed as a penalized weighted score function method. We show that under mild conditions, our estimator is $ell_1$ consistent and the tuning parameter can be pre-specified, which owns the same good property of the square-root Lasso. The simulations show that our proposed method is much more robust than traditional sparse Poisson models using $ell_1$ penalized log-likelihood method. This is joint work with Jinzhu Jia and Fang Xie (PhD student at University of Macau).


  • Thursday, 17th August, 2017

    Title: Model Reduction for Kinetic Equations
    Speaker: Prof.LI Ruo, School of Mathematical Sciences, Peking University, China
    Time/Place: 11:30  -  12:30
    WLB211, The Wing Lung Bank Building for Business Studies, Shaw Campus, Hong Kong Baptist University
    Abstract: In this talk, I will introduce the theory of the moment model reduction of Boltzmann equation we developed in recent years, together with the latest progress. By our exploration, it was found that the hyperbolicity of the reduced moment model for generic kinetic equation can always be achieved, and the method provides us a symmetric hyperbolic system that the local wellposedness of the reduced model is not a problem any more.