Colloquium/Seminar

YearMonth
2019 Jan   Feb   Mar   Apr   May   Jun  
2018 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Oct   Nov   Dec  
2017 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Oct   Nov   Dec  
2016 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Oct   Nov   Dec  
2015 Jan   Feb   Mar   Apr   May   Jun   Aug   Sep   Oct   Nov   Dec  
2014 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2013 Jan   Feb   Mar   Apr   May   Jun   Aug   Sep   Nov   Dec  
2012 Jan   Feb   Apr   May   Jun   Jul   Aug   Sep   Nov   Dec  
2011 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2010 Jan   Feb   Mar   Apr   May   Jun   Sep   Oct   Nov   Dec  
2009 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2008 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2007 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2006 Jan   Feb   Mar   Apr   May   Jun   Jul   Sep   Oct   Nov   Dec  
2005 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2004 Jan   Feb   Mar   Apr   May   Aug   Sep   Oct   Nov   Dec  

Event(s) on June 2019


  • Wednesday, 5th June, 2019

    Title: Inverse problems for elliptic equations with power type nonlinearities
    Speaker: Dr Yi-Hsuan LIN, Department of Mathematics and Statistics, University of Jyväskylä, Finland
    Time/Place: 11:00  -  12:00
    FSC703, Fong Shu Chuen Library, HSH Campus, Hong Kong Baptist University
    Abstract: We introduce a method for solving Calder'on type inverse problems for semilinear equations with power type nonlinearities. The method is based on higher order linearizations, and it allows one to solve inverse problems for certain nonlinear equations in cases where the solution for a corresponding linear equation is not known. Assuming the knowledge of a nonlinear Dirichlet-to-Neumann map, we determine both a potential and a conformal manifold simultaneously in dimension $2$, and a potential on transversally anisotropic manifolds in dimensions $n geq 3$. In the Euclidean case, we show that one can solve the Calder'on problem for certain semilinear equations in a surprisingly simple way without using complex geometrical optics solutions.


  • Thursday, 20th June, 2019

    Title: Mathematical Modeling and Methods of Signal Separations In Spectroscopic Sensing
    Speaker: Prof Yuanchang SUN, Department of Mathematics and Statistics, Florida International University, Florida, USA
    Time/Place: 11:00  -  12:00
    FSC1217, Fong Shu Chuen Library, HSH Campus, Hong Kong Baptist University
    Abstract: "Spectroscopic sensing is a powerful and a widely used family of techniques for detecting and identifying chemical and biological substances. For example, nuclear magnetic resonance (NMR) relies on the magnetic properties of the atomistic nucleus to determine the molecular structures. Raman spectroscopy (RS) uses laser light scattering and the resulting energy shift of photons to sense the vibrational modes of a sample. In remote sensing, hyperspectral imaging (HSI) makes use of hundreds of contiguous spectral bands to identify nearly invisible objects at subpixel level. Differential optical absorption spectroscopy (DOAS) is based on the light absorption property of matter to identify broadband and narrowband spectral structures, and analyze atmospheric trace gas concentrations. It is however a challenging problem to identify spectral signals in real-world applications due to many complicating factors. For example, a target chemical often appears in a mixture where the signature (individual) spectral fingerprint of the target is absent; measurement errors occur. Hence robust signal processing methods must be developed to process the sensing data for reliable identification and quantification. In this talk, the speaker shall address the mathematical and computational methods for separating spectral mixtures when minimal or partial knowledge of the source signals is known. Such problems arise in all aforementioned spectroscopies."